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Abstract: The coronavirus SARS-CoV-2 has turned our own health and the world economy upside
down. While several vaccine candidates are currently under development, antivirals with the
potential to limit virus transmission or block infection are also being explored. Plant production
platforms are being used to generate vaccines and antiviral proteins inexpensively and at mass
scale. The following review discusses the biology and origins of the current coronavirus pandemic,
and describes some of the conventional, synthetic, and plant-based approaches to address the
challenge that it presents to our way of life.
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1. Introduction

Coronaviruses (CoVs) constitute a very diverse group of positive-sense enveloped
RNA viruses with genomes ranging between 27–32 kb [1]. The viral structure comprises
four structural proteins including the spike, nucleocapsid, membrane and envelope pro-
tein [2], several non-structural proteins and proteins derived from the host cell [1]. The
CoVs display a characteristic ‘crown-like’ appearance under an electron microscope owing
to the presence of club-shaped protein projections on the viral surface (ECDC, 2020; [3,4]).
The simplified SARS-CoV-2 structure and its affinity with human angiotensin converting
enzyme-2 receptor is illustrated in Figure 1.

Coronaviruses belong to the order Nidovirales, which is classified into four families, in-
cluding the Coronaviridae, Mesoniviridae, Arteriviridae and Roniviridae. Coronaviridae is
categorized into two sub-families: the Coronavirinae and Torovirinae. The sub-family Coro-
navirinae is further divided into four genera based on serological and phylogenetic findings:
Alphacoronaviruses, Betacoronaviruses, Gammacoronaviruses, and Deltacoronaviruses [5]. The
Alphacoronaviruses and Betacoronaviruses are infectious in mammals only while Gamma-
coronaviruses and Deltacoronaviruses are infectious in birds with some viruses infecting
mammals as well [6]. In the 1960s, coronaviruses were discovered in humans for the first
time [7]. The earliest studied human viruses were the human coronavirus OC43 and 229E,
both caused the common cold [8]. Coronaviruses also consist of emerging viruses such
as the severe acute respiratory syndrome-related CoV (SARS-CoV) of Southern China
(2003), the Middle East respiratory syndrome-related CoV (MERS-CoV) of Saudi Arabia
(2012) [9,10] and SARS-CoV-2, the recently identified coronavirus in the Wuhan City of
China (December, 2019) [11,12]. Among the coronaviruses known to infect humans, MERS-
CoV, SARS-CoV and SARS-CoV-2 have the potential to cause severe disease while OC43,
229E, NL63, and HKU1 display mild symptoms [13]. SARS-CoV-2 is seventh among the
coronaviruses that infect humans [14].
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Figure 1. SARS-CoV-2 structure and its affinity with human ACE2 receptor (adopted from [15]., 
2020). 

2. The COVID-19 Pandemic 
A novel Coronavirus that recently emerged in Wuhan City, China was initially de-

tected on 29 December, 2019, from four human cases who were all linked to the Huanan 
seafood market in Southern China. Patients displayed “pneumonia of unknown etiology” 
similar to the 2003 SARS. Deep sequencing of samples obtained from the patients’ lower 
respiratory tract revealed a novel strain of coronavirus that was named as severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) [16,17].  

Scientists quickly identified the causative agent as betacoronavirus [12,18,19]. Phylo-
genetic analysis revealed that a viral genome consisting of 29,903 nucleotides shared 
89.1% nucleotide similarity with SARS-like coronaviruses [18,20] previously detected in 
bats in China [21]. Although the virus has similarities with MERS-CoV and SARS-CoV, it 
is completely unique [11,12]. It was initially thought that the new virus may have lesser 
severity as compared to MERS-CoV and SARS-CoV. However, further evidence of a rapid 
upsurge in incidence and interpersonal transmission indicated that it is highly contagious 
[22–26]. The World Health Organization officially declared the outbreak caused by 2019-
nCoV a pandemic on 11 March, 2020 [27] and termed the disease ‘COVID-19’ [11,12].  

The SARS-CoV-2 virus particle has a spherical shape that exhibits some degree of 
pleomorphism with a diameter ranging from 60 to 140 nm, and distinct spikes 8–12 nm 
long [12]. SARS-CoV-2 seems well suited to bind the ACE2 human receptor with its spike 
protein having a polybasic (furin) functional cleavage site that favours the attachment of 
12 nucleotides at the S1–S2 boundary [28]. The receptor-binding domain (RBD) of the 
spike protein is the most variable portion of the CoV genome [12,18] Six amino acids in 
the RBD are critical for attachment to the ACE2 receptors as well as determination of host 
range of viruses like SARS-CoV [29].  

The virus primarily spreads through the respiratory secretions of an infected person 
when he sneezes, coughs or talks [30]. Droplets of the infected person can infect others 
when they come in contact with their mucous membranes. Droplets are typically present 
within a range of 2 metres (6 feet) from the infected individual and do not last long in the 
air [30]. Infected surfaces can serve as a source of infection too if touched with the hand 
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2. The COVID-19 Pandemic

A novel Coronavirus that recently emerged in Wuhan City, China was initially detected
on 29 December, 2019, from four human cases who were all linked to the Huanan seafood
market in Southern China. Patients displayed “pneumonia of unknown etiology” similar to
the 2003 SARS. Deep sequencing of samples obtained from the patients’ lower respiratory
tract revealed a novel strain of coronavirus that was named as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) [16,17].

Scientists quickly identified the causative agent as betacoronavirus [12,18,19]. Phylo-
genetic analysis revealed that a viral genome consisting of 29,903 nucleotides shared 89.1%
nucleotide similarity with SARS-like coronaviruses [18,20] previously detected in bats in
China [21]. Although the virus has similarities with MERS-CoV and SARS-CoV, it is com-
pletely unique [11,12]. It was initially thought that the new virus may have lesser severity
as compared to MERS-CoV and SARS-CoV. However, further evidence of a rapid upsurge
in incidence and interpersonal transmission indicated that it is highly contagious [22–26].
The World Health Organization officially declared the outbreak caused by 2019-nCoV a
pandemic on 11 March, 2020 [27] and termed the disease ‘COVID-19’ [11,12].

The SARS-CoV-2 virus particle has a spherical shape that exhibits some degree of
pleomorphism with a diameter ranging from 60 to 140 nm, and distinct spikes 8–12 nm
long [12]. SARS-CoV-2 seems well suited to bind the ACE2 human receptor with its spike
protein having a polybasic (furin) functional cleavage site that favours the attachment of
12 nucleotides at the S1–S2 boundary [28]. The receptor-binding domain (RBD) of the spike
protein is the most variable portion of the CoV genome [12,18] Six amino acids in the RBD
are critical for attachment to the ACE2 receptors as well as determination of host range of
viruses like SARS-CoV [29].

The virus primarily spreads through the respiratory secretions of an infected person
when he sneezes, coughs or talks [30]. Droplets of the infected person can infect others
when they come in contact with their mucous membranes. Droplets are typically present
within a range of 2 metres (6 feet) from the infected individual and do not last long in the
air [30]. Infected surfaces can serve as a source of infection too if touched with the hand
followed by touching the mouth, nose, and eyes. Symptomatic patients are believed to be
most contagious [31]. The exact time required for virus incubation in the host is not known.
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However, it is thought to vary between 2 and 14 days post exposure to the virus, with five
days being the most common time frame [31–33]. The age groups most affected are the
middle aged and the elderly. Children do not appear to display symptomatic infection
and, if they do, it is generally mild [34]. A study conducted on 1099 COVID-19 patients in
Wuhan, China revealed the following common clinical features at the disease onset: fever
(88%), fatigue (38%), dry cough (67%), myalgias (14.9%) and dyspnea (18.7%). Pneumonia
was found to be the most severe consequence of the infection. In patients with pneumonia,
breathing difficulties developed after an average of five days [33]. The clinical symptoms
of COVID-19 patients are illustrated in Figure 2.

Vaccines 2021, 9, x FOR PEER REVIEW 3 of 16 
 

 

followed by touching the mouth, nose, and eyes. Symptomatic patients are believed to be 
most contagious [31]. The exact time required for virus incubation in the host is not 
known. However, it is thought to vary between 2 and 14 days post exposure to the virus, 
with five days being the most common time frame [31–33]. The age groups most affected 
are the middle aged and the elderly. Children do not appear to display symptomatic in-
fection and, if they do, it is generally mild [34]. A study conducted on 1099 COVID-19 
patients in Wuhan, China revealed the following common clinical features at the disease 
onset: fever (88%), fatigue (38%), dry cough (67%), myalgias (14.9%) and dyspnea (18.7%). 
Pneumonia was found to be the most severe consequence of the infection. In patients with 
pneumonia, breathing difficulties developed after an average of five days [33]. The clinical 
symptoms of COVID-19 patients are illustrated in Figure 2. 

 
Figure 2. Clinical symptoms of COVID-19 patients (adopted from [15]). 

Important similarities exist between the symptoms of COVID-19 and previous be-
tacoronavirus infections including fever, dyspnea, dry cough and ground-glass opacity in 
CT scans of the chest [35]. However, COVID-19 displayed some unique symptoms includ-
ing sneezing, rhinorrhea and sore throat, indicating that the lower airway is being tar-
geted. Moreover, chest radiographs of some cases upon admission indicated infiltrate in 
the lung’s upper lobe that is responsible for dyspnea associated with hypoxemia [36]. 

3. Vaccines and Antibodies under Clinical Trials 
There is a lack of precise antiviral treatment and vaccines for COVID-19 currently 

[37]. However different potential vaccines and antibodies in different parts of the world 
are under trial, but we cannot say with certainty which vaccine and antibody will be suc-
cessful and which will fail until/unless we have tested these vaccines and antibodies on a 
large human population. Future clinical trials of these vaccines and antibodies will deter-
mine their clinical efficacy. If a vaccine becomes available for COVID-19, vaccination rate 
has remained an issue of concern which requires proof such as “clear and convincing ev-
idence, “beyond a reasonable doubt,” and “preponderance of the evidence” on the safety 
and effectiveness of the vaccine. Several vaccines and drugs are under trial against 
COVID-19 [38]. Table 1 below shows information about some of the vaccines and antibod-
ies currently under clinical trials. 

Figure 2. Clinical symptoms of COVID-19 patients (adopted from [15]).

Important similarities exist between the symptoms of COVID-19 and previous beta-
coronavirus infections including fever, dyspnea, dry cough and ground-glass opacity in CT
scans of the chest [35]. However, COVID-19 displayed some unique symptoms including
sneezing, rhinorrhea and sore throat, indicating that the lower airway is being targeted.
Moreover, chest radiographs of some cases upon admission indicated infiltrate in the lung’s
upper lobe that is responsible for dyspnea associated with hypoxemia [36].

3. Vaccines and Antibodies under Clinical Trials

There is a lack of precise antiviral treatment and vaccines for COVID-19 currently [37].
However different potential vaccines and antibodies in different parts of the world are
under trial, but we cannot say with certainty which vaccine and antibody will be successful
and which will fail until/unless we have tested these vaccines and antibodies on a large hu-
man population. Future clinical trials of these vaccines and antibodies will determine their
clinical efficacy. If a vaccine becomes available for COVID-19, vaccination rate has remained
an issue of concern which requires proof such as “clear and convincing evidence, “beyond a
reasonable doubt,” and “preponderance of the evidence” on the safety and effectiveness of
the vaccine. Several vaccines and drugs are under trial against COVID-19 [38]. Table 1 be-
low shows information about some of the vaccines and antibodies currently under clinical
trials.
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Table 1. Vaccines and antibodies currently under clinical trials for COVID-19.

Name of Vaccine Nature Company/Institution, Country Reference

Recombinant subunit
vaccine

It is a trimeric Spike-protein subunit vaccine
expressed in mammalian cell system. The

company claims to have preserved the original
trimeric viral spike protein

Clover, China [39,40]

ChAdOx1 nCoV-19
Weakened version of a common cold virus

(adenovirus) in which Spike glycoprotein from
SARS-CoV2 has been added

Oxford University, UK [41,42]

mRNA-1273 vaccine

mRNA (messenger RNA) has been used to make
this vaccine. It directs body cells to express a

viral protein that would elicit an immune
response. Promising results received in animals

Kaiser Permanente Washington
Health Research Institute

(KPWHRI), USA
[43]

Covigenix

It is a DNA-based vaccine that will directly
induce a plasmid to encode the antigen against
which an immune response is required. Phase 1

clinical trials underway

Entos Pharmaceuticals, Inc., Canada [44]

Gimsilumab

It is based on Monoclonal antibodies that
selectively inhibit granulocyte-macrophage

colony-stimulating factor (GM-CSF). Phase 2
clinical trials underway

Roivant Sciences Ltd., USA [45,46]

BNT162 vaccine
It is based on a nucleoside-modified RNA

expressed in lipid nanoparticles that encodes the
viral spike protein to elicit an immune response

Precision Vax LLC, Germany [47]

Adcovid

It is based on the expression of receptor-binding
domain (RBD) of the SARS-CoV-2 spike protein.

Provides benefits of single dose efficacy,
intranasal administration, and convenient

storage conditions. Phase 1 clinical trials are
underway

University of Alabama, UK [48]

TJM2 vaccine

Consists of a neutralizing antibody that has a
high affinity for human GM-CSF. Binding to

GM-CSF results in inhibition of inflammatory
responses to reduce disease complications. Phase

1 trials are underway

I-Mab Biopharma, China [49]

Coronavirus-Like
Particle COVID-19
vaccine (CoVLP)

VLPs of spike (S) glycoprotein of SARS-CoV2
have been produced in plant system. Phase 2

clinical trials are underway
Medicago, Canada [50]

AT-100
Engineered version of a human recombinant

protein that reduces inflammation and infection
in the body

Airway Therapeutics Inc., USA [51]

TZLS-501
Monoclonal antibody targeting the receptor for

IL-6 to reduce cytokine storm and prevent
exaggerated immune response.

UK/US combine company [52]

INO-4800
It is a DNA based vaccine containing the

plasmid pGX9501, which encodes the Spike
glycoprotein of SARS-CoV-2.

INOVIO, China [53]

Avian Coronavirus
Infectious Bronchitis
Virus (IBV) vaccine

By-product of the IBV vaccine, consists of a
protein vector that secretes a soluble chimeric
protein carrying the viral antigen into tissue

resulting in production of antibodies

Migal Research Institute, Israel [54]
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Table 1. Cont.

Name of Vaccine Nature Company/Institution, Country Reference

TNX-1800
Live modified horsepox virus vaccine; consists of

modified horsepox virus that expresses the
SARS-CoV2 protein

Tonix Pharmaceuticals, USA [55]

Vaxart’s coronavirus
vaccine

The vaccine consists of a viral vector that carries
genes for two SARS-CoV-2 proteins, the

nucleocapsid and spike. The vector carries both
genes to the cell along with a strong adjuvant
that elicits an immune response to the viral

proteins.

Vaxart, USA [56,57]

Russian vaccine
(Sputnik V)

It is an adenoviral-based vaccine that uses
weakened virus to generate an immune response The Gamaleya Center, Russia [58,59]

4. Potential Drug Therapies Against COVID-19
4.1. Remdesivir

Remdesivir is currently recognized as a proficient antiviral drug with promising
potential against a broad range of RNA virus infections (including SARS/MERS-CoV)
in cell cultures, nonhuman primate (NHP) models, and mice. Clinical development of
Remdesivir to treat Ebola virus infections is underway [60]. Remdesivir is an analogue
of adenosine which integrates into the emerging chains of viral RNA and marks their
pre-mature termination showed that remdesivir was functional at the post entry stage
of SARS-CoV-2 virus which supports its antiviral mode of action, acting as a nucleotide
analogue. In a NHP model, demonstrated that an intravenous dose of 10 mg/kg of
remdesivir conferred 100% resistance to Ebola virus infection with concomitant sustained
levels (10 µM) in the blood. [61] revealed that EC90 value of this drug against SARS-CoV-2
in Vero E6 cells was found to be 1.76 µM, signifying its potential working concentration to
be attained in NHP. Similarly, Remdesivir was also found to inhibit SARS-CoV-2 infection
in a human cell line (liver cancer Huh-7 cells). [62] studied the effect of remdesivir on
53 hospitalized COVID-19 patients. Remdesivir was administered for 10 days with 200 mg
on the first day and 100 mg on the other nine days. Results showed improvement in 36 out
of 53 patients demonstrating an efficacy of 68%. However the study lacked a control group,
therefore the results remain inconclusive. More recently, WHO has issued a conditional
recommendation restricting the usage of remdesivir in hospitalized individuals irrespective
of disease severity since there is no current evidence that remdesivir promotes survival
and recovery in patients.

4.2. Favipiravir

Favipiravir is a pyrazine carboxamide derivative anti-viral drug that has been ap-
proved to treat influenza in Japan. It is a prodrug, intracellularly phosphorylated and
ribosylated to give rise to the active favipiravir ibofuranosyl-5′-triphosphate (T-705-RTP)
metabolite [63]. T-705-RTP hinders viral replication by competing with purine nucleosides
and becoming incorporated into the viral RNA and thereby constraining the viral RNA
dependent RNA polymerase (RdRp) [64]. Apart from the inhibitory effect on influenza
virus, Favipiravir displays inhibition of a broad variety of RNA viruses including bun-
yavirus, filoviruses, falvivirus, and arenavirus that cause hemorrhagic fever [63]. During
the Ebola outbreak in 2014–15, favipiravir showed improved survival rates in patients
tested in Guinea. A retrospective study on Ebola virus disease found that patients who
were treated with favipiravir in addition to WHO-recommended supportive treatment
showed an overall higher survival rate and time and a >100-fold reduction in viral load [65].
Genome sequencing of SARS-CoV-2 revealed that it has the same RdRp gene as found in
SARS-CoV and MERS-CoV [12,66,67]. Therefore, favipiravir can be considered for use
against COVID-19 but recognized in vitro and animal studies are not yet available. A clin-
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ical trial to check the efficacy and safety of favipiravir was carried out on 80 patients in
Shenzhen [68]. Results demonstrated that the viral clearance time was shorter in 35 patients
who received favipiravir as compared to 45 patients who served as controls. Moreover,
X-ray studies confirmed that there was a higher improvement rate in chest imaging of
the favipiravir group as compared to the control group (91.43% vs. 62%) [68] Another
randomized clinical trial of favipiravir on COVID-19 patients demonstrated an effective
control with increase in seven days clinical recovery period from 55.86% to 71.43% [69].

4.3. Lopinavir/Ritonavir

A study carried out by Jian-ya et al. [70] on 51 patients of COVID-19 with interferon,
Ritonavir, traditional medicine and Lopinavir and corticosteroids (3–5 days) resulted in
successful recovery of 50 patients. Another study by Qin et al. showed that treatment with
lopinavir along with interferon and moxifloxacin to non-ICU patients and administration
of methylprednisolone in addition to the above drugs to treat patients in intensive care unit
(ICU) resulted in the discharge of 26 patients from ICU and 16 patients from hospital [71].
Case reports on the successful treatment of COVID-19 patients with Lopinavir/Ritonavir
includes a 54 year old patient who received two tablets of Lopinavir (200 mg)/Ritonavir
(50 mg), 12 h apart, after 10 days of illness and resulted in the reduction of viral load
which gradually became negligible. However, a recent randomized, controlled trial by
Cao et al. [72] on 199 COVID-19 positive patients with Lopinavir–ritonavir resulted in
no obvious differences between the standard care group and the treatment group which
suggests that future trials are needed to exclude or confirm its efficacy.

4.4. Convalescent Plasma (CP) Therapy

Convalescent plasma (CP) therapy is a classic approach of immunotherapy that has
been in use for over a century to treat various infectious diseases. CP proved successful in
treating SARS, MERS and pandemic 2009 H1N1 over the last two decades with satisfactory
results [61,73–75]. A meta-analysis of 32 studies involving infection caused by SARS
coronavirus and influenza indicated a significant statistical pooled odds reduction in
mortality with CP therapy as compared to placebo and non-treatment groups with odds
ratio of 0.25%, confidence interval 95%, 0.14–0.45) [76].

A recent study by Shen et al. [77] was carried out on five critically sick COVID-19
patients who were receiving aided breathing through ventilators and along with antiviral
therapy and methylprednisolone. Plasma transfusion to these patients resulted in normal-
ization of body temperature within three days in four out of five patients, reduction in the
Sequential Organ Failure Assessment (SOFA) score, increase in PAO2/FIO2 and decrease in
viral load within 12 days. However, the small sample size precludes a conclusive statement
about the efficacy of CP therapy. Duan et al. [78] conducted a study on 10 critical COVID-19
patients who were receiving antiviral agents and supportive care. A 200 mL dose of CP
with above 1:640 neutralizing antibody titers obtained from recovered donors was trans-
fused to these patients. CP transfusion resulted in increased neutralizing antibody levels
in five patients with four patients maintaining a high neutralizing antibody ratio (1:640).
A significant improvement in clinical symptoms without any adverse effects was observed
including a rise in lymphocyte count, improvement in lung lesions, reduced C-reactive
protein and increase in oxyhaemoglobin saturation within three days. However, further
investigations regarding the optimal dose, time point and clinical benefits are required.

5. Herbal Therapies Against COVID-19

The application of phytomedicines has increased due to their therapeutic value when
compared to allopathic medicines as these bio-compounds exhibit fewer side effects [79].
The possibility of using plant-derived phytochemicals (particularly polyphenols) with
putative active substances (e.g., flavonoids, gallates, and quercetins), which are potent
agents prohibiting the proliferation of the COVID-19-inducing coronavirus has recently
been reviewed by [80]. They can be used as pharmaceutical preparations or functional foods.
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Herbal plants such as Artemisia kermanensis, Eucalyptus caesia, Mentha spp., Rosmarinus
officinalis, Satureja hortensis, Thymus spp., and Zataria multiflora are typical examples of rich
sources of phenolic compound [81,82]. Biflavonoids from Torreya nucifera inhibited the
replication of SARS-CoV 3CLpro [83].

Senna L. is large genus of flowering plants in the legume family (Fabaceae) of subfamily
Caesalpinioideae, comprised of 300–350 species [84]. It is a widespread and diverse genus.
Many species of Senna are commonly used in foods and herbal medicine [85]. In different
parts of the world, the whole Senna alata plant is currently being used in the treatment
of flu, fever, malaria, and large number of other medical conditions due to the presence
of bioactive compounds in the plant, including quinones, alkaloids, and terpenes [86–90].
The leaf extract of Senna alata considerably inhibited 3D7 strain of the Plasmodium falciparum
parasite in vitro [87,88]. Recently, it was determined that use of an aqueous extract obtained
after boiling of 5 g of Senna leaves in 500 mL water for 10 min provided relief from virus
symptoms in COVID-19 patients (unpublished data). After boiling, it is recommended
that half of the aqueous leaf extract can be used immediately while the second half can
be used after 8–10 h to avoid toxicity. In the intervening time, water taken frequently can
avoid toxicity. In order to avoid the bitter taste of aqueous leaf extract, honey can be added,
which has also an antimicrobial effect. As Senna alata plants are currently being used to
treat different medical conditions in different parts of world, including Africa and Asia,
there is a need to confirm Senna leaf aqueous extracts in COVID-19 patients as a herbal
therapy.

Lianhuaqingwen (LH), a Traditional Chinese Medicine formula composed of a combina-
tion of 13 herbs was shown to suppress SARS-CoV-2 replication, reduced pro-inflammatory
cytokine production, and changed the morphology of SARS-CoV-2 cells [90]. These herbs
are presented in Table 2. [91] demonstrated that LH also has a comparable antiviral potency
against the SARS-CoV-2 virus in vitro. It was noteworthy that transmission electron mi-
croscopy (TEM) revealed that the number of virus particles in infected patients was greatly
reduced in cells infected with SARS-CoV-2 that were treated with LH at 600 µg/mL. LH is
widely used for a variety of respiratory virus infections, including influenza virus. The pre-
cise mechanism of action of LH to reduce virus infection remains unknown, although it has
been shown to also reduce cytokine release from infected cells, suggesting that multiple
levels of action are taking place.

Table 2. Herbs involved in Lianhuaqingwen, used in traditional Chinese medicine to suppress
SARS-CoV-2 replication.

Common Name Scientific Name Chinese Name

Weeping forsythia Forsythia suspensa (Thunb.)
Vahl Lián qiáo

Chinese ephedra Ephedra sinica Stapf Cǎo má huáng
Japanese honeysuckle Lonicera japonica Thunb. Rěndōng

Woad Isatis indigotica Fortune Sōng lán
Mint Mentha haplocalyx Briq. Bò hé

Thick-stemmed wood fern Dryopteris crassirhizoma Nakai Cū jı̄ng lín máo jué
Golden Root Rhodiola rosea L. Hóng jı̌ng tiān

Gypsum Gypsum Fibrosum Shí gāo

Patchouli Pogostemon cablin (Blanco)
Benth. Guǎng huò xiāng

Chinese Rhubarb Rheum palmatum L. Zhǎng yè dà huáng
Fish Mint Houttuynia cordata Thunb. Yú xı̄ng cǎo
Licorice Glycyrrhiza uralensis Fisch. Gāncǎo

Siberian Apricot Armeniaca sibirica (L.) Lam. Shān xìng

Chinese health authorities in 23 out of 31 provinces have issued herbal remediy
programs to prevent the spread of COVID-19. The top two herbal formulas used were
Radix astragali (Huangqi) and Glycyrrhizae radix Et Rhizoma (Gancao) [92]. Another study
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recommends the use of tender leaf of Toona sinensis Roem, a popular Chinese vegetable
that is already used safely. In vitro studies show that the tender leaf of Toona sinensis Roem,
can inhibit SARS-CoV [93]. It is expected to also block SARS-CoV-2.

As mentioned above, licorice root has some bioactive properties, including antitu-
moral, antiinflammatory, and antiviral effects on health. Glycyrrhizic acid (glycyrrhizin,
GL) and its aglycone glycyrrhetinic acid (GLA) are active against a broad spectrum of
viruses, including herpes viruses, flaviviruses, Hepatitis C virus, human immunodeficiency
virus, and SARS coronavirus (SARS-CoV) in vitro. Virus inhibition has been demonstrated
in Vero cells and in patients [35,94–96]. Further dissection of glycyrrhizic acid indicated
that sugar moieties are responsible for the anti-SARS activity, as a replacement of these
with functional groups resulted in a loss in activity.

Earlier studies using herbs to block SARS could also successfully inhibit SARS-CoV2
infection. For example, Wen et al., 2011 [97] examined extracts of over 50 traditional
Chinese medicinal (TCM) herbs on anti-SARS-CoV activity using a Vero E6 cell-based
cytopathogenic effect (CPE) assay. The authors were able to demonstrate that six novel
herbal extracts may be used as potential SARS drug targets. The herbal extracts were
derived from Rhizoma cibotii (gǒu jı̌), Gentianae radix (lóng dǎn), Dioscoreae rhizoma (shān
yào), Cassiae semen (jué míng zı̌), and Loranthi ramus (sāng jì shēng); all of them inhibited
SARS-CoV replication, and two inhibited virus protease activity.

Studies using phlorotannins isolated from the edible brown algae Ecklonia cava found
that several of these bioactive compounds were able to inhibit SARS-CoV activity by
functioning as protease inhibitors. One of these, dieckol, had the most potent antiviral
activity; this took place through competitive binding at the catalytic site of the protease [98].
It is feasible that dieckol would also have an inhibitory effect against SARS-2.

6. Plant Molecular Pharming to Combat COVID-19

Plants are being used for the production of recombinant vaccines and drugs for more
than 30 years and the whole process is described under term ‘molecular farming’ [99,100].
Secondary metabolites have significant biological and ecological functions in plants; partic-
ularly advantageous is their role in chemical defense because of their antioxidative and
antimicrobial activities. Thus, molecular farming is used for the large-scale production of
valuable secondary metabolites. In addition, metabolic engineering tools can be used to
overwhelm the bioactive-compounds availability limitations from medicinal plants and to
improve the productivity beneficial from both bioprocessing and molecular farming [101]
The synthesis of desirable recombinant proteins (pharmaceuticals and industrial proteins)
using whole plants or in vitro cultured plant tissues/cells in large-scale bioreactors is
termed molecular farming. The advantages of plant-based reactors have been described in
a review of molecular farming by Mohammadinejad et al. [101] as follows: (i) lower cost in
maintenance; (ii) lower risks of contamination from animal pathogens; (iii) competence
to implement modifications in eukaryotic post-translational machinery function; and (iv)
being amenable to the large-scale manufacturing process.

Vaccines generated in plants have been shown to elicit a robust immune response in
humans and animals (Figure 3). Plants have a great ability to act as a bioreactor system
that supports many important biological processes including virus-like particles (VLPs)
and vaccines. Transformation of plants with foreign genes leads to protein drugs, vaccines,
and antibodies against different human pathogens hence plants make it easy to deal with
safe, inexpensive, and provide trouble-free storage of protein vaccines and drugs [102].
Many research studies and clinical trials have shown that plant-made vaccines are safe
and efficacious [103,104]. Examples of plant-made vaccines and therapeutics produced by
molecular pharming include vaccines to combat cholera, Dengue fever virus and Hepatitis
B virus, monoclonal antibodies to HIV and Ebola virus, and a therapeutic agent to provide
glucocerebrosidase and help Gaucher Disease patients [104,105]. Several plant pharming
companies and research labs have taken up the challenge to combat COVID-19. At the
same time, there is a dramatic shortage of COVID-19 tests that could be alleviated by



Vaccines 2021, 9, 15 9 of 16

producing diagnostic agents in plants [106]. A few examples of vaccines, diagnostics for
test kits and antiviral therapeutics are presented in the following section.
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Medicago, a biopharmaceutical company based in Canada, has successfully developed
a virus-like particle (VLP) of the coronavirus 20 days after obtaining the SARS-CoV-2
genetic sequence. Instead of using egg-based methods to develop vaccines, this technology
inserts a genetic sequence encoding the spike protein of COVID-19 into Agrobacterium,
a common soil bacterium that is taken up by plants [107]. The resulting plants that are
developed produce a virus like particle that is composed of a plant lipid membrane and
COVID-19 spike protein. Medicago is using the plant Nicotiana benthamiana, a close relative
of the tobacco plant, to produce VLPs of the SARS-CoV2 virus (COVID-19: Medicago’s
Development Programs). The VLPs are similar in size and shape to actual coronavirus
but are lacking in nucleic acid and are, thus, noninfectious. Medicago has successfully
completed its Phase 1 clinical trials and is currently working on Phase 2 clinical trials [108].
Previously, Medicago has made VLPs composed of influenza virus haemagglutinin, and
have demonstrated their safety and efficacy in animal models as well as in human clinical
trials [109]. The cost of producing a plant-made vaccine based on VLPs is a small fraction
compared to its conventional counterpart [110].

In Canada, the University of Western Ontario and Suncor are developing diagnos-
tic test kits for COVID-19 using algae as a production factory to make the viral spike
proteins [111]. Algae has long been considered a potential platform for generating pharma-



Vaccines 2021, 9, 15 10 of 16

ceutical proteins as well as industrial proteins, such as cellulases [112]. Algae is a superior
biofactory alternative because it is easy to grow and can be readily modified to produce
the viral proteins.

British American Tobacco, through its biotech subsidiary in the US, Kentucky Bio-
Processing (KBP), is developing a potential vaccine for COVID-19 and is currently un-
dergoing pre-clinical testing [113]. Experts at KBP cloned a part of the genetic sequence
of SARS-CoV-2, which they used to develop a potential antigen that was inserted into
Nicotiana benthamiana plants for production. The vaccine has elicited a positive immune
response by pre-clinical testing and will be onto Phase 1 human clinical trials soon [114].
BAT could manufacture as much as 1–3 million doses of COVID-19 vaccine per week (they
made 10 million vaccines of flu in a month as well as an Ebola vaccine using the same
plant-based approach) [115].

South African company Cape Bio Pharms (CBP) is also responding to the SARS-CoV-2
pandemic through the production of reagents in plants, which could be used for diagnostic
kits [116]. CBP is producing SARS-CoV-2 Spike S1 reagents consisting of various regions of
the glycoprotein attached to various fusion proteins. The company, based in Cape Town
South Africa, is also collaborating with antibody manufacturers to produce antibodies
against these proteins [116].

Another example of a plant molecular pharmed solution to COVID-19 is taking
place in the department of nanoengineering at the University of California, San Diego.
Researchers in Nicole Steinmetz’ lab have been using Cowpea mosaic virus like particles,
with B- and T-cell epitopes from the S protein of SARS-CoV-2 displayed on their icosahedral
surfaces [117]. The recombinant virus harboring these COVID-19 epitopes can be applied
in the form of an implanted microneedle technology incorporating VLP vaccines to skin
and will elicit an immune response to SARS-CoV-2 [118].

The Steinmetz research group have recently developed positive control probes, com-
posed of Cowpea mosaic virus-like particles, to be used as COVID-19 diagnostics and
improve the accuracy of COVID-19 tests. The researchers hope that these positive controls,
which are stable at room temperature for prolonged periods of time and cheap to generate,
could be useful in resource-poor settings [32].

Another collaboration between two research groups in Toronto, Canada, has brought
about a novel way to fight COVID-19 using a synthetic peptide that binds to the viral deu-
biquitinase (DUB) and is carried by a plant virus. The work initially began by examining
the role of the virus protease, located in ORF 1a of the coronavirus genome responsible
for the related MERS virus. This protease contains a deubiquitinase activity as a means
of protecting the virus from the innate immune system of the cell. Ubiquitin is a protein
found in eukaryotic cells that play an important role in the regulation of proteins. It labels
unwanted proteins (poorly folded proteins, viral proteins) to be degraded by the protea-
some into shorter fragments or amino acids that can be recycled for cellular metabolism.
Some viruses, such as coronavirus, express deubiquitinases (DUBs) to prevent destruction
by the cell.

A synthetic peptide of approximately 80 amino acids and known as a ubiquitin variant
(UbV) was created by phage display library design and shown to bind tightly to MERS
DUB at its ubiquitin binding site, thus blocking its deubiquitinase activity as well as its
proteolytic activity (Figure 4). This synthetic UbV was shown to block MERS virus infection
in a human cell line, using a lentivirus vector for cell entry [119]. An analog to this UbV,
which selectively binds to the DUB of SARS-CoV2, has recently been engineered for use
in the current pandemic [120]. Both MERS and COVID-19 UbVs have been fused to the
N-terminus of the coat protein of a plant virus expression vector known as Papaya mosaic
potexvirus (PaMV) (unpublished results). The UbV:CP fusion protein can assemble into
virus like particles. PaMV has previously been shown to enter human cells via vimentin,
a cytoskeletal protein. The virus nanoparticle, loaded with COVID-19 UbV, can enter
cells and block virus infection. Potexvirus nanoparticles have been shown to successfully
enter the epithelial cells of lungs when introduced in the form of an aerosol spray. It is
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possible that these VLPs can be loaded into an inhaler to treat the lungs of infected and
uninfected patients. The ubiquitin variant is also being produced in a plant geminivirus
vector, to be purified as an antiviral for COVID-19 patients (Manuscript in preparation).
Geminiviruses, such as Bean yellow dwarf virus, have been engineered to produce large
amounts of pharmaceutical proteins from plants in relatively short periods of time [121].
A novel synthetic antibody to COVID-19 that was engineered from a phage display library
is also currently being examined using the geminivirus vector system [122].
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The COVID-19 pandemic is a challenge for us all. As a result of the current COVID-19
pandemic, therapies such as Remdesivir, convalescent plasma (CP), and Senna leaf extracts
are the best available against COVID-19, until we have vaccine candidates in hand which
have successfully undergone laboratory experiments, animal trials, and all phases (1–3)
of clinical trials. Possible targets including the spike, nucleocapsid, membrane, envelope,
viral RNA polymerase, and 3-chymotrypsin-like protease (3CLpro), which cleaves the
virus polyprotein at 11 distinct sites to generate various non-structural proteins that are
important for viral replication, are all being used to develop potential vaccines and antiviral
drugs. Virus like particles (VLPs) of SARS-CoV-2 may act as promising vaccines because
they have the potential to activate the human immune response in a fashion similar to the
original virus.

There is need to explore plant-based systems to check whether VLPs with retained
structure and in sufficient quantity can be generated in these systems [123]. On the one
hand, this can include the further refinement of herbal extracts, particularly ones that had
been used in the past to successfully inhibit SARS-CoV, as they may also function to block
SARS- CoV-2. The use of attenuated viruses and viral vectors in humans as vaccines may
pose certain health risks involving the possibility of mutation (in the case of attenuated
viruses) and recombination (in the case of viral vectors). The development of monoclonal
antibodies against SARS-CoV-2 may also not be a long-term solution due to potential
adverse reactions. Thus VLPs of SARS-CoV-2 generated by a plant expression system may
act as a viable vaccine for the future.
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