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Abstract

The gram pod borer is a major pest of chickpea, accounting for average annual yield losses

to the tune of 40–50%. VIP3Aa, a class of insecticidal protein with different receptor binding

site in the insect’s midgut compared to Bt-crystal protein, offers an alternative protection

strategy against Lepidopteran insects. Here, we report evaluation of genetically engineered

chickpea lines harboring codon modified Vip3Aa (cmVip3Aa) against the Lepidopteran

insect pest, gram pod borer. The synthetic codon modified, cmVip3Aa gene of 2,370 bp was

sub-cloned in modified plant expression vector and used for direct transformation of embry-

onic axis explants of chickpea (cv. DCP 92–3), with transformation efficiency of 4.30%.

Presence and transmission of transgene across two generations were confirmed by PCR

and Southern blot analyses in the five selected transgenic chickpea lines. Real Time PCR

analyses indicated variable levels of cmVip3Aa expression in the transgenic chickpea lines

(average Cq values 15.01±0.86 to 19.32±0.10), which were absent in the non-transgenic

counterpart. Detached leaf insect bioassay indicate larval mortality (up to 39.75%), reduced

larval feeding (up to 82.91%) and reduced larval weight gain (up to 68.23%), compared to

control lines. Evaluation of gene offers a platform to identify efficacious insecticidal gene

that can be used for insect resistance management in chickpea.

Introduction

Chickpea (Cicer arietinum L.) is a major class of grain legume, cultivated on 13.71 mha land in

more than 55 countries of the world with an annual production of 14.25 mt [1]. India is the

largest producer of chickpea with 11.9 mt accounting for more than two-third of world’s pro-

duction [2]. Chickpea grain and other value-added products are cheap source of dietary pro-

tein, minerals and are considered as poor man’s meat among the vegetarian population of the

world. Despite its nutritional importance and soaring global demand, its productivity has stag-

nated since the last decade with average annual production <1.0 t in India. Global chickpea

production is hampered due to various biotic and abiotic stresses encountered during the crop
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cycle and post-harvest loss during storage. Amongst the various biotic stresses, gram pod

borer (Helicoverpa armigera Hubner) is the most devastating insect pest in the field accounting

for yield losses on all major ecologies of the world. There were three major pod borer out-

breaks during last decade, resulting in 10–80% yield losses due to pod damage [3]. Worldwide,

economic loss to the tune of US $ 2.0 billion annually has been projected, despite using insecti-

cides costing over US $ 1.0 billion [4].

The early instar stage larvae of the insect preferentially devour on chickpea leaves and ten-

der twigs, while the adult larvae feed on flowers and pods resulting in the yield losses ranging

from 40–50% [5]. Conventional pest management techniques against this pest have fallen

short due to its polyphagous feeding habit, high fecundity, and ability to evolve rapidly against

insecticides [6,7]. Limited availability of insect resistant traits among the wild genotypes of

chickpea and sexual incompatibility are the major constraints in the development of insect

resistant varieties through conventional breeding. Recently, QTLs explaining phenotypic vari-

ance for pod borer resistance component traits were reported in chickpea [8]. The insecticidal

Bacillus thuringiensis (Bt) gene has been reported to be completely effective against this pest

and transgenic chickpea harboring class I crystal (Cry) gene and various modifications have

been reported [3,9–16]. However, single gene based resistance may not sustain in a long run,

particularly in Indian context, where first generation of Bt-cotton (BOLGARD I) are being

grown extensively. Hence, the current study was taken up to evaluate the efficacy of Vip3Aa

against gram pod borer, besides Cry1Ac (Bt gene). Combination of Cry1 and effective Vip

gene should confer broader control against gram pod borer.

The Vegetative Insecticidal Protein (VIP) is a class of insecticidal Bt-toxins that are secreted

naturally by various entomopathogenic bacteria during the vegetative growth phase. These

proteins are classified into four families–VIP1, VIP2, VIP3 and VIP4 [17]; based on their

amino acid groups present. While VIP1 (100kDa) and VIP2 (52kDa) are binary toxins and

reported to be effective against some members of Coleoptera and Hemiptera [18], the third

member of the class, VIP3 (88.5 kDa) are single chain insecticidal proteins that are unique (no

sequence similarity with VIP1 and VIP2) and are found effective against Lepidopteran insects

[19–21]. Current understanding suggests that VIP3A toxin confers resistance against lepidop-

teran insects by specifically binding to their brush border membrane vesicles (BBMV) leading

to formation of ion channel that selectively damages their midgut lining [22,23]. However, fur-

ther research is needed to elucidate its mode of action.

VIP3 in its native state is produced as an inactive protoxin (88.5 kDa) that is activated by

the protease activity of digestive enzymes present in the insect midgut leading to cell death.

Activated VIP3Aa toxin binds to Sf-SR-C (scavenger receptor) and Fgfr (fibroblast growth

receptor) receptors found in the insect’s midgut [24,25]. The protoxin in the native state con-

sist of five domains, starting from N-terminal to the primary protease cleavage site (K198)

[26,27]. The second domain is present in the region between 200–325 amino acid residues

immediately after the cleavage site (exposed loop connecting α4 and α5 helices) of protoxin

and contains five α helices (α1-α5) and a tetrameric core. Third domain is present in the

region between 328–532 amino acid residues and contains three antiparallel β-sheet forming

β-prism similar to the one present in CRY δ-endotoxin. It is reported to be involved in the cell

binding of VIP3A toxin. Domain fourth is the region between 537–667 amino acid residues

and the fifth domain is in the region between 679–789 amino acid residues. Both domain 4

and domain 5 are glycan binding motifs entirely consisting of β-sheet fold forming “jelly-roll”

topology [28,29]. Currently, there are no reports of expression of Vip3Aa gene in chickpea and

their efficacy studies in controlling the insect pest, gram pod borer.

In the present investigation, synthetic codon modified cmVip3Aa gene cloned in a plant

expression vector was utilized for direct genetic transformation (particle gun bombardment)
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in a well-adapted desi chickpea cultivar, DCP 92–3. Five cmVip3Aa expressing independent

chickpea lines were characterized based on presence and expression across two generations

followed by insect bioassay of the developed transgenic chickpea lines. This is the maiden

report of development of transgenic chickpea harboring cmVip3Aa and their efficacy testing

against target insect pest, gram pod borer.

Materials and methods

Codon modification and in silico characterization of Vip3Aa
Native gene sequence of Vip3Aa was retrieved from NCBI database (Accession Number

L48811) and codon modified according to the Kazusa database (https://www.kazusa.or.jp/

codon/), in addition to removal of RNA destabilization elements for expression in chickpea.

The codon modified gene sequence (cmVip3Aa) and the translated protein sequence (cmVI-

P3Aa) were aligned to identify changes in the modified sequence (https://www.ebi.ac.uk/

Tools/msa/CLUSTALO/) [30]. Protein-protein interactions were analyzed for the cmVIP3Aa

and native chickpea proteins using STRING 11.0 (https://www.expasy.org/resources/string).

The allergenicity potential of the VIP3Aa protein was determined using AllergenOnline ver-

sion 21.0 (http://www.allergenonline.org/) [31,32]. Post structural, functional and stability

analysis, the modified sequence was submitted to the NCBI database (https://www.ncbi.nlm.

nih.gov/).

Sub-cloning of cmVip3Aa and genetic transformation

The codon modified cmVip3Aa gene was synthesized using GeneMaker1Multi-Technology

platform (Eurofins Genomics India Pvt. Ltd, India) and sub-cloned in modified expression

vector, pRI201-AN (Takara Bio Inc., Japan) using NdeI and SalI (NEB Inc. UK) restriction

sites). The native plant expression vector pRI201-AN, harbor an alcohol dehydrogenase

(ADH) gene-derived 50untranslated region (50-UTR) (translational enhancer region) down-

stream of the 35S promoter for driving cmVip3Aa expression in plants and an HSP fused ter-

mination sequence for transcription termination. The plant antibiotic selection marker,

neomycin phosphotransferase II (nptII) was eliminated using KpnI and MauBI (NEB Inc.

UK). The modified vector was confirmed by restriction digestions and Sanger sequencing

[33].

Breeders’ seed of desi chickpea cultivar, DCP 92–3 was used for genetic transformation

experiments. Intact embryonic axis was used as explants for direct genetic transformation

using Biolistic Particle Delivery System-1000/He as described earlier [34]. Embryonic axis

derived plantlets exhibiting developed roots were transferred on soil matrix and established to

maturity in the Transgenic Containment Facility (PBSL1). Selfed seeds of primary transfor-

mants were harvested from mature fertile plants and were employed for generation

advancement.

PCR screening and Southern blot analyses

The presence and transmission of the transgene in the established transgenic chickpea lines

and selfed progenies were confirmed as described earlier [35]. The presence of cmVip3Aa
gene in transgenic chickpea plants were confirmed by PCR using the gene specific primers

[VN4F: 50ATCAGCAAGACCAAGAAGCTTTCTAC30 (forward) and VN4R:50ACTGATACTG
GTGGTGATCTTACTC30 (reverse)] using the following thermal profile: initial denaturation at

94˚C for 2 min, followed by 35 cycles of denaturation at 94˚C for 30 s, annealing at 60˚C for 30
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s and extension at 72˚C for 60 s, with a final extension at 72˚C for 10 min. PCR products were

resolved in 1.0% agarose gel stained with Ethidium Bromide (EtBr) in 1X TAE buffer.

Transformation efficiency was estimated based on presence and transmission of transgene

to progenies (T1), using the formula:

Transformation efficiency %ð Þ ¼
No:of PCR positive lines

Total No:of explants bombarded
� 100

where, No. of PCR positive lines indicate number of primary transformants (T0) from which

PCR positive (T1) progenies could be identified. Segregation ratio was calculated based on

PCR screening of the progenies (T1) derived from individual T0. Chi-square (χ2) test was con-

ducted for understanding segregation pattern in five selected lines.

For genomic Southern hybridization, DNA was isolated from leaves, pooled from PCR pos-

itive T2 progenies of six transgenic lines (VPS13, VPS14, VPS47, VPS57, VPS66 and VPS77)

and control (DCP 92–3). Isolated DNA was digested with restriction endonuclease, SalI
(restricting at cmVip3Aa terminal) and double-digested with NdeI and SalI (releasing cmVi-
p3Aa) separately (Refer Fig 1). The digested products were blotted onto positively charged

Nylon Membranes and hybridized with DIG labeled probe (783 bp).The hybridization signal

was detected using colorimetric substrate NBT/BCIP tablets (Roche Diagnostics GmbH, Ger-

many/ Sigma-Aldrich, USA). Further, T2 progenies derived from PCR positive T1 plants (from

Fig 1. Modified plant expression vector pRI 201-AN harboring cmVip3Aa.

https://doi.org/10.1371/journal.pone.0270011.g001

PLOS ONE Evaluation of genetically engineered chickpea for Insect Resistant (IR) trait

PLOS ONE | https://doi.org/10.1371/journal.pone.0270011 June 24, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0270011.g001
https://doi.org/10.1371/journal.pone.0270011


five tested lines) were screened for understanding the organization of the transgene (zygosity)

based on PCR analysis.

Reverse Transcriptase-PCR, quantitative Real Time-PCR and ELISA

Total RNA was extracted from leaves (~100 mg) of T2 progenies of five transgenic lines

(VPS14, VPS47, VPS57, VPS66 and VPS77) and control plants (DCP 92–3), using SpectrumTM

Plant total RNA Kit (Sigma, USA). The cDNA first-strand was synthesized using RevertAid

First Strand cDNA Synthesis Kit (Thermo Scientific, USA). PCR amplification of cDNA was

performed using specific primers of a cmVip3Aa [RTVF: 50CTGGTGGTGATCTTACTC30 and

RTVR: 50CACCATCAAGCTTACCAG30] and internal control eukaryotic initiation factor 4α
(IF4α) genes [IF4aF: 50TGGACCAGAACAC TAGGGACATT30 (forward); IF4aR:50AAACACGG
GAAGACCCAGAA30 (reverse)] and amplification documented.

The quantitative Real-Time PCR (qRT-PCR) was performed using PowerUpTM SYBRTM

green master mix (ThermoFisher Scientific, USA) in ArialMX real-time (qPCR) instrument

(Agilent Technologies, USA). The specificity of the PCR amplification was checked with a heat

dissociation curve (60–95˚C) following the final cycle of the PCR. Quantitative variation

among different samples was determined using the ΔΔCq method and all the data were ana-

lyzed using in-built Agilent AriaMX software (Agilent Technologies, USA). The mean value

for the expression level of the gene was calculated from three independent experiments, for all

the five transgenic chickpea lines.

Expression of cmVIP3Aa protein in leaves and pod wall of the transgenic chickpea T2 prog-

enies were detected post flowering (106 Days After Sowing) stages for tissue specific expression

studies using qualitative Vip3Aa ELISA kit (Agdia Inc., USA). Total soluble protein (TSP) was

isolated from leaves and pod walls of all the five transgenic progenies and control, and quanti-

fied using Bradford assay [36]. The absorbance was measured at 450 nm wavelength in ELISA

reader (Multiskan EX–Thermo Fisher Scientific, USA), and a comparative histogram was plot-

ted. Regression analysis was conducted to understand the effect of leaf cmVIP3Aa protein

absorbance (450 nm) and larval mortality, using MS-Excel software (Microsoft Corporation,

USA).

Insect bioassay

Insect bioassays were performed in 3–5 selected transgenic chickpea plants from all five lines

as described earlier [35]. Ten chickpea leaflets were clipped from each plant for the five trans-

genic lines {VPS14 (5 plants), VPS47 (3 plants), VPS57 (3 plants), VPS66 (3 plants) and VPS77

(4 plants) (variation among the number of chickpea plants screened is based on the availability

of healthy twigs for detached leaf insect bioassay)} at T2 stages and similarly in case of non-

transgenic control (DCP 92–3), 4 chickpea plants were subjected for screening. The age of

plants at the time of screening was ~ 90 days after sowing; the leaf twigs were surface sterilized

with 0.01% NaOCl to remove any inert material/dust adhering to it. Initial weights of leaflets

were recorded and placed in a 50 ml container having 2% water agar supplemented with 0.1%

(w/v) sorbic acid. The freshly hatched cohort of 3rd instar stage larvae of gram pod borer, H.

armigera reared on artificial diet were used for insect bioassay. To each container, single larvae

was released carefully on the chickpea leaflet after recording the initial weight of larva, and the

containers were placed in BOD incubator at 25±5˚C and 70±5% relative humidity. A total of

10 larvae (1 larvae/leaflet) were used for assessing the insect mortality potential of each plant.

The entire experiment was conducted in completely randomized design (CRD) and experi-

ments were repeated thrice. Percent mortality was calculated from the detached leaf insect bio-

assay data recorded for 24 to 168 h after larva release [37]. After 7 days, the remaining leaflet
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weight were recorded for calculating the amount of leaf consumed by individual larva and the

average leaf weight consumed per plant were calculated. Similarly, the final larval weights were

recorded for the live larva for each plant on the 7th day to calculate the larval weight gain. The

percentage reduction in leaf weight consumed over control and percentage decrease in larval

weight gain over control was calculated by using the formula given below:

Percentage reduction in leaf weight consumed over control

¼
Leaf weight consumed per larva per plant in control � Leaf weight consumed per larva per plant in treatment

Leaf weight consumed in control per larva per plant

� �

Percentage decrease in larva weight gain over control

¼
Larva weight gain per larva per plant in control � Larva weight gain per larva per plant in treatment

Larva weight gain in control per larva per plant

� �

x 100

The percent mortality data, percentage reduction in leaf weight consumed over control and

percentage decrease in larval weight gain over control were subjected to statistical analysis in

SAS 6.2 (SAS Institute, Inc., Cary, NC, USA) by using ANOVA procedure with post hoc test

Duncan’s multiple range test (DMRT). P< 0.01 was considered to be statistically significant.

Results

Bioinformatics analysis of cmVip3Aa gene

Codon modification of Vip3Aa as per Kazusa database resulted in decrease in total purine con-

tent and increase in pyrimidines content. Total purine: adenine (A) and guanine (G) content

decreased from 38% to 30% and from 18% to 16% respectively, while the pyrimidines: thymine

(T) and cytosine (C) content increased from 32% to 40% and from 12% to 14% respectively

compared to the original reported sequence. Potential eukaryotic transcription termination

signals were replaced for expression in plants. The cmVip3Aa sequence of 2,370 bp encodes

789 amino acids indicated 79.49% sequence identity between the native Vip3Aa and the modi-

fied cmVip3Aa gene, without any change in the amino acid sequences (S1 and S2 Info). No

protein-protein interaction could be retrieved between the cmVip3Aa and chickpea proteins,

documented at STRING dataset. The results of allergen search of Vip3Aa protein using Aller-

genOnline database did not identify significant alignment with any of the known allergens.

The maximum percentage identity found was less than 50% (22.8% identity with tropomyosin

in 127 amino acid overlap) and high statistical expectation score (E score) of 0.17 for Full

FASTA36 bases analysis. The statistical-fit histogram showed only minor deviation from the

expected distribution of alignments. No match was detected using Sliding 80mer Window 36

and 8mer Exact Match. Modified cmVip3Aa sequence was submitted to GenBank, NCBI

(Accession No. MZ130099).

Development of transgenic chickpea with cmVip3Aa
Synthesized cmVip3Aa was sub-cloned in the modified pRI201-AN (8.6 kb) vector, by direc-

tional approach between the NdeI and SalI restriction sites (Fig 1). The recombinant vector

harboring cmVip3Aa was confirmed by restriction digestion (S1 Fig) and Sanger sequencing.

Embryonic axis explants were bombarded using modified plant expression vector harbor-

ing insecticidal cmVip3Aa. A total of 4,187 chickpea embryonic axis explants were bombarded

and 2560 in-vitro developed putative transformed chickpea plantlets (T0) could be successfully

established to mature fertile plants in the Transgenic Containment Facility (PBSL-1). The

seeds collected from the T0 progenies were screened in the subsequent generations (T1 and
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T2). A total 180 (T0) transgenic chickpea lines were identified to harbor and transmit the

cmVip3Aa gene in their genome based on PCR screening at T1 stage. The entire direct trans-

formation system adopted in the study is depicted (S2 Fig). Selfed seeds were harvested and

employed for generation advancement (T1 and T2) and molecular analyses of the progenies

derived thereof, subsequently. Here, we report generation advancement and segregation analy-

sis of five transgenic chickpea lines viz. VPS14, VPS47, VPS57, VPS66 and VPS77.

Molecular characterization of transgenic chickpea

PCR analysis of the transgenic chickpea progenies in the T1 and T2 generation confirmed pres-

ence of expected 783 bp cmVip3Aa specific amplification product, in progenies derived from

five lines (Figs 2A and S3). Based on PCR screening of the T1 progenies derived from all

Fig 2. Presence of cmVip3Aa in transgenic chickpea lines. (a) PCR amplification of cmVip3Aa gene segment [L1: 1kb DNA

ladder, L2: Control (DCP 92–3), L3: VPS 13, L4: VPS 14, L5: VPS 47, L6: VPS 57, L7: VPS 66, L8: VPS 77, L9: No template

control (NTC), L10: Negative segregant of VPS 66, L11 Positive control (Recombinant Plasmid); (b) Genomic Southern

blotting after single digestion (SalI) [L1: DNA molecular weight marker II, DIG-labeled L2: VPS 13, L3: VPS 14, L4: VPS 47,

L5: VPS 57, L6: VPS 66, L7: VPS 77, L8: Control (DCP 92–3), L9: Positive control (Recombinant Plasmid).

https://doi.org/10.1371/journal.pone.0270011.g002
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primary transformants, progenies of 180 T0 lines were confirmed for the presence and trans-

mission of cmVip3Aa, with transformation efficiency of 4.30%. PCR analysis of T1 progenies

derived from five lines indicated segregation pattern of transgene [VPS14: 8:3; VPS47: 4:0;

VPS57: 3:0; VPS66: 3:0; VPS77:4:0], in accordance with copy number/locus (or loci) of integra-

tion (based on χ2 test with Yates’ correction) (S1 Table). Details of seeds harvested from all 180

T0 lines have been documented and submitted to Seed Repository (S2 Table). PCR analyses

were also done to confirm transmission of cmVip3Aa to T2 progenies derived from T1 positive

chickpea plants. Based on PCR analyses, homozygous lines were identified (S3–S7 Tables; S4–

S8 Figs) and selected for further molecular analysis and insect bioassay.

Southern blot hybridization of the selected six transgenic chickpea lines (T2 generation)

indicated stable integration of cmVip3Aa gene. The presence of single locus gene integration

was detected in the transgenic lines viz. VPS13, VPS14, VPS66 and VPS77, whereas double

loci in transgenic lines VPS47 and VPS57 (Figs 2B and S9). Genomic DNA digested with SalI
exhibited different banding pattern among the tested lines corresponding to integration locus

(i) in the genome (ca. 6.5 kb, 4.1 kb and 3.9 kb for VPS13; 3.7 kb for VPS14; 9.4 kb and 6.5 kb

for VPS47; 6.5 kb and 4.4 kb for VPS57; 4.1 kb for VPS66 and 6.6 kb for VPS77). Double diges-

tion with NdeI and SalI exhibited presence of 2.37 kb of cmVip3Aa in the genome (S10 Fig),

indicated intactness of inserted cassette in all six transgenic chickpea lines tested.

RT-PCR analysis of total transcripts indicated presence of cmVip3Aa transcript (78 bp) in

the transgenic lines tested, which was missing in the non-transgenic counterpart (Figs 3A, S11

and 12). Real-time PCR based quantitative estimation of cmVip3Aa specific transcript indi-

cated substantially higher levels of cmVip3Aa in the tested transgenic lines, with average Cq

values ranging from 15.01±0.86 to 19.32±0.10 (Fig 3B). The melting curve analysis indicated

specificity of the amplified product generated during the real time PCR (S13 Fig).

Qualitative ELISA confirmed the expression of cmVIP3Aa protein in all the PCR positive

chickpea progenies. In T2 generation, at post flowering stage a significant variation in the level

of cmVIP3Aa expression were recorded in the leaves and pod wall. Using Bradford assay, total

soluble protein was estimated as 6.09±0.07 ng/mg TSP to 10.95±0.08 ng/mg TSP (for leaf sam-

ples) and 5.34±0.02 ng/mg TSP to 9.95 ng/mg TSP (for pod wall samples). Absorbance (450

nm) corresponding to presence of cmVIP3Aa, as estimated by Qualitative ELISA kit varied

from 0.2±0.08 to 4.12±0.03 (leaf samples) and 0.31±0.08 to 4.25±0.01 (pod walls), respectively,

in all progenies derived from the five transgenic chickpea lines (Fig 3C), which was absent in

non-transgenic line (cv. DCP 92–3).

Insect bioassay

Young chickpea leaves from T2 progenies derived from five transgenic chickpea lines VPS14,

VPS47, VPS57, VPS66 and VPS77 were subjected to detached leaf insect (H. armigera) bioas-

say using 3rd instar (5 days old) larvae. Significantly greater larval mortality was recorded in

transgenic chickpea lines viz. VPS77 (39.75%) followed by VPS14 (27%) as compared to the

control lines (DCP 92–3 (0%), P< 0.001) (Fig 4A–4C) (Table 1). No larval mortality was

recorded in the control lines (DCP 92–3) in the experiments. Percentage reduction in leaf con-

sumption per larva per plant over the control in transgenic chickpea lines ranged from 38.35

to 82.91% indicating efficacy of the transgenic lines by reduction in defoliation percentage.

The highest mean percent reduction in leaf weight consumption over control was recorded

from the transgenic line, VPS77 (82.91) followed by VPS57 (63.61) and VPS66 (60.05) which

were higher than VPS14 (51.4) and VPS47 (38.35). Average percent reduction in larval weight

gain over control was significantly higher on transgenic lines, VPS77 (68.23) followed by

VPS57 (47.18), VPS14 (44.48), VPS66 (31.31) and VPS 47 (26.91). Further, retarded growth
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and development were exhibited in the larvae tested on transgenic lines as compared to control

(Fig 4D). The regression analysis indicated co-relation (R2 = 0.997) between cmVIP3Aa-pro-

tein concentration (Absorbance at 450 nm) with the larval mortality, indicating the effective-

ness of cmVIP3Aa protein in larval mortality and growth reduction (Table 2). Based on the

larva morphology, characteristic growth inhibition in terms of larval weight gain was wit-

nessed among the surviving larvae tested on transgenic chickpea lines. Furthermore, the larva

tested on transgenic lines exhibited delayed pupation compared to the larvae tested on control

lines.

Discussion

Chickpeas are protein-rich grain legumes crucial for nutritional security and sustainable agri-

culture. The gram pod borer (Helicoverpa armigera Hubner) is the most devastating insect

pest of chickpea and till date, no complete-resistance source has been identified in chickpea

gene pool. The pod borer exhibits facultative diapause that favors its survival in adverse

weather conditions (winter and summer seasons) [38]. Amelioration of insect damage can add

to chickpea production basket, reduce insectide use and help in sustainable production sce-

nario augmenting nutritional security.

Fig 3. Expression of cmVip3Aa in transgenic chickpea lines. (a) Panel 1: RT-PCR for cmVip3Aa transcript (78 bp) in the transgenic chickpea lines [L1: 1 kb

plus DNA ladder, L2: No Template Control L3& L4: VPS 14, L5: VPS 47, L6: VPS 57, L7: VPS 66, L8 and L9: VPS 77, L10: Control (DCP 92–3) Panel 2:

RT-PCR for internal control, IF4α transcript (60 bp) in same lane order (b) Comparative expression of cmVip3Aa in leaves of five transgenic lines and control

(c) Absorbance (450 nm) variation depicting cmVIP3Aa expression in leaves and pod walls of five transgenic chickpea lines and control.

https://doi.org/10.1371/journal.pone.0270011.g003
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Insecticidal genes derived from the bacteria; Bacillus thuringiensis (Bt) are efficacious

against major classes of insects. Use of single gene-resistance may not provide sustainable pro-

tection for longer period as observed in first generation (single gene) transgenic plants.

Reports of insects overcoming resistance employing a number of mechanisms including

reduced pro-toxin activation, rapid proteolytic degradation, attenuated binding of CRY toxins

to the respective cognate receptors due to gene mutations, or reduced expression of corre-

sponding receptors via. trans-regulation, are beginning to emerge. Besides, the epigenetic

mechanisms, host intestinal microbiota and detoxification enzymes also play significant roles

in the insects’ resistance against CRY toxins [39–41]. Several strategies have been adopted to

manage resistance to Bt toxins, however, stacking or pyramiding toxin gene(s) with distinct

mode of action and/or receptor binding site is a preferred technique [42].

Pyramiding Vip and Cry gene is considered a suitable strategy for resistance management,

as VIP exhibit less structural and sequence homology with CRY proteins [43,44]. Transgenic

cotton (VipCotTM) expressing both Vip3A and Cry1Ab was observed to be more effective in

controlling lepidopteran pests compared to Cry1Ac singly [45,46]. Similar observation was wit-

nessed in transgenic maize (Agrisure VipteraR 3110) expressing a pyramided (Vip3A and

Cry1Ab) gene cassette [47].

Earlier report suggested requirement of higher level of bacterial derived insecticidal pro-

teins in host plant for effective resistance against the target pest, because of differential pro-

karyotic and eukaryotic codon usage or preference [48]. Factors like codon usage bias, AT-

richness, presence of cryptic poly-adenylation signals and mRNA destabilizing sequence

motifs tends to lower the expression of Bt genes in transgenic plant system [49]. To maximize

Vip3Aa gene expression in transgenic chickpea cells, the coding sequence of the Bt derived

native Vip3Aa gene was modified using the strategy described earlier [50]. Interestingly, in the

Fig 4. Insect Bioassay of transgenic chickpea lines against gram pod borer. (a) Pod borer larvae in control (DCP92-3) (b) Pod borer larvae in

transgenic chickpea line (VPS 66) (c) Pod borer larvae in transgenic chickpea line (VPS 14) (d) Larval morphology, post no choice bioassay in

transgenic line (dead larvae) and control.

https://doi.org/10.1371/journal.pone.0270011.g004
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current study, the GC content (30%) remained unaltered compared to native sequence, post-

optimization. Crop based codon modification was earlier adopted for enhanced expression in

cotton [51], soybean [52], chickpea [35], cowpea [53] and organellar expression [54].

Chickpeas are amenable to genetic manipulation (direct and indirect methods), with very

low efficiency [55,56]. Particle gun-based methods have the potential to overcome genotype

barrier/dependency to transformation, co-transform two or more genes (stacking/pyramid-

ing) and clean gene technology to address biosafety issues [57]. In the present study we have

Table 1. Efficacy of tested transgenic chickpea lines against H. armigera.

Lines Number of

plants tested

% Larval mortality

over control

Average leaf weight

consumed (mg)/ larvae/

plant

Average larvae weight

gain (mg)/larvae/plant

% Reduction in leaf

consumption over control

% Reduction in larval

weight gain over control

VPS 14 5 27 (30.91a,b) 97.5 27.14 51.4

(45.84b,c)

44.48

(41.80a,b)90.14 21.71

51.67 10.33

84.2 26.8

70.4 20.6

VPS 47 3 12.33 (16.97b,c) 92.3 27.7 38.35

(38.24c)

26.91

(31.25b)99.0 28.0

108.5 28.5

VPS 57 3 14.67 (18.65a,b,c) 58.0 30.0 63.61

(53.63a,b)

47.18

(43.35a,b)96.2 22.22

30.0 8.67

VPS 66 3 15.67 (19.01a,b,c) 70.0 27.57 60.05

(50.88b,c)

31.31

(33.65b)47.0 20.22

76.0 31.33

VPS 77 4 39.75 (39.03a) 27.5 5.0 82.91

(65.81a)

68.23

(56.22a)30.43 11.00

56.67 16.0

31.67 17.0

Control 4 0.00 163.2 42.7 - -

161.0 34.1

204.0 34.2

224.0 42.9

CV - 51.60 - - 14.49 25.13

Values within parenthesis is arc-sine transformed values.

Mean followed by same letters are not significantly different from each other by DMRT (P<0.01).

https://doi.org/10.1371/journal.pone.0270011.t001

Table 2. cmVIP3Aa specific absorbance (at 450 nm) vis a vis larval mortality in transgenic chickpea.

Events % Larval mortality Absorbance (450 nm)

VPS 14 27.00 2.7

VPS 47 12.33 1.2

VPS 57 14.67 1.5

VPS 66 15.67 1.405

VPS 77 39.75 3.96

Control 0 0

R2 = 0.997, P<0.01.

https://doi.org/10.1371/journal.pone.0270011.t002
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successfully adapted a standardized protocol [34] for developing transgenic chickpea plants

without using any plant selectable marker in the transformation process. This is a very labori-

ous task; however, once lines are identified it ensures only presence of gene of interest in the

progenies/lines. Further, we do not rule out the possibility of presence of bacterial selection

marker (vector backbone) in the generated plants (data not shown). In the current study, the

transmission of the transgene/inheritance was confirmed by PCR analysis at T1 and T2 stages

and molecular analyses and transformation efficiency were calculated based on analyses

thereof. The transmission and organization of the transgene were evaluated based on PCR

analysis of five selected transgenic chickpea lines. Distorted segregation pattern were observed

in several developed chickpea lines and further research is required to understand this mecha-

nism. Mixed population of homozygous and hemizygous lines could also be identified at T1/T2

stages. Notably, homozygous lines appeared in very few instances, as per PCR analysis of T2

progenies derived from PCR positive T1 plants derived from all the events. The confirmed

progenies were only selected and evaluated for characterization of the transgenic lines. South-

ern blot analyses of the generated transgenic lines indicate presence of single and multiple cop-

ies of the transgene. Earlier studies based on twin T-DNA strategy towards development of

marker-free chickpea lines indicated that the efficiency of recovery of marker free lines is too

low to be practical [3].

Direct transformation has been used to obtain fertile transgenic chickpea lines that have sig-

nificant higher level of transient expression of reporter gene (GUS), comparable to earlier

reports in soybean [52]. In the current study, transformation efficiency of 4.30% was achieved,

which is comparable with the earlier reports [58,59] and higher than our earlier report on

Agrobacterium tumefaciens mediated genetic transformation (0.076%) of same genotype of

chickpea (cv. DCP 92–3) [35].

Estimation of protein of interest is an important aspect in characterization of transgenic

lines. However, commercial quantitative ELISA kits are not available/accessible. We hypothe-

sized that absorbance (450 nm) should correspond to protein concentration [60], as estimated

by qualitative ELISA kit. However, further investigation shall provide better insights to under-

stand protein concentration and mortality values of target insect. Variable levels of foreign

protein expression have been reported for different plant tissues collected at different develop-

mental stages in chickpea, based on promoters driving the gene expression and other associ-

ated regulatory elements [13,35]. In general, protein expression during pre-flowering

vegetative stages was reported higher as compared to the post-flowering stage [13]. Hence, the

major emphasis was enhancing the protection post flowering at target tissues like pod wall,

using pod wall specific msg promoter [13]. In the current study, sustained expression level of

cmVip3Aa were observed in leaf and pod-wall tissues of transgenic chickpea lines, post flower-

ing stage, where the chickpea plants were infested by larvae, besides terminal heat/drought

stress in field conditions. This may possibly be due to the presence an alcohol dehydrogenase

(ADH) gene-derived 5’-untranslated region (5’-UTR) downstream of the cauliflower mosaic

virus (CaMV promoter) derived 35S promoter and presence of a heat shock protein (HSP)
gene derived terminator that promotes/sustains the expression, as demonstrated earlier, [61–

63] besides codon modification of the Vip3Aa gene.

Recently, Vip proteins are explored for engineering insect resistance in plants. Cowpeas

expressing Vip3Ba are reported to cause Maruca larvae death [53]. In the contrary, Vip3A

appears to be moderately toxic to Helicoverpa larvae, and the affect predominantly include

growth abnormalities in the larvae at low toxin level. The variation is larval mortality data

among the tested transgenic chickpea lines requires further research. Trait efficacy data pre-

sented here is at post-flowering stages with significant growth reduction of the insect larvae

with minimal larval feeding (0.03–0.1g) recorded for the tested transgenic lines (0.18 g)
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compared to the control. Functional mortality (dead insect and those remaining at larval

stages) better represents the effectiveness of Vip3Aa protein as reported earlier [64,65]. Moder-

ate level of susceptibility of Vip3Aa against Helicoverpa armigera was also reported earlier. The

quantitative analysis also indicated low susceptibility of H. armigera to the Vip3Aa toxins

(with LC50 values 1660 ng/cm2). The term functional mortality has been adopted for precisely

defining the toxicity of Vip3A class of toxins for growth inhibition and arresting larval devel-

opment. Functional mortality in conjunction with other management strategies should be

effective for enhanced resistance spectrum under field conditions [66]. In another study to

explore the relationship between the structure and function, moderate level of toxicity with

47.22% insect (H. armigera) mortality was reported for native Vip3Aa protein, based on pro-

tein feeding assays [67]. Preliminary docking studies of native Vip3Aa protein with common

APN and cadherin receptors, revealed conserved specific amino acid sites that govern insecti-

cidal activity. Site-directed mutagenesis like Y619A in Vip3Aa could increase the resistance

spectrum upto 75%. In another in silico study, Vip3Aa-Cry1Ac fusion protein was reported to

exhibit strong affinity for Lepidopteran insect receptors [68]. Further research can expand our

understanding of the resistance mechanism of Vip3Aa that can improve the insecticidal

activity.

Here, we report synthesis of modified Vip3Aa gene encoding vegetative insecticidal protein

(cmVIP3A), development of fertile, transgenic chickpea lines harboring cmVip3Aa and their

characterization. Single copy transgenic chickpea lines segregated as per Mendelian segrega-

tion pattern with transgene inheritance and expression to subsequent generations. The expres-

sion of the cmVIP3A protein, post-flowering stage provide moderate protection against gram

pod borer with reduced larval feeding, and reduced larval weight gain, compared to control

lines. This should help delay the resistance development in the insect under field conditions

Discovery, validation and deployment of genes effective in controlling insect pest shall contrib-

ute in management of insect pest in chickpea.
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