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Abstract: This paper proposes a high-speed low-cost VLSI system capable of on-chip online learning
for classifying address-event representation (AER) streams from dynamic vision sensor (DVS) retina
chips. The proposed system executes a lightweight statistic algorithm based on simple binary
features extracted from AER streams and a Random Ferns classifier to classify these features.
The proposed system’s characteristics of multi-level pipelines and parallel processing circuits achieves
a high throughput up to 1 spike event per clock cycle for AER data processing. Thanks to the
nature of the lightweight algorithm, our hardware system is realized in a low-cost memory-centric
paradigm. In addition, the system is capable of on-chip online learning to flexibly adapt to different
in-situ application scenarios. The extra overheads for on-chip learning in terms of time and resource
consumption are quite low, as the training procedure of the Random Ferns is quite simple, requiring few
auxiliary learning circuits. An FPGA prototype of the proposed VLSI system was implemented with
9.5~96.7% memory consumption and <11% computational and logic resources on a Xilinx Zynq-7045
chip platform. It was running at a clock frequency of 100 MHz and achieved a peak processing
throughput up to 100 Meps (Mega events per second), with an estimated power consumption of
690 mW leading to a high energy efficiency of 145 Meps/W or 145 event/µJ. We tested the prototype
system on MNIST-DVS, Poker-DVS, and Posture-DVS datasets, and obtained classification accuracies
of 77.9%, 99.4% and 99.3%, respectively. Compared to prior works, our VLSI system achieves higher
processing speeds, higher computing efficiency, comparable accuracy, and lower resource costs.

Keywords: address-event representation (AER); Random Ferns; object classification; neuromorphic
hardware; online learning; on-chip learning

1. Introduction

Visual data analysis is a hot topic in scientific research, and is widely applied in many fields,
such as smartphones [1], automatic driving [2], surveillance cameras [3], and smart healthcare [4].
Most of these systems collect vision data using conventional cameras. However, this type of sensor
suffers from some drawbacks. First, traditional visual sensors acquire visual information as a series of
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snapshot images composed of a large number of pixels at a fixed rate, even though most of the sense
does not change, causing a huge data redundancy and energy waste. Second, the computer vision
system cannot analyze and process the image data from a traditional camera until one image frame
has been sent out, which cannot be tolerated in real-time applications requiring low latency [5]. To find
a way to represent vision information more efficiently, researchers turn to bio-inspired vision sensors,
in which information is coded and communicated by spikes [6–10]. A bio-inspired frame-free camera
was proposed in [11], namely, a dynamic vision sensor (DVS). A DVS camera mimics the way human
retina works and generates a stream of pixel-level spike events, called address-event-representation
(AER), to represent the temporal change in illumination [10]. These spike events are sent out from DVS
in the format of (x, y) indicating the position in the pixel array. The DVS will be inactive and does
not output AER spikes when there is no moving object, and light intensity does not change in scenes.
Therefore, visual systems based on DVS cameras with spatiotemporally sparse spike trains are more
energy efficient than those equipped with traditional frame-based image sensors.

However, designing proper algorithms and hardware systems to efficiently process the AER data is
still challenging, as many real-time embedded systems prefer low processing latency, requiring the AER
data generated by DVS cameras to be consumed as soon as possible. To meet this goal, researchers have
designed many digital programmable neuromorphic processors running spiking neural network (SNN)
algorithms [12–16] to process AER spike streams. These digital processors include SpiNNaker [17,18],
TrueNorth [19,20], Loihi [21], Darwin [22], ODIN [23], and spiking Convnets chips for deep spiking
convolutional neural networks (SCNN) [24–27], to name a few. Nevertheless, these systems are
designed to be functionally generic to implement versatile SNNs of different spiking neuron models,
network topologies, and learning algorithms. Many of them suffer from high computing complexity
and large resource consumptions, and are not optimal for embedded high-speed application scenarios.
In particular, the TrueNorth, SpiNNker, and Loihi chips are primarily designed to provide a large-scale
platform for human brain behavior emulation in the neuroscience research field, rather than for solving
computer vision or machine learning problems. These chips are more generally functional and consume
a significant amount of space even using advanced nanometer silicon technologies (i.e., SpiNNaker:
102 mm2/180 nm, TrueNorth: 430 mm2/65 nm, Loihi: 60 mm2/14 nm). These cost-expensive chips are
not attractive to many embedded vision systems under tight cost budgets. This limitation motivates
us to design fast and cost-efficient AER processing hardware systems based on algorithms with low
computational complexity.

Recently, some researchers have resorted to lightweight methods based on conventional shallow
statistical learning rather than spiking neural networks to process AER streams [28,29]. These methods
greatly reduce computing complexity and maintain high classification accuracy. For instance, Bag of
Events (BoE) features are proposed to represent the AER stream as joint probability distribution of
the events [28]. However, it still uses complicated classifiers such as the Support Vector Machine
(SVM) [28] or Random Forests (RF) [29] for feature classification. These classifiers are more difficult to
train with a few hardware circuits on the chip (on-chip learning) than on expensive general-purpose
computers, or trained by feeding individual training samples one after another in-situ (online learning)
when the training samples are impossible to collect beforehand. Therefore, the BoE algorithm is limited
in many embedded or mobile applications where on-chip online learning is compulsory.

To overcome the above problems, a lightweight AER classification algorithm is proposed in [30]
based on extremely computationally simple binary features and the Random Ferns classifier. According
to software simulations, the algorithm can be executed 2–3 orders of magnitude faster than prior
works and achieves comparable classification accuracy [30]. In particular, the Random Ferns classifier
inherently supports fast and simple online learning involving merely a few counting operations [31],
which provides a good opportunity for on-chip learning with simple hardware circuits.

Therefore, in this paper, we propose a high-speed low-cost VLSI hardware system dedicated
to AER object classification tasks with fast on-chip online learning capabilities [32], based on such
lightweight statistical algorithms utilizing the Random Ferns classifier [30]. The proposed system
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mainly consists of 3 modules: a motion detector, a bank of binary feature extractors, and a Random
Ferns engine. The system architecture adopts multi-level pipelines and parallel processing units
to realize high-speed performance and maximize AER data throughput. Moreover, our hardware
system is realized in a cost-effective memory-centric paradigm, with which an FPGA prototype was
implemented with 9.5~96.7% block memory consumption and <11% computational and logic resource
consumption on a Xilinx Zynq-7045 chip platform. In addition, the proposed system is capable
of on-chip online learning to flexibly adapt to different in-situ application scenarios, such as tiny
embedded and mobile devices. The extra overheads for on-chip learning regarding time and resource
consumption are quite low, as the learning procedure of Random Ferns is very simple and requires few
auxiliary learning circuits.

The main contributions of our work are as follows: (1) We propose a high-speed low-cost VLSI
hardware system dedicate for AER object classification based on a lightweight statistical algorithm.
The system reaches a peak throughput up to 100 Meps (measured with a virtual DVS sensor) and a
high energy efficiency of 145 Meps/W, while achieving comparable classification accuracies. (2) We
optimized and improved the hardware friendliness of the used statistical algorithm originally proposed
in [30], so that it can be carried out on the hardware without expensive multipliers and dividers. (3) We
propose multi-level pipeline schemes with massively parallel processing circuits to maximize the
system processing speed. (4) We have designed on-chip online learning circuits to make our AER
processing system cost-effective as well as adaptive to embedded and mobile devices. (5) An FPGA
prototype was implemented and elaborate experiments on different DVS datasets were conducted
and analyzed, which can be connected to a real DVS retina for building a complete AER system in
future work.

This work has partly been released in [32,33]. In [33], a premature version of our work without
on-chip online capability was reported, where the classifier parameters of the Random Ferns engine
had to be learned offline on a general-purpose computer. Later on, our completed system incorporating
on-chip online learning was reported in [32]. However, both Ref. [33] and [32] are brief conference
reports, with neither sufficient design details nor elaborate experimental results on more DVS datasets
other than MNIST-DVS. In contrast, this paper covers all of the system architecture and circuit design
details with sufficient experimental measurements on more DVS datasets: Poker-DVS and Posture-DVS.
Comparison to more recent state-of-the-arts and discussions are also provided. Moreover, the VLSI
design was slightly optimized and re-organized in a better hierarchy in this paper.

The rest of this paper proceeds as follows. Section 2 reviews the lightweight AER classification
algorithm [30] deployed on our VLSI hardware system. The details of the proposed VLSI system
architecture and circuits are revealed in Section 3. In Section 4, we show the experimental results with
further discussion. Finally, our conclusions are made in Section 5.

2. Algorithm Review

Our hardware system for AER object classification is based on the lightweight statistical algorithm
proposed in [30]. For integrity of this paper, we will briefly review this algorithm. Some algorithm
optimizations for ease of hardware implementation are provided.

2.1. Algorithm Flow

The algorithm flow for AER object classification used in this work is as follows [30]. To avoid
taking on classification upon the arrival of every spike event, an AER stream segmentation scheme is
employed [28]: every α successive events in the AER stream are grouped as a segment, and feature
extraction and classification are carried out on each such segment instance. The value of α is manually
set according to different DVS datasets or application requirements. Intuitively, it should be larger in a
slow-moving scenario to collect more AER spikes for a meaningful motion segment, and vice versa.

To extract the features of AER segments, M groups × S pairs/group of square patches are randomly
selected within the pixel array plane. The sizes (denoted as D × D) and locations of these patches are
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randomly and independently selected at the very beginning, and then kept unchanged throughout.
For each patch pair, one is regarded as positive and the other negative. For an AER segment, if the
number of spike events with their addresses (x, y) falling into the negative patch exceeds that falling
into the positive patch, a binary feature of value 1 is asserted for the AER segment. Otherwise, a binary
feature of value 0 is asserted. The S binary features within one group of the patch pairs are concatenated
as an S-bit feature. The S-bit features from all the M groups of patch pairs are fed to the Random Ferns
classifier for training or inference. We can see that the feature extraction procedure is rather simple,
as it merely involves a few counting and comparison operations.

The Random Ferns classifier is responsible for feature classification. It has M ferns, holding a
one-to-one correspondence to the M patch groups. We define Fm as the evaluated numeric value of the
S-bit feature fed to the m-th fern. Take S = 5 for example, if an extracted 5-bit features fed to the m-th
fern are (0, 1, 0, 1, 0), then Fm = (01010)2 = 10. There will be 2S different possible feature values for each
fern. We chose the Bayesian way to combine these ferns as our classifier [30]. Assume C is the number
of the object classes and c ∈ {0, 1, . . . , C − 1} as the class label. During training, we only needed to learn
two sets of tensors from labeled AER segments: (1) N(m, Fm, c), a 3-D tensor storing the number of
training segments with label c and their S-bit feature corresponding to the m-th fern evaluated as Fm,
with m running from 0 to M − 1, Fm from 0 to 2S

− 1, and c from 0 to C − 1; and (2) Nc, a 1-D tensor (i.e.,
a vector) storing the total number of training segments with label c, with c running from 0 to C − 1.
The learning process is rather simple and can be executed online; when an AER segment labeled as c
arrives, we extract its features Fm, and increase corresponding Nc and N(m, Fm, c) entries in each fern
by 1. During inference, when an unlabeled AER segment arrives, we extracted its features Fm and
determine its category c* by calculating the maximum posterior probability across all classes [30]:

c∗ = argmax
c

M−1∏
m=0

P(Fm
∣∣∣c) (1)

where the class-conditional probability is expressed as:

P(Fm|c) =
N(m, Fm, c) + Nr

Nc + 2SNr
(2)

with Nr = 1 as a regularization prior. Refer to [30] for more algorithm details.

2.2. Algorithm Optimization

To make this algorithm more hardware-friendly, we carried out some optimizations on it.
As described in Equations (1) and (2), the inference procedure in Random Ferns contains multiplication
and division operations, which require many expensive computing resources and result in high system
latency. To solve this problem, we converted Equation (1) into (3) via a logarithmic transform [32]:

c∗ = argmax
c

M−1∏
m=0

P(Fm
∣∣∣c) = argmax

c

M−1∑
m=0

log P(Fm
∣∣∣c)

= argmax
c

M−1∑
m=0

log N(m,Fm,c)+Nr
Nc+2sNr

= argmax
c

(
M−1∑
m=0

log(N(m, Fm, c) + Nr) −M log(Nc + 2sNr))

(3)

The logarithmic function above can be implemented at high speeds by a small lookup table (LUT)
on-chip memory. Expensive hardware multipliers and dividers are mostly removed. Since on-chip
memory can achieve very high density under nanoscale semiconductor technology, its cost is much
lower than that of the computational circuits. Therefore, the overall hardware system cost is reduced.
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3. VLSI Hardware System

3.1. System Architecture

The overall hardware architecture of the proposed VLSI system is shown in Figure 1. It consists of
a segmentor block, a bank of M × S binary feature extractors, and a Random Ferns classifier engine
with on-chip online learning functionality. The segmentor block monitors the number of incoming
AER spike events from a DVS camera. Once the number of events counts to α signaling the end of an
AER segment, the segmentor latches the AER segment features extracted by the feature extractors, and
triggers the Random Ferns engine to start training or inference on these latched features. After that,
the segmentor and feature extractors are reset to handle the next AER segment. The proposed system
architecture has the following characteristics:
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(1) Multi-level pipelines and parallel processing: To maximizing data throughput, a multi-level
pipeline scheme is utilized in our system. In the course-grained 2-stage segment-level pipeline,
as depicted in Figure 2a, the Random Ferns engine carrying out training or inference on the features of
the previous AER segment is pipelined with the feature extractors processing and extracting features
from current AER segment. As will subsequently be exhibited, the Random Ferns engine only takes up
3 or (9 + C) clock cycles to process features of one AER segment for training or classification inference,
respectively, which is ignorable compared to the duration of an AER segment occupying hundreds to
thousands of clock cycles. Thus, time consumption for Random Ferns are completely hidden behind
feature extraction, and the system throughput is significantly improved. Note that the number of clock
cycles for each pipeline stage is always bottlenecked by the feature extractors, and varies depending
on the time duration of each AER segment. To support the segment-level pipeline, fine-grained
pipelines, i.e., the event-level pipeline inside the feature extractors and the class-level pipelines inside
the Random Ferns engine as shown in Figure 2b,c, respectively, are employed in our system. The circuit
implementation details of the two pipelines will be given in Section 3.2. Here we just briefly illustrate
their timings. The event-level pipeline in feature extractors contains two stages, each occupying only
one clock cycle. In other words, this pipeline has a throughput as high as 1 event per clock cycle,
with a pipeline latency of 2 clock cycles. The class-level pipeline has 9 stages, each also occupying
one clock cycle. It enables the Random Ferns engine to finish feature classification within a latency of
(9 + C) clock cycles, by pipelining the fern tensor and LUT memory reads, logarithmic class-conditional
probability summation, and winner-take-all (WTA) operations for each class candidate, as required by
Equation (3). Note that in Figure 2c the feature latching step consumes 1 clock cycle. This step is out of
the class-level pipeline, but still contributes to the overall processing latency for AER segment feature
classification in the Random Ferns engine.



Sensors 2020, 20, 4715 6 of 18

Sensors 2020, 20, x FOR PEER REVIEW 6 of 19 

 

one AER segment) representing the reality sense, the AER processing result immediately appears at 
a latency far less than 1 ms, called pseudo-simultaneity. This property is unique for AER systems and 
hard to realize in conventional frame-based visual systems where the latency is as long as a frame 
interval often around 30 ms. In our system, such pseudo-simultaneity latency is merely 2 + (9 + C) = 11 
+ C clock cycles, the event-level pipeline latency in feature extractors plus the time to classify features 
of one AER segment in the Random Ferns engine, as shown in Figure 2. If C = 10 object classes which 
is a typical case for AER-based applications, and if the clock cycle is 10 ns, which is easy to reach on 
nanotechnology VLSI chips, as demonstrated by our experiments later, the overall latency is only 0.21 
μs, thus the pseudo-simultaneity property is consolidated in our system.  

 
(a) 

 
(b) 

 
(c) 

Figure 2. Multi-level pipelines. (a) The course-grained segment-level pipeline. (b) The fine-grained 
event-level pipeline in the feature extractors. (c) The fine-grained feature-level pipeline in the Random 
Ferns engine. 

(3) Cost-effective memory-centric paradigm: The proposed VLSI hardware system design is dedicate 
to carrying out the lightweight AER classification algorithm in [30]. The computing operations in this 
algorithm are quite few and simple. But it requires moderately sufficient memory space to store the 
learned Random Ferns tensors N(m, Fm, c) and Nc, as introduced in Section 2.1, as well as to implement 
LUTs for the logarithm computations required by Equation (3). Therefore, the hardware system is 
naturally memory-centric, consuming a moderate amount of memory and very few affiliated 
computational units. For instance, Section 4 shows that an FPGA prototype of the proposed VLSI 
system consumes 9.5%~96.7% Block RAMs and <11% other logic resources available on a medium-
cost Xilinx Zynq-7045 platform. Since the memory cells have much higher density under nanometer 
silicon technology, the memory resources are much cheaper than the computational and logic 
resources. As a result, the proposed system architecture with memory-centric paradigm is cost 
effective.  

(4) On-chip online learning capability: The proposed VLSI system supports online learning by on-
chip circuits. As stated earlier in Section 1, online learning means that the Random Ferns classifier is 
trained and updated in-situ upon the unlabeled training AER segments one by one, and on-chip 
learning eliminates the need to incorporate an expensive general-purpose computer for off-chip 
training. A minimized number of extra circuits are needed for on-chip learning, the Random Ferns 
training procedure involves only a few simple counting operations to obtain the required N(m, Fm, c) 
and Nc tensors, as described in Section 2.1. Therefore, the on-chip online learning capability facilitates 

Figure 2. Multi-level pipelines. (a) The course-grained segment-level pipeline. (b) The fine-grained
event-level pipeline in the feature extractors. (c) The fine-grained feature-level pipeline in the Random
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To boost the processing performance and satisfy those tight pipeline timing constraints,
the proposed system architecture employs parallel processing circuits, including the massively
parallel binary feature extractors, as well as parallel fern units, as shown in Figure 1. These pipeline
schemes and parallel units together enable the feature extractors to immediately consume an incoming
spike event at a maximum throughput of 1 event per clock cycle, and the Random Ferns to process the
extracted features of one AER segment in no more than (9 + C) clock cycles. This eventually leads
to an extremely high overall system throughput of 1 AER spike event per clock cycle, equivalent to
100 Meps under a moderate 100 MHz system clock frequency.

(2) Pseudo-simultaneity: The concept of the pseudo-simultaneity property in AER systems was earlier
proposed in [24,34]. Their AER convolutional processing circuits can consume and process one event
on-the-fly in as short as 0.175 µs. Therefore, once the DVS provides sufficient events (e.g., one AER
segment) representing the reality sense, the AER processing result immediately appears at a latency
far less than 1 ms, called pseudo-simultaneity. This property is unique for AER systems and hard to
realize in conventional frame-based visual systems where the latency is as long as a frame interval
often around 30 ms. In our system, such pseudo-simultaneity latency is merely 2 + (9 + C) = 11 + C
clock cycles, the event-level pipeline latency in feature extractors plus the time to classify features of
one AER segment in the Random Ferns engine, as shown in Figure 2. If C = 10 object classes which
is a typical case for AER-based applications, and if the clock cycle is 10 ns, which is easy to reach
on nanotechnology VLSI chips, as demonstrated by our experiments later, the overall latency is only
0.21 µs, thus the pseudo-simultaneity property is consolidated in our system.

(3) Cost-effective memory-centric paradigm: The proposed VLSI hardware system design is dedicate
to carrying out the lightweight AER classification algorithm in [30]. The computing operations in
this algorithm are quite few and simple. But it requires moderately sufficient memory space to store
the learned Random Ferns tensors N(m, Fm, c) and Nc, as introduced in Section 2.1, as well as to
implement LUTs for the logarithm computations required by Equation (3). Therefore, the hardware
system is naturally memory-centric, consuming a moderate amount of memory and very few affiliated
computational units. For instance, Section 4 shows that an FPGA prototype of the proposed VLSI
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system consumes 9.5~96.7% Block RAMs and <11% other logic resources available on a medium-cost
Xilinx Zynq-7045 platform. Since the memory cells have much higher density under nanometer silicon
technology, the memory resources are much cheaper than the computational and logic resources. As a
result, the proposed system architecture with memory-centric paradigm is cost effective.

(4) On-chip online learning capability: The proposed VLSI system supports online learning by
on-chip circuits. As stated earlier in Section 1, online learning means that the Random Ferns classifier
is trained and updated in-situ upon the unlabeled training AER segments one by one, and on-chip
learning eliminates the need to incorporate an expensive general-purpose computer for off-chip
training. A minimized number of extra circuits are needed for on-chip learning, the Random Ferns
training procedure involves only a few simple counting operations to obtain the required N(m, Fm, c)
and Nc tensors, as described in Section 2.1. Therefore, the on-chip online learning capability facilitates
our system to be widely and adaptively applied in versatile embedded or mobile scenarios with in-situ
learning requirements and a tight cost budget. The details of the Random Ferns circuits incorporating
the learning functionality are exhibited in the next subsection.

(5) Scalability: Finally, the proposed system architecture can be easily scaled up along the M, S, or
C dimensions, to support more feature groups or ferns, more binary features in each group, or more
AER object classes, respectively, to satisfy various applications with different classification accuracies
and/or resource cost requirements. We describe how the FPGA prototype instances of our VLSI system
with different amounts of resource consumption for 3 DVS datasets demonstrated such scalability in
Section 4.1.

3.2. Circuit Design

(1) Segmentor Block: The circuit design of the segmentor block is shown in Figure 3. It consists of a
16-bit event counter, a comparator, and a 16-bit configurable parameter register storing α, the defined
number of events in one AER segment, as introduced in Section 2.1. The event counter is initialized
as 0 at the onset of one AER segment, and counts up incoming AER events (ignoring their addresses
(x, y)). Once it reaches α, a segment flag signaling the end of the AER segment appears at the output.
The flag is immediately sent out to latch extracted segment features into the Random Ferns engine
and trigger Random Ferns training or inference, while simultaneously resetting the feature extractors
and the segmentor itself to handle the next AER segment. To keep pace with the 2-stage event-level
pipeline in feature extractors, the 1-bit flag is buffered by a flip-flop before it is outputted, as shown in
Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 19 

 

our system to be widely and adaptively applied in versatile embedded or mobile scenarios with in-
situ learning requirements and a tight cost budget. The details of the Random Ferns circuits 
incorporating the learning functionality are exhibited in the next subsection.  

(5) Scalability: Finally, the proposed system architecture can be easily scaled up along the M, S, 
or C dimensions, to support more feature groups or ferns, more binary features in each group, or 
more AER object classes, respectively, to satisfy various applications with different classification 
accuracies and/or resource cost requirements. We describe how the FPGA prototype instances of our 
VLSI system with different amounts of resource consumption for 3 DVS datasets demonstrated such 
scalability in Section 4.1. 

3.2. Circuit Design 

(1) Segmentor Block: The circuit design of the segmentor block is shown in Figure 3. It consists of 
a 16-bit event counter, a comparator, and a 16-bit configurable parameter register storing α, the 
defined number of events in one AER segment, as introduced in Section 2.1. The event counter is 
initialized as 0 at the onset of one AER segment, and counts up incoming AER events (ignoring their 
addresses (x, y)). Once it reaches α, a segment flag signaling the end of the AER segment appears at 
the output. The flag is immediately sent out to latch extracted segment features into the Random 
Ferns engine and trigger Random Ferns training or inference, while simultaneously resetting the 
feature extractors and the segmentor itself to handle the next AER segment. To keep pace with the 2-
stage event-level pipeline in feature extractors, the 1-bit flag is buffered by a flip-flop before it is 
outputted, as shown in Figure 3.  

 
Figure 3. The circuit of the segmentor block. 

(2) Binary Feature Extractor: Figure 4 shows the circuit of one binary feature extractor. When an 
AER event inputs, the event address is compared with the positions of a pair of positive and negative 
patches. The coordinate of the upper leftmost corner of the positive/negative patches are (xpos/neg, 
ypos/neg), and the patch sizes are D × D. These parameters are randomly selected as introduced in 
Section 2.1, and configured into the patch parameter registers before the system runs. An 8-bit 
bidirectional signed counter is employed and initialized to 0 at the onset of an AER segment. Note 
that the randomly selected pair of patches may overlap. When the address of an incoming event falls 
within the positive patch and not the negative one, the counter increases by 1. On the contrary, if the 
event address falls within the negative patch and not the positive one, the counter decreases by 1. 
Otherwise, the counter remains unchanged. When the AER segment is complete, the sign bit of the 
counter is the desired binary feature of the segment, as it indicates if the negative patch has seen more 
AER events than the positive patch. Compared to assigning two separate event counters for each of 
the positive and negative patches, using such a bidirectional counter saves as many as 8 bits × M × S 
flip-flop register resources for the massively parallel binary feature extractor array in Figure 1. For a 
typical case of S = 12 and M = 50, as in our later experiments, the total register reduction is 4800 bits. 
The 2-stage event-level pipeline schedule in Figure 2b is realized in the feature extractor circuit. The 
first stage judges if the event address falls into the patch regions in one clock cycle, and the second 
stage updates the bidirectional counter accordingly in another clock cycle. With this pipeline, an 
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Figure 3. The circuit of the segmentor block.

(2) Binary Feature Extractor: Figure 4 shows the circuit of one binary feature extractor. When
an AER event inputs, the event address is compared with the positions of a pair of positive and
negative patches. The coordinate of the upper leftmost corner of the positive/negative patches are
(xpos/neg, ypos/neg), and the patch sizes are D ×D. These parameters are randomly selected as introduced
in Section 2.1, and configured into the patch parameter registers before the system runs. An 8-bit
bidirectional signed counter is employed and initialized to 0 at the onset of an AER segment. Note that
the randomly selected pair of patches may overlap. When the address of an incoming event falls within
the positive patch and not the negative one, the counter increases by 1. On the contrary, if the event
address falls within the negative patch and not the positive one, the counter decreases by 1. Otherwise,
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the counter remains unchanged. When the AER segment is complete, the sign bit of the counter is the
desired binary feature of the segment, as it indicates if the negative patch has seen more AER events
than the positive patch. Compared to assigning two separate event counters for each of the positive
and negative patches, using such a bidirectional counter saves as many as 8 bits × M × S flip-flop
register resources for the massively parallel binary feature extractor array in Figure 1. For a typical case
of S = 12 and M = 50, as in our later experiments, the total register reduction is 4800 bits. The 2-stage
event-level pipeline schedule in Figure 2b is realized in the feature extractor circuit. The first stage
judges if the event address falls into the patch regions in one clock cycle, and the second stage updates
the bidirectional counter accordingly in another clock cycle. With this pipeline, an ultra-high event
throughput of 1 event per clock cycle is achieved.Sensors 2020, 20, x FOR PEER REVIEW 8 of 19 
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(3) Random Ferns Engine: The circuit details of the Random Ferns engine are depicted in Figure 5.
The main components of the engine include: (1) an array of ferns units, each computing one log(N(m,
Fm, c) + Nr) term in the last line of Equation (3); (2) a bias unit computing the −Mlog(Nc + 2SNr) term;
(3) a pipelined adder tree summing up all those terms; (4) a winner-take-all (WTA) circuit executing
the argmax() function to obtain the classification result; and (5) a finite state machine (FSM) controller
scheduling all operations in the engine. Block memories and registers are used to store the learned
N(m, Fm, C) and Nc tensors in the fern and bias units, respectively, while LUT memories are used to
realize required logarithmic functions, with Nr = 1 as said in Section 2.1.Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 
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The feature classification procedure in the Random Ferns engine is accelerated by the class-level
pipeline, as already illustrated in Figure 2c. This pipeline contains 9 stages, and each stage corresponds
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to one clock cycle. Immediately after the extracted AER segment features Fm are latched into the buffer
registers of the fern units, the Random Ferns engine evaluates Equation (3) on each class candidate and
determine the final classification result in the pipeline, as follows. The FSM controller successively
issues the candidate class indices c = 0, 1, . . . , C − 1 one at a clock cycle to the fern and bias units
as well as to the WTA circuit at their respective proper timings. All the fern units and the bias unit
run in parallel and they occupy the first 2 stages of the pipeline. In each fern unit, the first stage
accesses the learned N(m, Fm, c) memory element corresponding to feature Fm and current class index
c, and the other stage computes log(N(m, Fm, c) + Nr) as required in Equation (3) via a LUT memory,
as shown in Figure 5. In the bias unit, as the few learned Nc elements are stored in registers rather
than a memory, they can be accessed without clock synchrony. Therefore, reading the Nc element for
current class index c and then computing the log(Nc + 2SNr) term in Equation (3) via the bias unit’s
LUT memory can be accomplished in one clock cycle, i.e., the first pipeline stage. The second stage
multiplies the LUT output by a constant -M, as shown in Figure 5. Next, the outputs of these fern and
bias units are accumulated in a 6-stage pipelined adder tree. We have validated that under a modern
nanometer silicon technology, a 4-input 20-bit addition can be safely done within 10 ns. If this is the
clock cycle period (as in our experiments), such a 6-stage adder tree can support up to M = 46

− 1
(bias unit) = 4095 ferns, which are far too sufficient for any situations. If M is less than that, we can
use less adders in the pipelined tree or less inputs of some adders to save unnecessary computing
resources. The output stream of the adder tree is the logarithmic posterior class-conditional probability
logP(Fm|c) in Equation (3) of each candidate class index c. The last stage of the pipeline is assigned to
the WTA circuit. In each clock cycle during the logP(Fm|c) stream, if the current class index c has a
higher logP(Fm|c) than all previous ones, the current index c and its logP(Fm|c) value are stored as the
winner class and the winner probability, respectively, as Figure 5 illustrates. This way, the WTA circuit
eventually picks out the class c with the largest logP(Fm|c) as the classification result, in a pipelined
manner with other circuits.

To realize the on-chip online learning capability of the Random Ferns classifier, only very few
auxiliary hardware resources need to be consumed, those depicted in red in Figure 5. They are merely
(M + 1) add-one calculators and a multiplexer, the costs of which are totally ignorable in the whole
Random Ferns engine. The multiplexer chooses either the external class label of the training AER
segment sample in the learning phase, or the class index stream internally generated by the FSM
controller in the class inference phase. All entries of N(m, Fm, c) and Nc are initialized to 0 before
any learning starts. Our Random Ferns engine equipped with these extra learning circuits consumes
only 3 clock cycles to finish the learning on the features of a single training AER segment sample.
The first cycle latches the extracted features Fm. The second cycle reads corresponding N(m, Fm, c)
and Nc memory entries in the parallel fern and bias units, according to Fm and the class label c of the
training AER segment. Finally, the last cycle adds the two items by 1 and then writes them back to
their memories.

4. Experimental Results

4.1. FPGA Prototype

We implemented an FPGA prototype of the proposed VLSI system for AER data classification on a
Xilinx Zynq-7045 chip mounted on a Mini-ITX evaluation board from the vendor AVNET [35], as shown
in Figure 6. The FPGA chip contained our prototype, a virtual DVS camera, and a hard Intellectual
Property (IP) core of an ARM processor. Our prototype was running under a clock frequency of
100 MHz and achieved a high AER event throughput up to 100 Meps, as mentioned in Section 3.1.
The ARM core managed the overall prototype operations, and was connected to a host personal
computer (PC) via a 1000 Mb/s Ethernet for communicating AER data and classification results between
our prototype and the host PC. The virtual DVS sensor on the FPGA chip was essentially a 16 KB
AER data buffer memory and it sent out stored AER event streams in a continuous manner, as a
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real DVS camera does. With such a virtualized sensor technique, the processing performance of the
prototype in real application situations can be fairly measured, as if it was directly interfacing with a
real sensor [36,37]. However, the virtual DVS and other components, such as the ARM core, the PC,
and the Ethernet interface in Figure 6, were only used to build the laboratory evaluation environment.
Their resource and time consumption overheads would no longer exist in a real application apparatus.
A monitor software program was written on the PC for AER data preprocessing and visualizing,
as well as displaying the classification result.Sensors 2020, 20, x FOR PEER REVIEW 10 of 19 
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Figure 6. The FPGA prototype of the proposed VLSI system in the evaluation environment.

We used three DVS datasets for evaluation: MINST-DVS with a 28 × 28 pixel resolution and
10 classes of handwritten digits from 0 to 9, Poker-DVS with a 32 × 32 resolution and 4 card classes of
club, diamond, heart, spade, Posture-DVS with a 32 × 32 resolution and 3 human posture classes of
bend, sit & stand, walk. The algorithm hyperparameters for processing these datasets are listed in
Table 1. Figure 7 exhibits some pseudo-images reconstructed from the AER segments of the datasets [30].
These datasets had been generated by moving images in front of real DVS sensors and recorded with
event timestamps [38]. However, to test the 100 Meps peak throughput of our prototype, we discarded
all timestamps and implicitly regarded that one event was issued in every clock cycle in their original
timestamp order. To validate the scalability, as mentioned in Section 3.1, the FPGA prototype was
recompiled for each DVS dataset with different levels of resource and power consumption, as listed in
Table 2. Note that the levels of consumption do not include those on the ARM core and the virtual DVS
camera, because they were only used for evaluation and were not part of our prototype, as mentioned
above. From the system and circuit designs in Section 3, we can deduce that: (1) the logic resource
consumptions of flip flops and slice LUTs grow approximately linearly with M and S, due to parallel
fern units and feature extractors; (2) the memory consumption for N(m, Fm, c) grows linearly with M
and C, and exponentially with S, as the size along the Fm dimension is 2S as mentioned earlier; (3) the
memory consumption for the logarithmic LUTs in the fern unit array grows linearly with M; and (4) the
resource consumptions in other blocks roughly remains constant regardless of the hyperparameter
values. The hyperparameters α and D do not affect the resource consumption. These trends are
consistent with the observation in Table 1. In any case, the levels of logic resource consumption are
relatively small for all the three DVS datasets, and the memory consumption varies significantly
depending on the value of S used for each dataset. Table 2 also exhibits the estimated levels of power
consumption given by the Vivado power analyzer tool. The levels of power consumption of compiled
prototype instances for these DVS datasets suggest no significant differences, varying from 690 mW for
MNIST-DVS down to 564 mW for Poker-DVS, including an almost constant static power contribution
of 230 mW. Typically, the energy efficiency of our prototype for processing the MNIST-DVS can achieve
as high as 100 Meps/690 mW = 145 Meps/W or 145 events/µJ.



Sensors 2020, 20, 4715 11 of 18

Table 1. Hyperparameter settings for different DVS datasets [30].

Hyperparameter. M
(# of Ferns)

S
(# of Binary

Feature)

α
(# of Segment

Event)

D
(Patch Size

Range)
C

MNIST-DVS
50

12 300
3, 4 or 5

10
Poker-DVS 8 100 4

Posture-DVS 10 500 3
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Table 2. Resource and power consumptions of our FPGA prototype for different DVS datasets.

FPGA
Platform

(Zynq-7045)

Logic Resources Memory Resources Power
Consumption

(mW)
Flip-Flops 1

(437200)
Slice LUTs

(218600)
DSP/Multiplier

(900)
Block RAM

(545)

MNIST-DVS 46505 (10.6%) 21882 (10.0%) 1 (0.11%) 527 (96.7%) 690
Poker-DVS 31318 (7.2%) 14702 (6.7%) 1 (0.11%) 52 (9.5%) 564

Posture-DVS 38843 (8.9%) 16923 (7.7%) 1 (0.11%) 79 (14.5%) 652
1 The Flip-flop resource type is also called Slice Registers in the Vivado implementation tool report.

The prototype evaluation procedure was as follows. First, the DVS data were preprocessed by
the PC software. Each DVS dataset contains multiple continuous AER streams [38]. For each dataset,
we randomly selected 90% of its AER streams as the training set and the others as the testing set. Each
stream was further divided into multiple segments according to the hypermeter α for each dataset, as
listed in Table 2. Then, these AER segments were downloaded into the on-chip virtual DVS via the
Ethernet interface and the ARM IP core. Standard functional Application Programming Interfaces
(APIs) were used by PC and ARM software programs to implement the Ethernet communication.
Once the virtual DVS held enough AER segments, it started to issue AER events at a rate of 1 event per
clock cycle to the VLSI prototype for training or class inference. Finally, if in the class inference phase,
the classification results were read by the ARM core and sent back to the PC to be displayed. When
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the virtual DVS camera was empty, the PC loaded other AER segments onto it and the evaluation
procedure repeated. The classification accuracies and the time consumptions on the prototype are given
and compared wo other works later in Section 4.2. The classification accuracies on the testing sets of
MNIST-DVS, Poker-DVS, and Posture-DVS are 77.9%, 99.4% and 99.3%, respectively. These accuracies
were obtained based on 10-fold cross-validations [30]. More details are shown in the confusion matrices
in Figure 8. The measured (peak) event throughput on our FPGA prototype with the virtual DVS
sensor generating 1 AER event per clock cycle (i.e., 100 M events under the 100 MHz clock cycle)
was 100 Meps, and the measured pseudo-simultaneity latencies were 0.21 µs, 0.15 µs and 0.14 µs for
the MNIST-DVS, Poker-DVS, and Posture-DVS datasets, respectively. These measurements exactly
matched with the theoretical predictions in Section 3.
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Once the virtual DVS held enough AER segments, it started to issue AER events at a rate of 1 event 
per clock cycle to the VLSI prototype for training or class inference. Finally, if in the class inference 
phase, the classification results were read by the ARM core and sent back to the PC to be displayed. 
When the virtual DVS camera was empty, the PC loaded other AER segments onto it and the 
evaluation procedure repeated. The classification accuracies and the time consumptions on the 
prototype are given and compared wo other works later in Section 4.2. The classification accuracies 
on the testing sets of MNIST-DVS, Poker-DVS, and Posture-DVS are 77.9%, 99.4% and 99.3%, 
respectively. These accuracies were obtained based on 10-fold cross-validations [30]. More details are 
shown in the confusion matrices in Figure 8. The measured (peak) event throughput on our FPGA 
prototype with the virtual DVS sensor generating 1 AER event per clock cycle (i.e., 100 M events 
under the 100 MHz clock cycle) was 100 Meps, and the measured pseudo-simultaneity latencies were 
0.21 μs, 0.15 μs and 0.14 μs for the MNIST-DVS, Poker-DVS, and Posture-DVS datasets, respectively. 
These measurements exactly matched with the theoretical predictions in Section 3. 
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4.2. Comparison and Discussion

To demonstrate the high-speed processing performance of our proposed VLSI hardware system,
Table 3 compares our FPGA hardware prototype with recent state-of-the-arts software-based solutions
for AER object classification, in terms of classification accuracies, as well as levels of training and
classification inference time consumption, on the above three DVS datasets. Those software-based
solutions themselves were already compared in [30]. In this work, we further compare them with our
proposed hardware system. The studies described in [15,16] adopted spiking convolutional neural
networks (SCNN) for AER processing, with one convolutional layer (handcrafted DoG or Gabor
filters) and one fully-connected learning layer (trained by the Tempotron rule [13]). In contrast, the
works of [28,30] employ lightweight statistical learning methods for AER object classification, and
achieve comparable classification accuracies. In particular, the work in [28] uses BoE features and
SVM classifier. The work in [30] uses even simpler binary features and Random Ferns, and achieves
the highest accuracies. Moreover, the simplest algorithm proposed in [30] has the best potential for
hardware acceleration, as implemented in this work. Table 3 shows that the proposed dedicated
hardware system achieves speeds hundreds to tens of thousands of times faster than those previous
software-based solutions. In particular, the last line of Table 3 exhibits the processing speed gains of
our hardware system over its software implementation counterpart of [30]. This demonstrates the
excellent algorithm accelerating capability of our dedicate VLSI architecture and circuits.

Table 3. Comparison to software-based solutions for AER object classification.

Method
MNIST-DVS Poker-DVS Posture-DVS

Acc. Ttrain Tclass Acc. Ttrain Tclass Acc. Ttrain Tclass
(%) (s) (s) (%) (s) (s) (%) (s) (s)

SCNN [15]
(DoG + Tempotron) 62.50 1208 7825 92.53 31 23.34 91.88 1548 118,717

SCNN [16]
(Gabor + Tempotron) 75.52 8805 982 91.76 73.12 7.91 95.61 11,794 2984

Statistical Learn. [28]
(BoE + SVM) 74.82 31.5 27.4 93.00 0.03 0.02 98.66 45.46 44.64

Statistical Learn. [30]
(Random Ferns) 78.08 41.3 5.0 97.2 0.6 0.1 99.59 39.3 5.0

This work
(Random Ferns) 77.9 0.06

(×688)
0.0066
(×758) 99.4 0.00046

(×1304)
0.00006
(×1667) 99.3 0.11

(×357)
0.011

(×456)

Table 4 compares our work with prior state-of-the-art digital hardware VLSI systems that
are implemented as small-area application-specific integrated chips (ASICs) or on medium-cost
FPGAs for embedded AER visual processing applications. The designs of [22,23,39] were used to
run fully-connected SNNs. However, their SNNs are benchmarked on AER spike trains manually
converted from MNIST image frames, rather than those directly recorded by DVS cameras. Accordingly,
their energy efficiency is measured in terms of the energy consumed in neuronal synaptic operations
(Gsops/W, giga synaptic operations per second per Watt) instead of on the input DVS events (Meps/W)
in Table 4. In SNNs, processing one input AER event incurs tens to hundreds of synaptic operations.
For instance, in a typical 784-200-10 three-layer SNN, any AER event occurring at one of its inputs
will trigger at least 200 synaptic operations, as every spiking neuron in the second layer has to add
corresponding synaptic weights connected to that input to their membrane potentials. In this case,
the 145 Meps/W energy efficiency of our system is equivalent to 145 Meps/W × 200 sop/event = 29
Gsops/W, which is in the same order of magnitude of the energy efficiencies of [23] and [39] in Table 4.
Moreover, if our system could be implemented as a custom ASIC chip fabricated using very advanced
low-power nanometer technologies, as adopted by [23,39], its energy efficiency can be considerably
further improved. In Table 4, the system processing latencies of [22,23,39] are relatively large because
one has to first get a complete frame image, then convert it to AER spike trains, and wait for those
hardware SNN systems to finish the processing. No pseudo-simultaneity exists between the sensor and
the processor, as the spike event cannot be processed on-the-fly with the sensing procedure. Therefore,
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the system latency is as long as the time consumption for processing all the spike events converted
from an image frame. The MNIST digits classification accuracies of [22,23,39] are relatively higher
than other hardware implementations in Table 4 and all software implementations in Table 3. Once
again, this is due to the fact that the works described in [22,23,39] are benchmarked on static MNIST
images. Although these images are converted to AER spike events for processing, the spike timings
exactly preserve the original image pixel information. In contrast, the MNIST-DVS benchmark datasets
employed by other designs are recorded by DVS cameras with only temporal change information.
These DVS events are sparser and more noisy, and less representative of the original MNIST digit
images, as illustrated by the pseudo images reconstructed from the DVS AER segments in Figure 7.
Correctly Classifying such DVS data is much more challenging than classifying the spike trains
manually converted from static images.

The chips of [24,26,27] were designed to accelerate the convolutional layer processing in SCNNs
directly fed by DVS AER events (either from in-situ real DVS cameras or from DVS recorded datasets).
The system of [40] is designed to accelerate a dedicate statistical processing method (called Hierarchy
of Time-Surfaces, or HOTS) for DVS gesture classification. In Table 4, our hardware systems realized
100 Meps DVS event throughput, about 6~128 times higher than the other DVS event processing
systems in [24,26,27,40]. Our system also achieved much higher energy efficiency than them, except for
the one in [26] in high-efficiency low-throughput mode. Our system processing latency was as short as
0.21 µs, which is 0.035 µs marginally longer than [24], and negligible to all the other implementations in
Table 4. Our system realized near-perfect 99.4% and 99.3% classification accuracies on the Poker-DVS
and the Posture-DVS datasets, respectively, while the works of [26,40] exhibit lower accuracies of 97.5%
and 93.3% on similar DVS datasets of poker cards and gestures.

However, the main limitation of our high-speed low-cost AER processing system is that it may
not cope well with tasks when more than 5 object classes are involved. It can be seen from the above
experimental and comparison results that the classification accuracy of our proposed VLSI system
degrades when the number of object classes concerned increases. It can arrive at nearly 100% correct
rates on the Poker-DVS dataset (containing 4 classes) and the Posture-DVS dataset (containing 3 classes),
but only around an 80% correct rate on the MNIST-DVS dataset (containing 10 classes). It is inferior to
those SNN-based neuromorphic systems in terms of accuracies when presented with complex and
challenging tasks with more object classes, such as classifying the MNIST-DVS dataset. The reason
is that our system is dedicated to carrying out the simple and fast Random Ferns algorithm, and
hence consumes very few computational resources, trading off accuracies on complex tasks for system
throughput and latency improvements, resource reduction, and an energy-efficiency boost. Compared
to other neuromorphic systems running complicated SNN algorithms, our proposed VLSI hardware
is thus especially appropriate for those applications categorizing only a few object classes or even
making binary decisions (i.e., face detection, pedestrian tracking, etc.), with high processing speed,
low computing latency, low system cost and high energy efficiency being of critical concerns.

Since real DVS cameras are not available to us at this moment, and we hope to test the peak event
throughput of the hardware prototype, we adopted the virtual DVS sensor for evaluation experiments
in Section 4.1. However, if our VLSI hardware can be connected to a real DVS retina sensor in future
work, a synchronizer must be employed to adapt to the asynchronous AER spike stream outputted
from the real DVS sensor. Such a synchronizer has to be run under a 200 MHz clock frequency to
maintain the 100 Meps throughput performance of our hardware system. Such a synchronizer can
be integrated on the DVS sensor side or on the processing circuit side, or implemented externally
on a small FPGA board. Moreover, for more complex AER routing methods that support arbitrary
and buffering on simultaneous AER spike outputs, some special interfaces like AER-USB have to
be adopted between the AER sensor and processor components [41]. In that case, our processing
hardware would not reach its peak event throughput performance, as it has to wait until the arbiter
and the interface have completed necessary data preprocessing and rescheduling.
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Table 4. Comparison to other digital VLSI implementations for AER visual processing.

Design
Work Implementation Technology Clock Freq.

(MHz)
Power
(mW)

DVS Event
Throughput

(Meps)

Energy
Efficiency

Latency
(µs) Algorithm On-Chip

Learning
Benchmark

Dataset

Classification
Accuracy

(%)

Darwin [22] 25 mm2

ASIC
180 nm 70 59 N/A N/A 160,000 SNN No

MNIST
(non-DVS)

93.8

ODIN [23] 0.086 mm2 (core)
ASIC

28 nm
FDSOI 75 0.477 N/A 78.6

Gsops/W 1 31,447 SNN Yes 84.5

[39] 1.72 mm2

ASIC
10 nm
FinFET 105 9.2 N/A 120.5

Gsops/W 160 SNN Yes 89

[24] 31.9 mm2

ASIC
350 nm 100 200 16.6 83

Meps/W 0.175 SCNN No Real DVS camera N/A

[26] Spartan-6 FPGA 45 nm 50 7.7 0.05–3 6.4–389 Meps/W 0.5–32 SCNN No Poker-DVS 97.5
[27] Zynq-7100 FPGA 28 nm 100 59 0.779 13.2 Meps/W 9.01 SCNN No Poker-DVS N/A

[40] Zynq-7100 FPGA 28 nm 100 77 2 26.0 Meps/W 6.7 HOTS No NavGestures-sit
(DVS) 93.3

This work Zynq-7045
FPGA 28 nm 100 690 100 145 Meps/W 0.21 Random

Ferns Yes
MNIST-DVS
Poker-DVS

Posture-DVS

77.9
99.4
99.3

1 Gsops = Giga synaptic operations per second.
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5. Conclusions

In this paper, we propose a high-speed low-cost VLSI hardware system for DVS AER object
classification, based on a lightweight statistical algorithm involving simple binary features and
the Random Ferns classifier. Our system architecture achieves high event throughput and low
processing latency by employing multiple levels of pipelines and parallel processing unit circuits.
The memory-centric paradigm of the architecture guarantees the cost-effectiveness of the system.
Moreover, our system realizes on-chip online learning for the Random Ferns classifier with very
few extra computing circuits. These properties make our system very suitable for many embedded
applications requiring high-speed performance, tight cost budgets, and self-adaptiveness via in-situ
learning. An FPGA prototype of the proposed VLSI hardware system was implemented on the Xilinx
Zynq-7045 chip. Under a 100 MHz clock frequency, the prototype realized 100 Meps event throughput,
145 Meps/W energy efficiency, and 0.21 µs processing latency, and obtained 77.9%, 99.4% and 99.3%
classification accuracies on the MNIST-DVS, Poker-DVS, and Posture-DVS datasets, respectively,
while consuming a moderate amount of 9.5~96.7% memory resources and a small amount of <11%
computational/logic resources on the FPGA chip. Compared to prior state-of-the-art works for AER
data processing, our hardware system achieves much higher event throughput, higher energy efficiency,
lower processing latency, and higher classification accuracies.
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