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Abstract Type 2 diabetes (T2DM) is a common, complex
disease that poses a substantial burden on individual and pop-
ulation health, but we have relatively limited understanding of
its underlying pathophysiology. Observational studies have
highlighted large numbers of risk factors for T2DM, some of
which are modifiable through behavioural or pharmacological
intervention. Determining which of these risk factors
plays a causal role in the development of T2DM has
been a challenge, but Mendelian randomisation (MR)
studies are harnessing genetic data in population studies
to offer new insights. Using evolving analytical
methods, MR studies continue to address questions of
causality related to T2DM, including exploring the roles
of adiposity, blood lipids and inflammation. The causal
roles of a number of important modifiable risk factors
have been confirmed by MR studies, while the rele-
vance of others has been called into question. As more
MR studies are conducted, methods are developed and
refined in order to make the most efficient and reliable
use of available genetic and phenotypic data. In this
review, the design and findings of some important MR
studies related to T2DM are explored and their rele-
vance for translation to clinical practice considered.
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Type 2 Diabetes – a Complex Disease

Observational epidemiology over several decades has provid-
ed a broad view of the risk factors for type 2 diabetes mellitus
(T2DM). For example, it is clear that advancing age, greater
body mass index (BMI) [1], certain dietary habits [2] and
lower physical activity [3] are associated with higher T2DM
risk. In more recent years, genome-wide association (GWA)
studies have offered novel insights into the genetic architec-
ture underlying the pathophysiology of T2DM. These studies
have confirmed that, as a so-called ‘complex disease’, the
development of T2DM appears to be influenced by a wide
range of biochemical, genetic, behavioural and environmental
determinants, each of which individually contributes only a
portion of disease risk [4]. Importantly, however, observation-
al studies have largely been unable to attribute causality ro-
bustly to a given risk factor. This picture of multi-factorial
aetiology is similar to that found in other complex diseases
such as coronary heart disease (CHD) or stroke. Causal roles
for a number of important risk factors in cardiovascular dis-
ease (CVD), such as higher LDL cholesterol (LDL-C) or
blood pressure, have been demonstrated through strong evi-
dence from randomised controlled prevention trials [5, 6]. In
contrast, despite the wealth of treatment trials of
hypoglycaemic interventions for individuals with T2DM,
comparable findings from prevention trials have not been re-
ported in T2DM. As a consequence, reliable, population-
based evidence confirming the underlying causes of T2DM
has, until recently, been relatively scarce. Using common ge-
netic variants, often those identified by large GWA studies,
Mendelian randomisation (MR) studies have begun to offer
new evidence for causal mediators in the development of
T2DM. In this review, we consider the role MR has to play
in investigating a complex disease such as T2DM, and impor-
tant findings from recent MR studies in this area.
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Introduction to Mendelian Randomisation

As noted above, observational epidemiological studies have a
valuable role in identifying risk factors associated with
T2DM. By virtue of their design, however, observational stud-
ies are unable to offer reliable evidence for causal relation-
ships between observed risk factors and a given disease out-
come [7]. This limitation results from the propensity of obser-
vational studies for bias (in a number of forms), confounding
(both measured and unmeasured), and reverse causation
(whereby an observed risk factor is, in fact, a consequence
of the disease process rather than a contributor). The classical
randomised controlled trial (RCT) design overcomes these
three hurdles through random allocation of participants to
treatment or control groups (thus avoiding confounding),
blinding of investigators and/or participants to trial group al-
location (avoiding a number of influential biases), and through
their inherently prospective nature (which overcomes the pos-
sibility of reverse causation).

MR studies exploit inherent properties of common genetic
variation to estimate the causal contribution of a risk factor to
risk of a given disease outcome [8–10]. Crucially, MR relies
on the random allocation of alleles at the time of conception,
and the independent assortment of parental alleles, as de-
scribed by Gregor Mendel [11]. These near-universal features
of genetic variation help to avoid confounding in MR studies
in the same way as random treatment allocation does in RCTs.
Furthermore, individuals are largely unaware of their geno-
type at a given locus, which helps to overcome several biases,
and the flow of biological influence in general follows a uni-
directional path from genome sequence through transcription,
translation and downstream to complex phenotypes, thus gen-
erally avoiding reverse causation.

The MR model examines three relationships:

i. the observed association between the exposure and the
outcome;

ii. the association between a genetic variant (or a group of
variants) and the exposure; and,

iii. the association between the genetic variant(s) and the
outcome.

The model rests on the assumption that the genetic variant
(termed the ‘instrument’) associates exclusively with the ex-
posure and not with potential confounders. If all three of the
relationships above can be demonstrated in an appropriately
sized sample, a role for the exposure in causing the outcome
can be inferred by formally synthesising a ‘causal estimate’.
The genetic instrument is usually either a single nucleotide
polymorphism (SNP) or a group of SNPs combined to form
a composite instrument, or score [12, 13]. The genetic instru-
ment should, in general terms, have a sufficiently large influ-
ence on the exposure of interest to allow its effect to be

detected in the available sample and have minimal effects on
other variables that could confound the exposure-outcome
relationship. In the examples of MR studies discussed below,
a variety of approaches to instrument formulation are used,
each with important advantages and limitations.

Endogenous Risk Factors for T2DM

Obesity and Adiposity

The majority of MR studies in T2DM have focussed on de-
termining whether traditional risk factors have a causal role in
the disease aetiology or are merely bystanders. Among the
risk factors attracting most attention is adiposity, since higher
BMI is a well-described risk factor for T2DM [1], and a num-
ber of large-scaleMR studies have addressed this relationship.
BMI is a complex phenotype with many determinants, includ-
ing variants several at genetic loci [14]. On the genetic level at
least, this is in stark contrast with comparatively simpler phe-
notypes such as C-reactive protein (CRP), a circulating pro-
tein that is the product of a single gene [15]. SomeMR studies
investigating the role of BMI on disease risk have used as
instruments a limited number of variants in the genes most
strongly associated with BMI, such as FTO and MC4R. A
more comprehensive and robust approach has developedmore
recently, whereby a larger set of BMI-associated variants are
combined into an ‘allele score’ or ‘genetic risk score’ and used
as the genetic instrument in the MR analysis. The score-based
method has the advantage of increasing the effect size of the
genetic instrument on the exposure, and may also reduce bias
[12, 13].

An early analysis of this type used a single variant at the
FTO locus with a strong and well-characterised association
with higher BMI [16], each allele accounting for approximate-
ly 0.29 kg/m2 higher BMI in a large GWA study
(p = 4.40 × 10−7; n = 127,553) [17] and 0.36 kg/m2 in the
MR study (p = 4.3 × 10−52; n = 198,502). Using this strong
genetic instrument, the MR study reported a causal role for
higher BMI in combined incident and prevalent T2DM risk,
with an odds ratio (OR) of 1.37 (95 % confidence interval, CI,
1.23 to 1.51; p = 2.0 × 10−9; 20,804 cases, 139,543 controls)
per 1 kg/m2 increase in BMI. Furthermore, the authors report-
ed a similar role for BMI in the risk of metabolic syndrome
(OR 1.31; 95 % CI 1.18 to 1.45; p = 2.6 × 10−7; 11,608 cases,
37,984 controls).

Two subsequent studies have employed more advanced
MR analysis methods and used an allele score as the BMI
genetic instrument. The first used a score of 14 BMI-
associated SNPs discovered using a cardiovascular gene-
centric SNP array [18]; a 1-unit increase in the allele score
accounted for a 1.08 kg/m2 increase in BMI (95 % CI 0.95
to 1.21; n = 34,538) [19]. Using this score, a 1 kg/m2
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genetically instrumented increase in BMIwas associated caus-
ally with higher T2DM risk (OR 1.27; 95 % CI 1.18 to 1.36;
4407 cases, 31,844 controls). In the second major MR study,
the authors sourced the SNPs for their allele score from a large
GWA study of BMI [20], and included 32 variants [21]. In a
meta-analysis sample of 81,764 individuals from 25 studies,
each additional allele in the score led to a standardised 0.030
SD increase in BMI (95 % CI 0.028 to 0 .030;
p = 2.8 × 10−109). Although the authors did not examine asso-
ciations of the score with risk of T2DM itself, they demonstrat-
ed causal associations of higher BMIwith higher fasting plasma
glucose, higher post-oral glucose tolerance test (OGTT) plasma
glucose, higher haemoglobin A1c (HbA1c), and higher fasting
insulin, suggesting a strong relationship of BMI with a
dysglycaemic phenotype. These three MR studies have
employed a range of analytical techniques to demonstrate a
consistent causal role for higher BMI in increasing T2DM risk,
which is in keeping with the longstanding findings from both
traditional observational epidemiology and the clear relation-
ship of greater adiposity with insulin resistance.

Systemic Inflammation

A role for inflammation in the development of T2DM has
been proposed for many years on account of the observed
relationships between higher concentrations of biomarkers of
inflammation, such as CRP and interleukin-6 (IL-6), and
T2DM risk [22]. As suggested above, this relationship may
result from confounding, or from reverse causation; for exam-
ple, higher BMI is known to be associated both with systemic
inflammation [23], and via a causal pathway with T2DM.MR
studies have sought to investigate this, focussing on three
important biomarkers of inflammation: CRP, IL-6 and
interleukin-1 (IL-1).

An early MR study in a sample of 3218 women used hap-
lotypes in the CRP gene as instruments to investigate the role
of CRP in the metabolic syndrome [24]. The study reported
causal associations of a doubling of CRP concentration with
lower BMI (−0.44 kg/m2; 95 % CI –1.34 to 0.46), and with
higher HOMA-IR, a measure of insulin resistance (0.94; 95 %
CI 0.84 to 1.07). There was, however, no causal association
with other components of the metabolic syndrome, including
systolic blood pressure, waist:hip ratio, HDL-C and triglycer-
ides. The authors concluded that these conflicting findings did
not support a causal role for CRP per se in the development of
the metabolic syndrome, despite strong observational evi-
dence linking the two. A subsequent, larger study again used
SNPs in the CRP gene as instrumental variables and found no
genetic associations with HbA1c, HOMA-IR, or risk of T2DM
[25]. Although this analysis found that CRP is unlikely to play
a causal role in T2DM, the authors suggest that other inflam-
matory pathways may be aetiologically important. Closely
related biologically to CRP is IL-6, a pro-inflammatory

cytokine with a large number of physiological effects. The
role of IL-6 signalling in cardiovascular disease has attracted
widespread attention [26–28], and its influence on
dysglycaemia has also been investigated. A large MR study
with CHD as its primary endpoint also reported a near-
significant effect of a functional variant causing impaired sig-
nalling at the IL-6 receptor on lower T2DM risk [26]. In a
large GWA meta-analysis, however, the same functional var-
iant was found not to be associated with T2DM risk (OR 1.03;
95 % CI 0.99 to 1.05; p = 0.18; 9580 cases, 53,810 controls;
data available from http://diagram-consortium.org/
downloads.html) [29]. IL-1 signalling lies upstream of IL-6-
mediated pathways and has also been investigated for a po-
tential role in T2DM aetiology. Of note, canakinumab, a
monoclonal antibody inhibiting IL-1β, has been shown in a
small RCT (n = 67) to have no effect on improving glycaemic
control in recently diagnosed type 1 diabetes [30]. A largeMR
meta-analysis, used variants in the IL1RN gene, which en-
codes IL-1 receptor antagonist (IL-1Ra), the naturally occur-
ring inhibitor of the IL-1 receptor [31]. Although the genetic
instruments were strongly associated with IL-1Ra concentra-
tion, there was no association with T2DM risk when the var-
iants were combined into a score (OR 0.99; 95 % CI 0.97 to 1.
01; p = 0.47; 18,715 cases, 61,692 controls). Although the
inflammatory hypothesis in T2DM aetiology appears plausi-
ble, evidence fromMR studies has so far failed to support it. It
is possible, nonetheless, that larger studies and investigation
of other inflammatory pathways may yield different findings.

Blood Lipids

The relationship of blood lipids with T2DM risk has risen in
prominence in recent years, catalysed largely by the finding
that statin therapy caused an increase in T2DM risk in cardio-
vascular disease prevention trials [32, 33]. Furthermore, RCTs
of niacin showed higher plasma glucose and T2DM risk [34]
and the CETP inhibitor torcetrapib showed a beneficial effect
on glycaemic control in the ILLUMINATE trial [35]. The link
between lipid metabolism and glycaemic control appears to be
strengthening, and MR studies are shedding some light on its
underlying mechanisms [36].

An observed relationship between higher circulating tri-
glyceride concentration and higher T2DM risk has been
recognised for several years [37], although whether this
reflected a causal association was unclear. MR studies of
blood lipids pose similar methodological challenges to those
investigating BMI since blood lipid fractions are influenced
by variants at a large number of genetic loci [38]. Studies have
used different approaches to overcome these challenges, some
of which are illustrated in the studies described here. A
consortium-based MR study including data from four cohorts
demonstrated that despite a strong observational association
between circulating triglyceride concentration and T2DM
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risk, fasting insulin and glucose and HOMA-IR, there was no
association with a robust triglyceride allele score instru-
ment incorporating information from 10 variants across
9 loci [39]. In a Pakistani sample of 2131 individuals, a
similar observed relationship was found between triglyc-
erides and T2DM risk, however an allele score of 10
SNPs showed no association with T2DM risk (OR 0.97;
95 % CI 0.91 to 1.04; p = 0.41) [40].

The relevance of lipoprotein(a) (Lp(a)) to cardiovascular
disease has been demonstrated by MR studies [41], although
a specific pharmacological Lp(a) inhibitor has not yet entered
advanced clinical development. The role of Lp(a) in T2DM is
less clear, but observational studies report an inverse relation-
ship between Lp(a) concentration and T2DM risk. Using a
well-characterised variant at the LPA locus, the authors of a
large MR study reported strong associations of T2DM risk
with Lp(a) concentrations, however no evidence of a causal
link (OR 1.03; 95 % CI 0.96 to 1.10; p = 0.41; 10,088 cases,
68,346 controls) [42]. In the wake of findings from the
ILLUMINATE trial of torcetrapib (an agent intended to raise
HDL-C to prevent CHD) [35], interest has grown around the
relationship of HDL-C with glycaemic control. An MR anal-
ysis from Denmark, also using an allele score (nine variants in
genes with known roles in HDL-Cmetabolism) addressed this
issue [43]. As expected, the allele score associated strongly
with HDL-C, accounting for up to 20 % difference in circu-
lating concentration. There was, however, no causal associa-
tion seen in the sample of 47,627 individuals, including 2587
patients with T2DM (OR per 0.2 mmol/L reduction in HDL-C
0.93; 95 % CI 0.75 to 1.09).

A larger analysis used publicly-available data from major
GWA study meta-analysis consortia [29, 38, 44] to assemble
allele scores as instruments for HDL-C, LDL-C and triglycer-
ides [45]. The scores in this analysis were derived from the
largest GWA study of lipids conducted to-date (the Global
Lipid Genetics Consortium, GLGC) [38], and therefore, argu-
ably, allow the most comprehensive assessment of lipid rela-
tionships with T2DM. The analysis showed no causal associ-
ation between either the HDL-C or triglyceride allele scores of
140 SNPs and T2DM risk, but did reveal a convincing asso-
ciation between the LDL-C SNP score and risk of T2DM. The
latter finding of a causal association between higher LDL-C
concentration and higher T2DM risk fits well with the emerg-
ing strong link between LDL-C modulation and T2DM [36].
As noted above, statin treatment has been shown to increase
risk of new-onset T2DM in randomised CVD prevention tri-
als. An MR analysis using common variants in the HMGCR
gene that encodes HMG-CoA reductase – the intended target
of statins – demonstrated that the same variant that associated
with lower LDL-C also caused higher T2DM risk, higher
plasma insulin and glucose, and higher body weight and
BMI [46]. The analysis also compared the genetic effects with
those of statin treatment in RCTs on body weight and T2DM

and showed a clear directional concordance between the two –
both the genetic instruments and statin treatment caused
higher body weight and T2DM risk. These findings led to
the inference that the effect of statin treatment on T2DM risk
was at least partly an on-target effect of the drugs, and was
likely mediated via increased adiposity. As the development
of novel lipid-modifying drugs, such as the inhibitors of
PCSK9, progresses, the possibility of on-target adverse effects
on glycaemic control is drawing increasing focus [47].

Exogenous and Behavioural Risk Factors for T2DM

The MR studies discussed above have all concerned endoge-
nous risk factors – features of human physiology that may
influence T2DM aetiology. It is apparent from observational
studies that certain behaviours, and particularly dietary pref-
erences, associate with T2D risk. As expected, these expo-
sures are more difficult to address using MR analysis, howev-
er a small number of studies have attempted to do so.
Common genetic variants have been shown to influence con-
sumption of certain foodstuffs, most notable among these be-
ing the association between variants in ADH1B (encoding
alcohol dehydrogenase 1B) and alcohol consumption [48].
Variants in the gene encoding lactase (LCT) have also been
associated with differences in consumption of dairy products,
and so were used as instruments for milk consumption in an
MR analysis that sought to determine whether an observed
association between higher dairy consumption and lower
T2DM risk was causal [49]. The LCT SNP associated weakly
with milk consumption, however there was no association of
the variant with T2DM risk. The study was impaired by the
absence of an internal observed association between milk con-
sumption and T2DM risk, and the modest effect of the genetic
instrument, and so should be interpreted cautiously. In a sim-
ilar vein to the milk consumption MR study, the same Danish
group investigated whether coffee drinking played an
aetiological role in T2DM [50]. GWA studies have highlight-
ed variants in CYP1A1, CYP1A2 and AHR associated with
coffee consumption [51] and the MR investigators combined
five such SNPs into an allele score as an instrument for coffee
drinking. Again, despite a strong observed relationship be-
tween higher coffee consumption and lower T2DM risk in a
sample of 83,436 individuals, in the MR analysis there was no
causal association between the amount of coffee consumed
and T2DM risk. The authors conclude that unmeasured con-
founding likely explained the observed association.

T2DM as a Risk Factor for Other Diseases

Hitherto we have discussed MR studies that investigated the
causal role of a range of risk factors in the development of
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T2DM. A small number of studies have examined the inverse
scenario – the role of T2DM as a risk factor in other diseases,
chiefly cardiovascular disease. T2DM is a well-recognised as a
potent risk factor for CVD [52], although RCTs of oral
hypoglycaemic agents have not demonstrated substantial
CVD risk reduction among treated individuals [53]. Two MR
studies have included T2DM as the exposure in the putative
causal relationship with CHD as the outcome. Using publicly
a v a i l a b l e d a t a f r om th e D IAGRAM [29 ] a nd
CARDIOGRAMplusC4D [54] consortia to develop and test a
37 SNP allele score for T2DM risk, a 2014 MR study demon-
strated a strong causal relationship between higher T2DM risk
and higher CHD risk: an increase by 1 in T2DM OR led to an
OR for CHD of 1.11 (95 % CI 1.05 to 1.16; p = 1.7 × 10−4; 63,
746 CHD cases and 130,681 controls) [55]. The second anal-
ysis adopted a similar approach using data from the GWAS
consortia, although the authors used a more permissive strategy
in constructing the allele score for T2DM risk, which included
59 SNPs. With the allele score as the independent variable in a
regression model, the genetically determined increase in CHD
risk resulting from increased T2DM risk was OR 1.63 (95%CI
1.23 to 2.07; p = 0.002). The findings from these MR studies
appear to conflict with those from trials of oral hypoglycaemic
agents in patients with established T2DM. This may reflect the
different consequences of lifelong dysglycaemia on cardiovas-
cular health compared with relatively short-term changes in
plasma glucose achieved during a treatment trial. The genetic
findings also lend weight to the value of preventing T2DM for
reducing risk of CVD later in life.

Future Prospects for MR in Investigating T2DM

T2DM is an inevitably complex phenotype with many factors
contributing to its development. Large numbers of genetic
variants are now known to be involved in T2DM risk, and
the combined complexity of the genetic architecture and the
T2DM phenotype pose important methodological and practi-
cal challenges in conducting MR studies. Randomised trials
have been able to contribute relatively little to our knowledge
of its underlying aetiology but in recent yearsMR studies have
harnessed genetic information to offer new insights. MR stud-
ies have confirmed the causal roles of several important, mod-
ifiable risk factors such as adiposity in T2DM and so reinforce
the utility of preventive interventions for public and individual
health. The causal roles of other proposed risk factors have
been called into question by MR studies, suggesting these
could be downgraded in priority for translation into therapeu-
tic or preventive strategies. GWA studies have identified a
number of novel T2DM-associated loci that may represent
new therapeutic targets and MR studies offer a valuable op-
portunity for early validation and prioritisation of these for
subsequent development. Furthermore, as metabolomics and
proteomic technologies are more widely deployed in popula-
tion studies and their findings explored together with fine-
resolution genetic data, even greater biological insights will
be possible (Fig. 1). MR is a growing paradigm with an in-
creasingly credible and reliable role in advancing our under-
standing of complex disease; T2DM continues to place a sub-
stantial burden on health and insights from MR studies are

Fig. 1 Mendelian randomisation
studies in type 2 diabetes. MR
studies can help to demonstrate
the causal relevance of a
biomarker or risk factor to risk of
developing T2DM. They can also
incorporate proteomic,
metabolomics, and transcriptomic
data, and other bioinformatics
resources in order to investigate
the biological pathways linking
the gene to disease aetiology
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likely to be of increasing importance in our endeavours to
understand, prevent and treat it.
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