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Abstract

Introduction: Recent research has found that World Trade Center (WTC) responders

in theirmid-50s have an elevated prevalence ofmild cognitive impairment (MCI) that is

associated with neural degeneration and subcortical thinning. This article extends our

understanding of the molecular complexity of MCI through gene expression profiling

of blood.

Methods: The transcriptomics of 40 male WTC responders were profiled across two

cohorts (discovery: nine MCI and nine controls; replication: 11 MCI and 11 controls)

using CITE-Seq at single-cell resolution in blood.

Results: Comparing the transcriptomic signatures across seven major cell subpopula-

tions, the largest differences were observed in monocytes in which 226 genes were

differentially expressed. Pathway analysis on the genes unique tomonocytes identified

processes associated with cerebral immune response.

Discussion:Our findings suggestedmonocytes may constitute a key cell type to target

in blood-based biomarker studies for early detection of risk of MCI and development

of new interventions.
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1 INTRODUCTION

The September 11, 2001 World Trade Center (WTC) terrorist attack

was a massive disaster, resulting in long-term trauma to the respon-

ders and survivors.1 Now, nearly two decades after the attacks, WTC

responders are aging, and there has been an increasing awareness that

those who worked at the disaster site have problems consistent with

mild cognitive impairment (MCI) at midlife.2 In older individuals, MCI

is often an early sign of Alzheimer’s disease (AD) or a related demen-

tia (ADRD); however, to date little is known about the etiology of MCI

in WTC responders. Consistent with AD, the central deficit in MCI
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among WTC responders was found to be memory impairment,3 and

neuroimaging studies further found signs of cortical atrophy in respon-

ders with possible dementia consistent with AD.4 Because the poten-

tial for neurodegenerative diseases as indicated by MCI are concern-

ing, and becauseMCI itself is an impairing condition that often is asso-

ciatedwith impairment to the capacity tomanage daily living, there is a

critical need to understand its pathogenesis.

A key benefit of identifying biomarkers of MCI is the potential to

facilitate early interventions.5 Currently, the diagnosis of MCI relies

on a combination of clinical assessments, and physical, cognitive,

neuropsychological, and neuroimaging exams.6 These procedures are
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expensive and time consuming, and do not reliably identify individu-

als for whom symptoms may be atypical. Thus, there is active research

focused on improving the discovery of biomarkers for pre-dementia

screening and diagnosis.7 Growing evidence on the neuroimmune

involvement in dementia has prompted numerous studies to identify

putative biomarkers for ADRD using blood, plasma, or serum.8,9 Blood

is an attractive source for biomarker profiling because it is inexpensive,

minimally invasive, and informative for disease identification.

Gene expression analyses can identify critical downstream biolog-

ical process (BP) associated with genetic and epigenetic variations

and thus can potentially inform efforts to identify biomarkers for

ADRD,10,11 of which MCI is a key component. Collection of peripheral

blood is far more feasible than collection of brain tissue, and impor-

tantly gene expression patterns in blood are consistent with patterns

observed in the brain.12 When considered together, these results sug-

gest that due to strong communicationbetween the central andperiph-

eral immune systems there may be improved chance of seeing molecu-

lar signatures consistentwith immune reactions toAD in theperiphery.

Most gene expression studies to date have been performed in AD on

whole or peripheral blood samples, including in the large multi-center

Alzheimer’sDiseaseNeuroimaging Initiative (ADNI) study.13 However,

blood is a complex tissue that consists of several populations of cells

with distinct gene expression profiles. Alterations in immune regula-

tory networks are expected to have functional consequences only in

some subsets of immune cells. Thus, analyses of whole blood are likely

to weaken the signal. One gene expression study on monocytes using

the Nanostring panel targeting 255 inflammation-related genes found

differential expression (DE) in several cytokines at different stages

of AD.14 However, this study used a targeted panel of genes, and it

remainsunclearwhether other classes of genesor immunecell subpop-

ulations provide distinct gene expression patterns.

High throughput single-cell RNA-Sequation (sncRNA-Seq) has

emerged as the most powerful technique for describing the transcrip-

tomic landscape at single-cell resolution. Although sncRNA-Seq is an

attractive platform to characterize the heterogeneity in cell popula-

tions, it is currently cost-prohibitive for large sample experiments. In

2018, the New York Genome Center pioneered a cell hashing tech-

nique coupled with cellular indexing of transcriptomes and epitopes

by sequencing (CITE-seq), which reduces the experimental costs of

sncRNA-Seq substantially.15,16 CITE-Seq is a method that combines

highly multiplexed protein marker detection with unbiased transcrip-

tome profiling of single cells and has been shown to achieve a more

detailed characterization of cellular phenotypes.15

Our goal in this study was to characterize the landscape of immune

cell subpopulations in peripheral blood mononuclear cells (PBMC)

and identify gene expression biomarkers associated with MCI in a

population of WTC responders. To the best of our knowledge, this is

the first study using the CITE-Seq technology to understand cellular

heterogeneity in PBMC in MCI at midlife in WTC responders to

understand cell-specific gene expression, to identify common and

distinct signatures and pathways associated with MCI within each cell

subpopulation.

RESEARCH INCONTEXT

1. Systematic review: The authors performed a literature

review encompassing published articles and abstracts

investigating the challenges in biomarker studies for early

detection of Alzheimer’s disease and related dementia

(ADRD). Previous studies suggested that blood-based

gene expression profiling is a promising approach for

biomarker discovery in ADRD.

2. Interpretation: Using single-cell transcriptomics in

peripheral blood mononuclear cells, results revealed that

monocytes showed the largest differential gene expres-

sion (DGE) inmild cognitive impairment (MCI), consistent

with the role of monocytes in brain–immune commu-

nication. The authors also found pathways involved in

inflammation and viral infections among MCI DGE in

monocytes.

3. Future directions: Further studies include a follow-up

clinical diagnosis of MCI to determine whether the DGE

inmonocytes can predict disease onset and progression.

2 METHODS

2.1 Participants and clinical assessment

Participants were recruited from the Stony Brook WTC-Health

Program,17 which conducts the only cognitive monitoring study of

WTC responders.2 We included only males because females show

notably different gene expression patterns than males18 and <10% of

responders in the Stony Brook cohort were female. Participants com-

pleted a battery of medical and psychological tests annually as part

of the Centers for Disease Control (CDC)-funded monitoring program

established in 2002. The initial exams included a detailed WTC expo-

sure history questionnaire. The current study was approved by Stony

Brook University Institutional Review Board. Written informed con-

sent was obtained.

MCI was diagnosed following the National Institute on Aging-

Alzheimer’s Association criteria19 as has been previously described in

this population.2 Exclusion criteria for this analysis were cancer of the

brain, neurologic diagnoses including AD and other related dementias

made prior to initial cognitive assessments, WTC-related head injuries

or head injuries endured while in military service, as well as those with

psychotic conditionsor substanceusedisorders. A total of 40WTCpar-

ticipantswere included (20MCI and20controls). All of theparticipants

were non-smokers andWhite. Themean agewas 55.83 (standard devi-

ation [SD]= 6.07; Table 1).

The 40 sets of blood samples were divided into two batches. The

first batch (discovery) consistedof nineMCI andnine controls,whereas

the second batch (replication) consisted of 11MCI and 11 controls.
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TABLE 1 Clinical characteristics of samples in discovery and
replication sets. The P-values for comparing age of mild cognitive
impairment (MCI) to control were computed from t-test

Group (cohort) N Agemean Age SD P

MCI (all) 20 55.15 4.93 .490

Control (all) 20 56.5 7.10

MCI (discovery) 9 53.33 5.29 .866

Control (discovery) 9 53.78 5.72

MCI (replication) 11 56.64 4.30 .438

Control (replication) 11 58.73 7.58

2.2 CITE-Seq profiling

Cryopreserved PBMCs were thawed and washed twice. Cells were

stained with barcoded antibodies as previously described for CITE-

seq15 and Cell Hashing.16 The cDNA, ADT, and HTO libraries were

quantified using Picogreen and Fragment Analyzer then pooled with

appropriate percentages. The final library pools were then sequenced

on the Illumina NovaSeq. Additional details are provided in supporting

information.

2.3 CITE-Seq data preprocessing

Analysis for counting UMIs per cell per gene was done following the

Drop-seq tools protocol, alignment was performed using STAR aligner

v2.5.2a,20 HTO and ADT nUMI per cell barcode per antibody were

quantified using CITE-Seq-Count. Seurat V3.0.121 was used for all

downstream analysis. Cells with >500 genes detected and mitochon-

drial rate <15% were retained, resulting in a total of 61,046 cells. The

HTO and RNA raw counts were normalized. Mixtures of two Gaussian

distributions were fitted to each ADT marker to determine the cut-

off for identifying cells expressing the marker. The cell identity was

determinedusing combinationsofADTmarkers for themajor cell types

BCell, CD4T, CD8T, monocytes, NK, DC, andDNT (Table S1 in support-

ing information). A subset ofmonocyteswas further divided into classi-

cal and non-classicalmonocytes. Among the cells whichwere untagged

by the ADT markers, we adapted the method described in Diaz-Mejia

et al.22 to tag these cells. The UMAPmethod was used to visualize cell

clusters. For each cell type, geneswith>90% zerowere filtered, result-

ing in a total of 13,692 genes analyzed. For each cohort, the cells across

the samples were pooled for subsequent analyses. Two-sample t-test

was used to determine whether the proportions differ between MCI

and healthy exposed controls, and P < .05 was considered statistically

significant. Additional details are provided in supporting information.

2.4 Differential expression analysis

DE analysis was carried out using theWilcoxon rank sum test compar-

ing MCI to control for each cell type within discovery and replication

sets, respectively. Genes with Bonferroni-adjusted P< .05 in discovery

were identified. Among these genes, genes with P < .05 in replication

and consistent effect size directions were considered replicated. DE

genes unique to a specific cell type were defined as those with P > .2

in other cell types in both discovery and replication cohorts, to ensure

that the unique DE genes associated with MCI for a specific cell type

were notmarginally significant in other cell types. ThePearson correla-

tion coefficients were computed on the inverse Gaussian-transformed

P-values to compare the globalDEpatterns associatedwithMCI across

cell types.

Sensitivity analyses were conducted via two additional statistical

models to assess the effect of age and individual of origin for cell. The

consistency across the different statistical methods was compared.

Additional details are provided in supporting information.

2.5 Pathway and gene ontology analyses

Pathway and gene ontology analyses were carried out using the over-

representation via the Bioconductor package clusterProfiler23 on the

DE genes within each cell type using the functions enrichGO and

enrichKEGG. In total, 6402 gene ontologies (GO) including biologi-

cal processes, molecular functions, and cellular components and 316

KEGG pathways (the range of genes per gene set was 15 to 500) were

tested. Statistically significant gene sets corresponded to those with

false discovery rate< 0.05 from over-representation analyses. The sig-

nificantGOtermswere clusteredusingREVIGO24 to reduce functional

redundancies.

2.6 Data availability

The CITE-Seq data will be available at Synapse (https://www.synapse.

org/#!Synapse:syn22855256, https://doi.org/10.7303/syn22855256)

upon publication.

3 RESULTS

3.1 Comparison of discovery and replication
cohorts

MCI and control patients had comparable age within the discovery

and replication cohorts. However, participants in the replication cohort

were on average 4.13 years older than the discovery cohort (P = .029;

Table 1).

3.2 CITE-Seq cell identity

The average number of cells retained after filtering were 1434

(SD = 495) and 1602 (SD = 278) per sample in discovery and replica-

tion set, respectively. Figure 1A,B shows theUMAPplots of the cells by

https://www.synapse.org/#!Synapse:syn22855256
https://www.synapse.org/#!Synapse:syn22855256
https://doi.org/10.7303/syn22855256
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F IGURE 1 UMAP depicting the clusters of cells by cell types, (A) discovery set, (B) replication set

cell type, which indicates that the different cell types were reasonably

well segregated in both cohorts. The proportions of cell types aggre-

gated over all samples are provided in Table S1. The proportions of NK,

DC, total monocytes, and classical monocytes were higher in the repli-

cation cohort, whereas the proportion of CD4T was lower at P < .05.

Figure S1 in supporting information compares the proportions of cell

types by case (MCI)/control status. TheproportionofDNTwas lower in

MCI in the discovery cohort (P= .029); however, it was not statistically

different in the replication cohort. On the other hand, the proportions

of total monocytes and classical monocytes were lower in MCI in the

replication cohort at P= .026 and .032, respectively, but not significant

in the discovery cohort.

3.3 DE analysis associated with MCI

DE analysis identified 34, 234, 126, 81, 14, 32, 444, 416, and 55 genes

to be associated with MCI in the discovery set in Bcell, CD4T, CD8T,

NK, DC, DNT, total monocytes, classical monocytes, and non-classical

monocytes, respectively. Among these, 15/34 (Bcell), 70/234 (CD4T),

27/126 (CD8T), 31/81 (NK), 7/14 (DC), 6/32 (DNT), 226/444 (total

monocytes), 215/415 (classical monocytes), and 10/55 (non-classical

monocytes) were replicated as shown in Table 2. All the replicated DE

genes within DC and DNT were upregulated in MCI, whereas 76%,

67%, 46%, 48%, and 41% of the replicated DE genes were upregulated

in MCI in total monocytes, Bcell, CD4T, CD8T, and NK cells. The com-

plete list of statistically significant DE genes is provided in Table S2 in

supporting information.

Among the list of genes associated with MCI, RP11-742N3.1,

SNHG5,HLA-B, andMT-ATP6were identified inmonocytes,Bcell, CD4T,

CD8T, and NK. SNHG5 was also identified in DNT, whereas MT-ATP6

was identified inDC.On theother hand, all but one (TRIB1) gene among

the 10DE genes in non-classical monocytes were also detected in clas-

sical monocytes.

TABLE 2 Number of genes at Bonferroni-adjusted P< .05 in
discovery cohort, replicated at P< .05 in replication cohort and
proportion of upregulated genes

Significant genes

in discovery

cohort

Replicated

genes

Proportion of

upregulated

genes

Bcell 34 15 0.667

CD4T 234 70 0.457

CD8T 126 27 0.481

NK 81 31 0.419

DC 14 7 1

DNT 32 6 1

Monocytes 444 226 0.761

Classical

monocytes

416 215 0.744

Non-classical

monocytes

55 10 0.7

Among the 226 DE genes associated with MCI in total monocytes,

85 genes were unique to total monocytes, that is, not DE in other cell

types, of which 80 were upregulated (Table S3 in supporting informa-

tion). The top 10 genes wereHLA-DRB6, CCL3,MARCKS,NR4A1,GBP2,

BCL2A1,PLEK, SRGN, ICAM1, andGUSBP3; all were upregulated inMCI.

Results fromsensitivity analyses assessing theeffect of age and indi-

vidual of origin for cell are provided in supporting information, and

show that these factors had negligible effects on the DE analysis in our

study.

3.4 Pathways and GO associated with MCI genes

The number of significant KEGG pathways and GO gene sets involved

in BP, cellular component (CC) and molecular function (MF) associated
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TABLE 3 Number of KEGG and gene ontologies (GO) biological
process (BP), cellular component (CC), andmolecular function (MF)
gene sets at false discovery rate< 0.05 identified from the replicated
differential expression (DE) genes associated withmild cognitive
impairment (MCI) within each cell type

KEGG pathways GO (BP) GO (CC) GO (MF)

Bcell 1 24 13 1

CD4T 1 56 19 1

CD8T 1 34 6 10

NK 22 40 36 10

DC 0 10 1 0

DNT 6 180 0 18

Monocytes 31 438 35 24

with replicated DE genes in MCI for each cell type are provided in

Table 3. The complete lists describing the KEGG and GO terms are

given, respectively, in Tables S4 and S5 in supporting information.

Three KEGG pathways were significantly associated with the 85

genes unique to total monocytes, namely Epstein-Barr virus (EBV)

infection, toll-like receptor (TLR), and NOD-like receptor (NLR) signal-

ing pathways. On the other hand, 97 GO BP and four GO CC were

significantly associated with these 85 genes. Cluster analysis of the

significant GO terms using REVIGO24 to reduce functional redundan-

cies retained 36 GO BP terms summarized in seven clusters as shown

in Figure 2, namely cellular response to biotic stimulus, regulation

of protein secretion, podosome assembly, viral transcription, cytokine

metabolism, antigen processing, and presentation of peptide antigen

viaMHC class I and ovarian follicle development.

4 DISCUSSION

There is a need to develop better blood-based indicators of cellular

functioning in ADRD and also to improve our understanding of the eti-

ology of subtypes of ADRD including WTC-related cognitive impair-

ment. The present study helped to fill these gaps by profiling transcrip-

tomics in 40 WTC responders with MCI using the CITE-Seq platform

in PBMCs. Using this protocol, we identified DE patterns associated

with MCI in seven immune cells subsets, namely, Bcell, CD4T, CD8T,

NK, DC, DNT, and total monocytes. Four genes, namelyRP11-742N3.1,

SNHG5, HLA-B, and MT-ATP6 were common across monocytes; Bcell,

CD4T, CD8T, and NK, and all were upregulated in MCI in this study.

These results suggest that biomarkers may be developed using the

CITE-Seqplatform, and also suggest that changes in themonocyte pop-

ulation warrant more research in this population to determine which

indicators ofmonocytic dysregulation identified here are prognostic of

increased risk of incident dementia inWTC responders and in the gen-

eral population.

Genes differentially expressed in these analyses may play a

role in a number of ADRD subtypes. For example, MT-ATP6 is a
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mitochondrial gene whose mutations have been previously associated

with ataxia, cognitive dysfunction, neuropathy, and seizures,25,26

whereas overexpression of this gene has been observed in blood

of early AD and MCI.27 SNHG5 is a long non-coding small nucleolar

RNA highly expressed in cancer and promotes cell proliferation and

apoptosis.28 Although the link between SNHG5 and AD has yet to be

established, this genewas previously found to be implicated inmultiple

sclerosis.29 On the other hand, HLA-B is a histocompatibility complex,

class I B gene and plays an important role in the immune system

by differentiating the host’s proteins from foreign viral or bacterial

proteins.30 Genetic variants inHLA-Bwere also found to be associated

with AD andwere hypothesized to play a protective role by eliminating

pathogens that contribute to dementia.31

The DE analysis showed that the largest difference occurred in the

monocyte cell subsets comparing MCI to control. DE genes in total

monocytes were mainly contributed by the dominant classical mono-

cytes subset. A total of 226 genes were differentially expressed in

monocytes. These included several cytokines, chemokines, and inflam-

matory response genes such as IL1B, IL8, CCL3, CCL5, CEBPB, NR4A1,

and CD40. All, except CCL5 were upregulated in MCI. Several of these

genes have been found to be involved in the inflammatory responses in

AD.32,33 For example, upregulation of IL1B and IL8was associatedwith

amyloid plaque progression34 and was involved in amyloid beta (Aβ)-
mediated inflammatory processes.35 The top five genes unique to total

monocyteswereHLA-DRB6,CCL3,MARCKS,NR4A1, andGBP2. Genetic

variants of HLA-DRB6, a human leukocyte antigen, have been found to

be a risk factor for AD.36 The cytokine CCL3 was previously found to

be expressed by neurons and microglia in AD post mortem brains, and

upregulated in both amyloidosis and tauopathy deposits in experimen-

tal models (reviewed in Marciniak et al.37). MARCKS is involved in cell

morphology, motility, and neural development, and may be implicated

in Aβ generation.38 Specifically,MARCKS is associated with AD pathol-

ogy via the phosphorylation process, and is a marker of protein kinase

C, which was previously found to be activated in microglia and dys-

trophic neurites by a Aβ in AD brains.39 NR4A1, a nerve growth fac-

tor IB gene, plays a key role in mediating inflammatory responses in

macrophages and is involved in Aβ precursor protein metabolism and

tau phosphorylation.40 GBP2 is a gene encoding interferon-induced

guanylate-binding protein 2. Interferons are cytokines that have antivi-

ral effects. Risk variants of GBP2 were previously found to be poten-

tially associated with AD.41 Two other GBP genes, namely GBP1 and

GBP5, were also unique tomonocytes in this study.

EBV infection was one of the three KEGG pathways associated

with the genes unique to total monocytes. The other two were TLR

and NLR signaling pathways. Elevated levels of EBV-specific antibod-

ies have been shown to be associated with an increased relative risk

for developing AD.42 On the other hand, the formation of Aβ deposits
in the brain, a key characteristics of AD, is linked to a microglial-

mediated inflammatory response. TLRs are involved in this inflamma-

tory response and contribute to AD pathogenesis.43 Similarly, NLRs

are involved in central nervous system inflammation, and are associ-

ated with the pathophysiology of AD. Both TLRs and NLRs are impor-

tant receptors that mediate immune recognition. On the other hand,

the GO terms clusters associated with the genes unique to monocytes

include podosome assembly, viral transcription, cytokine metabolism,

and antigen processing/presentation of peptide antigen via MHC class

I. Podosomes consist of a core rich in actin surrounded by adhesion and

scaffolding proteins and have been found to be implicated in microglia

motility and migration.44 On the other hand, viral transcription was

consistent with the KEGG pathway analysis result, as well as evidence

that pathogenic viruses may contribute to the onset and progression

of AD.45 Cytokine metabolism and antigen processing/presentation of

peptide antigen are involved in immune and inflammatory responses,

all of which are important in the pathogenesis of AD.46

Our findingswere in linewith existing evidence thatmonocytes play

an important role in AD.47 Monocytes are thought to play a pivotal role

in explaining the bidirectional brain–immune relationship and signal-

ing triggered by psychological stress.48 Emerging evidence also impli-

cates a novel neuroimmune circuit involving microglia activation and

sympathetic outflow to the peripheral immune system that reinforces

stress-related behaviors by facilitating the recruitment of inflamma-

tory monocytes to the brain.49 Additionally, microglial depletion can

trigger peripheral macrophage engraftment into the CNS, and these

cells retain unique functional identity.50 This suggests that monocytes

could influence disease progression in theCNS, and thus future studies

focusing on monocytes might inform potential treatment strategies to

slow disease progression.

4.1 Strengths and limitations

The current study had several strengths, including the first to pro-

file transcriptomics at single cell resolution in blood of MCI using

CITE-Seq and replication of results in an independent subsample.

Nonetheless, our findings must be considered in the context of several

limitations. First, our study is cross-sectional, which can establish con-

current associations between gene expression andMCI, but the direc-

tion of the associations cannot be determined, such as whether the

identified signatures can predict onset of AD. Longitudinal studies are

needed to determine the direction of the effects we observed, as well

as follow-up clinical diagnosis of AD to determine the predictive power

of MCI-transcriptomics in disease onset and progression. Second, our

current sample was all male, thus it is unclear to what extent results

generalize to females. Third, some cell subsets exist in very small frac-

tions, which may not be captured by our current CITE-Seq resolution.

Finally, another shortcoming is the absence of characterization of the

neuropathology ofWTC-related neurocognitive disorders.

4.2 Implications

In conclusion, the current study identified common and distinct tran-

scriptomic signatures associated with MCI in seven immune cell sub-

sets at single-cell resolution, indicating that the cell subpopulations

may provide a valuable and to some degree independent source of

information to identify the biomarker signature for early detection of
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AD compared to whole blood. In particular, monocytes showed the

most differential gene expression in MCI, in line with evidence that

monocytes play a pivotal role in mediating the crosstalk between cen-

tral and peripheral systems via transduction through the blood-brain

barrier. Together with the findings from pathways analysis, the tran-

scriptomic profiles point to inflammation and viral infections. These

results add to growing evidence suggesting that intervention strate-

gies that target inflammatory responses and/or infectious agents early

in the disease may help to prevent or slow the progression of WTC-

related neurocognitive disorders.
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