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Abstract: Globally, lung cancer is the most prevalent cancer type. However, screening and early
detection is challenging. Previous studies have identified metabolites as promising lung cancer
biomarkers. This systematic literature review and meta-analysis aimed to identify metabolites
associated with lung cancer risk in observational studies. The literature search was performed in
PubMed and EMBASE databases, up to 31 December 2019, for observational studies on the association
between metabolites and lung cancer risk. Heterogeneity was assessed using the I2 statistic and
Cochran’s Q test. Meta-analyses were performed using either a fixed-effects or random-effects
model, depending on study heterogeneity. Fifty-three studies with 297 metabolites were included.
Most identified metabolites (252 metabolites) were reported in individual studies. Meta-analyses
were conducted on 45 metabolites. Five metabolites (cotinine, creatinine riboside, N-acetylneuraminic
acid, proline and r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene) and five metabolite
groups (total 3-hydroxycotinine, total cotinine, total nicotine, total 4-(methylnitrosamino)-1-
(3-pyridyl)-1-butanol (sum of concentrations of the metabolite and its glucuronides), and total nicotine
equivalent (sum of total 3-hydroxycotinine, total cotinine and total nicotine)) were associated with
higher lung cancer risk, while three others (folate, methionine and tryptophan) were associated with
lower lung cancer risk. Significant heterogeneity was detected across most studies. These significant
metabolites should be further evaluated as potential biomarkers for lung cancer.
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1. Introduction

Lung cancer is the most common form of malignancy worldwide, particularly in men, with high
mortality and morbidity rates [1]. Based on histology, lung cancers are broadly classified into two major
subtypes: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) [2]. The latest report
by the World Health Organization identified lung cancer as the most frequent type of cancer in terms of
both incidence and mortality, with 2.1 million new cases and 1.8 million deaths occurring worldwide
in 2018 [1]. Lung cancer trends are strongly associated with tobacco consumption patterns [3–5].
Currently, lung cancer incidence and mortality rates are declining in the more developed countries [3,4],
which may partially be attributed to the lower prevalence of tobacco smoking [6]. However, lung
cancer trends are increasing in Asia and Africa, which is associated with increasing prevalence of
tobacco smoking [3,7].
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Although lung cancer is a deadly disease, it can be treated if detected early. The five-year survival
rates for localized lung cancer was 56%, as compared with 5% for metastasized lung cancer [8].
However, despite efforts in lung cancer research, early detection and diagnosis remain as major
challenges [9]. A considerable proportion of patients present with late-stage lung cancer at diagnosis
(46.8–61.2% for NSCLC and 61.3–82% for SCLC) [10]. Considering the high mortality rate of late-stage
lung cancer and the difficulty of early diagnosis, identifying potential biomarkers for the detection of
early-stage lung cancer is paramount.

In recent years, the use of metabolomics, which is the study of metabolites in biological
specimens [11], in lung cancer research has been a subject of great interest. Compared to genomics,
transcriptomics and proteomics, which focus on the upstream processes of metabolism, metabolomics
directly measures the metabolic profile of an organism, thereby providing a more precise method to
detect changes in metabolism [12]. Since malignant cells, including lung cancer cells, have substantially
altered genome and metabolism [13–16], the identification of metabolic changes is a potentially viable
strategy for elucidating lung cancer etiology and identifying potential biomarkers.

Numerous studies have explored the association between metabolite levels and lung cancer
risk [17–21]. However, most studies have been small-scale, with varying direction and strengths of
association across studies. Furthermore, the type of biological samples used have been inconsistent
across studies. While earlier reviews on this topic have identified three major classes of metabolites
(namely amino acids, fatty acids/lipids and metabolites involved in cellular energy production) to be
associated with lung cancer [22,23], to date, the association between levels of each metabolite and
lung cancer risk has not been quantitatively evaluated. It is worthwhile to examine both alterations in
levels of cellular metabolites as well as smoking-related metabolites. Changes in cellular metabolite
levels might be related to intrinsic body alterations, while changes in smoking-related metabolites
might be a consequence of patient smoking and other environmental exposures. Therefore, a need to
systematically review and quantitatively synthesize the results from all pertinent studies is warranted,
in order to identify potential biomarkers for validation studies in the future.

In this systematic literature review and meta-analysis, we aimed to provide a review of the current
understanding of the association between metabolites and lung cancer risk based on available evidence
from published observational studies.

2. Methods

2.1. Literature Search Strategy

This systematic literature review was performed based on the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guidelines [24] (List S2). PubMed and EMBASE
databases were searched from inception to 31 December 2019. The search terms used included
“metabolites”, “metabolomics”, “lung cancer” and its variants (Table S1). Titles and abstracts of
searched articles were screened by two reviewers before retrieving full texts of potentially relevant
articles for further evaluation. One reviewer then independently evaluated the full text before making
the decision to include the study. The reference lists of included articles were further hand-searched to
identify additional relevant articles.

2.2. Study Selection Criteria

Studies were included if the following inclusion criteria were met: (1) were observational studies;
(2) reported at least one metabolite; and, reported either the (3a) estimated hazard ratio (HR)/odds
ratio (OR)/risk ratio (RR) for the association between levels of metabolite and any type of lung cancer;
or, (3b) actual metabolite concentrations for lung cancer patients and controls. If more than one report
were published using data from the same study, we included either the report with the most detailed
information, or the most recent report, in the case where the reports provided a similar level of details.
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Studies were excluded if they met any of the following exclusion criteria: (1) were non-clinical
studies or randomized controlled trials, case reports, case series, reviews or conference abstracts;
(2) reported on metastasized lung cancer or recurrent cancer only; (3) included cancer patients who
were already on treatment prior to recruitment; (4) included controls with another disease state for
non-self-controlled studies; (5) did not provide sufficient data for analysis; or, (6) were not published
in English or Chinese.

2.3. Data Extraction

For studies that met the eligibility criteria, one reviewer performed data extraction using a
standardized form. Data extracted from each study were study design, characteristics of study
participants, type of metabolites, type and stage of lung cancer (if reported), type of biological samples
used and the number of participants for each metabolite and outcome. For studies that reported the
association between levels of metabolite and lung cancer (hereafter termed as categorical studies),
the HR/OR/RR and 95% confidence interval (CI) between the highest and lowest category from the
models that adjusted for the most covariates were extracted. For studies that reported the concentration
of metabolites in lung cancer patients and controls (hereafter termed as concentration studies), the mean
and standard deviation (SD) of metabolite concentration were extracted.

For studies that reported the relevant data in only graphical form [25,26], the data were estimated
based on the graphical data presented.

One study [27] presented data that were partially reported in a previous study [28]. For this
study [27], only the data that were not previously reported were extracted for further analysis.

One study included recurrent cancer cases in their pool of participants [29]. Since the study
reported sufficient data to exclude recurrent cases, the mean and SD were recalculated with the
recurrent cases excluded.

For one study that reported standard error (SE) instead of SD [30], SD was calculated as:

SD = SE ×
√

n, (1)

where n is the number of study participants.
One study reported the concentration of metabolites in µg/L [31]. The data were transformed into

µmol/L using the following formulae:

Mean =
Meanµg

Mr
, (2)

SD =
SDµg

Mr
, (3)

where Meanµg, SDµg is the mean and SD (reported in µg/L), and Mr is the molecular weight of the
metabolite. The molecular weights of the metabolites were retrieved from the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database [32].

For studies that reported data for every participant individually [33,34], the mean and SD were
calculated as:

Mean =

∑
ci

n
, (4)

SD =

√∑
(ci −Mean)2

n− 1
, (5)

where ci is the concentration of metabolite for each participant and n is the number of study participants.
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For studies that reported their data as either median, first and third quartiles [25,35] or median and
range [36] in lieu of mean and SD, we estimated the mean and SD using the following formulae [37]:

Mean =
q1 + q2 + q3

3
, (6)

SD =
q3 − q1

2×Zinv
(

0.75n−0.125
n+0.25

) , (7)

Mean =
m + 2q2 + M

4
, (8)

SD =
M−m

2×Zinv
(

n−0.375
n+0.25

) , (9)

where q1, q2, q3 are the first, second and third quartiles, m, M are the minimum and maximum, n is the
number of study participants and Zinv is the inverse function of the standard normal distribution.

2.4. Assessment of Methodological Quality

The nine-point Newcastle–Ottawa Scale (NOS) was used to evaluate the methodological quality
of observational studies in terms of three broad categories: selection of study groups; comparability
of study groups; and the determination of either the exposure (for case-control studies) or outcome
(for cohort studies) of interest [38]. Scoring was performed independently by two reviewers (K.B.L and
L.A.) and discrepancies in quality scores were resolved by discussion and re-examination of the full-text
articles. Any outstanding discrepancies were resolved by discussion with another investigator (W.J.S.).

For self-controlled case-control studies (4 studies) [33,39–41], we used a modified version of the
NOS by excluding the question on the definition of controls, as the criterion was not relevant to the
studies. The overall quality scores for these studies were then scaled to a maximum score of nine
points, in order to facilitate comparison across all studies.

For articles that reported data from more than one cohort (2 studies) [42,43], we evaluated the
quality of each cohort separately and assigned an overall score by taking the mean of the scores from
the cohorts.

The criterion for defining a high-quality study was neither defined by the original authors of NOS,
nor was it validated in the current literature. Nevertheless, we classified studies as low, moderate or
high quality based on the scores of 0–3 points, 4–6 points or 7–9 points, respectively [44].

2.5. Statistical Analysis

Data were grouped based on the metabolite and the type of biological sample used in the
quantification of the metabolite. Meta-analyses were conducted if the metabolite from a biological
sample type was reported in at least two studies. For categorical studies, the reported strength of
association and the 95% CI were natural log-transformed before statistical analyses were performed [45].
The results were presented as estimated effect size and 95% CI. For concentration studies, the results
were presented as weighted mean difference (WMD) and 95% CI. Stratified analyses were performed
based on smoking status and gender.

Statistical heterogeneity across studies and subgroups was assessed using the I2 statistic and the
p-value from the Cochran’s Q test. The random-effects model [46] was used to account for significant
heterogeneity across studies if I2 was > 40% and p-value was < 0.1, while the fixed-effects model was
used to obtain more precise estimates when either condition was not met [45]. The inverse variance
approach was used for weighting of the individual studies. All statistical analyses were performed
using Stata [47], with a p-value < 0.05 considered as statistically significant.



Metabolites 2020, 10, 362 5 of 30

3. Results

3.1. Eligible Studies

The literature search process is shown in Figure 1. Of the 6140 unique articles that were identified
based on the literature search strategy, 213 articles were included for full-text review. A total of
53 studies were included in the systematic literature review, of which, 27 studies were categorical
studies [42,43,48–72], 24 studies were concentration studies [25–31,33–36,39–41,73–82], and two studies
reported both the metabolite concentration and its association with lung cancer risk [83,84]. Most studies
(84 studies) with full-texts retrieved for review were subsequently excluded because they did not report
sufficient data for further analysis, such as reporting the fold-change in metabolite concentrations
between lung cancer patients and controls, instead of actual concentrations of metabolites.
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Two studies [85,86] were excluded from the review as more recent studies on the same group
of participants were published [28,58,67]. One study [87] was excluded from the review as the more
complete set of data for the same group of participants was published in another study [59].

3.2. Study Characteristics

Included studies were published between 1982 and 2019 (Table 1). Thirty-eight studies enrolled
participants from both men and women [25–29,33–36,42,43,48,49,53–56,60–62,64,65,67–71,73,74,76–84],
three studies included only female participants [50,51,72], and ten studies included only male
participants [30,39,41,52,57–59,63,66,75]. Two studies did not report the gender of their participants [31,40].

The majority of the studies included participants with any smoking status (33 studies) [25,27–29,34–
36,42,43,48–56,60–62,64,65,68–71,75,78–80,82,84]. Eight studies included active smokers exclusively [41,
57–59,66,67,76,83] and three studies only included participants who had never been smokers [63,72,77].
Nine studies did not report the smoking status of their participants [26,30,31,33,39,40,73,74,81].

Most of the studies were conducted in Asia (22 studies) [26–29,31,36,41,52,58–60,63,64,66,67,72,
75–78,81,82], followed by Europe (18 studies) [30,35,42,43,48–51,53–57,61,71,79,80,84] and the USA
(7 studies) [34,39,40,62,65,69,83]. Two studies involved patient cohorts from the USA, Europe, Asia
and Australia [68,70]. Four studies did not report the location of their study [25,33,73,74].

Serum samples were the most common biological sample collected in the studies (21 studies) [26,27,
35,36,42,43,48,53,55–57,64,68–70,74,79–81,83,84], followed by urine (18 studies) [26,29,50–52,54,58–60,
62,63,65–67,71,72,75,77], plasma (11 studies) [25,28,30,31,49,56,68,70,73,78,82], blood (2 studies) [61,76],
tumor tissue (3 studies) [33,39,41], and exhaled breath (2 studies) [34,40]. Four studies collected more
than one type of biological sample in their study: three studies collected both serum and plasma
samples [56,68,70] and one study collected both serum and urine samples [26].
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Table 1. Characteristics of included studies (n = 53).

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Cohort studies reporting the association between exposure to metabolite and lung cancer (n = 4)

Kilkkinen et al.,
2008 [48]

6937
(122 cases) NR Serum Nicotine Metabolite RIA

kit N.A. 50.9 ± 14.9 b 3207M, 3730F Finland
(MFhes) 2052A, 4885N

Afzal et al., 2013 [49] 9791
(507 cases) NR Plasma DiaSorin Liaison

25(OH)D TOTAL assay N.A. 58 (48–65) c 4359M, 5432F
Copenhagen,

Denmark
(CCHS)

7474E, 2317N

Ordóñez-Mena et al.,
2016 [42]

8928
(134 cases) NR Serum Immunoassay N.A. 63 (57–67) c 3545M, 5383F Germany

(ESTHER cohort) NR

4307
(58 cases) NR Serum Immunoassay N.A. 62 (56–68) c 1553M, 2754F Norway

(TROMSØ cohort) N/F

Gao et al., 2019a [43] 4345
(39 cases) NR Serum d-ROM assay N.A. 69 (64–74) c 1966M, 2379F Germany

(ESTHER cohort)
335A, 1552F,
2374N, 84U

221/1000
(case-cohort study) NR Serum d-ROM assay N.A. Ca: 51 (44–56) c

Cohort: 42 (37–50) c

Ca: 150M, 71F
Cohort: 548M,

452F

Norway
(TROMSØ cohort)

Ca: 181A, 28F,
11N, 1U

Cohort: 443A,
245F, 310N, 2U

Case-control studies reporting the association between exposure to metabolite and lung cancer (n = 23)

de Waard et al.,
1995 [50] 92/305 NR 12H Urine

Capillary gas
chromatography-mass

spectrometry
N.A. 40–64 d F

Utrecht,
Netherlands

(DOM Project)

Ca: 69A, 23P
Co: 257A, 191P

Ellard et al., 1995 [51] 69/255 NR 12H Urine

Automated colorimetric
method – automated

versions of the manual
direct barbituric acid and

alkaline picrate

N.A. 40–64 d F
Utrecht,

Netherlands
(DOM Project)

Ca: 48A, 21N
Co: 58A, 197P

London et al.,
2000 [52] 232/710 NR Urine HPLC N.A. 58.8 ± 4.8 b M Shanghai, China

(SCS)

Ca: 189A, 19F,
24N

Co: 337A, 58F,
315N

Boffetta et al.,
2006 [53] 1741/1741 NR Serum Qualitative immunoassay N.A.

Adults (Actual age
range reported as
categorical data)

Ca: 1322M,
419F

Co: 1322M,
419F

Norway

Ca: 1393A, 96E,
128F, 53N, 71U
Co: 727A, 67E,

411F, 445N, 91U

Loft et al., 2007 [54] 251/261

AC (81)
SCLC (55)
SCC (51)

Others (34)

Urine HPLC N.A. 50–64 d

Ca: 138M,
113F

Co: 146M,
115F

Denmark
(DCH Study)

In total,
399A, 94F, 15N
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Table 1. Cont.

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Johansson et al.,
2010 [55] 899/1815

SCLC (110)
AC (272)
LCC (50)
SCC (200)

Others (267)

Serum LC-MS/MS, GC-MS/MS
and microbiological assay N.A. 59 (43–73) e

Ca: 559M,
340F

Co: 1126M,
689F

Europe
(EPIC Study)

Ca: 529A, 260F,
96N, 14U

Co: 413A, 663F,
707N, 32U

Timofeeva et al.,
2011 [56] 894/1805

SCLC (108)
AC (270)
LCC (50)
SCC (199)

Others/Unknown
(267)

Plasma/Serum LC-MS/MS N.A.
Adults (Actual age
range reported as
categorical data)

Ca: 556M,
338F

Co: 1117M,
688F

Europe
(EPIC Study)

Ca: 526A, 258F,
96N

Co: 409A, 659F,
705N

Weinstein et al.,
2011 [57] 500/500

SCLC (100)
SCC (179)
AC (73)

Others (148)

Fasting serum DiaSorin Liaison
25(OH)D TOTAL assay N.A. 59 (55–62) c M Finland

(ATBC) A

Yuan et al., 2011 [58] 476/476

AC (105)
SCC (153)
SCLC (22)
Others (35)

Unknown (161)

Urine LC-MS/MS, GC-MS/MS N.A. Ca: 57.4 ± 5.0 b

Co: 57.2 ± 4.9 b M Shanghai, China
(SCS) A

Yuan et al., 2012 [59] 343/392

AC (70)
SCC (104)
SCLC (22)
Others (28)

Unknown (119)

Urine LC-MS/MS, GC-MS/MS N.A. NR M Shanghai, China
(SCS) A

Eom et al., 2013 [60] 35/140 NR Urine HPLC N.A. Ca: 68.87 ± 6.86 b

Co: 68.86 ± 6.85 b
Ca: 27M, 8F

Co: 108M, 32F
South Korea

(KMCC)
Ca: 28A/F, 7N

Co: 91A/F, 48N

Chuang et al.,
2014 [61] 893/1748

SCLC (140)
AC (284)
LCC (63)
SCC(198)

Others (208)

Blood LC-MS/MS, GC-MS/MS N.A. 59 (42–72) e

Ca: 556M,
337F

Co: 1086M,
662F

Europe
(EPIC Study)

Ca: 526A, 257F,
96N, 14U

Co: 396A, 648F,
674N, 30U

Mathe et al., 2014 [62] 469/536 NSCLC Urine UPLC-ESI-QTOFMS Level 1 Ca: 66.2 f

Co: 66.6 f

Ca: 237M,
232F

Co: 276M,
260F

Greater Baltimore,
Maryland, USA

Ca: 222A, 214F,
33N

Co: 71A, 249F,
216N
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Table 1. Cont.

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Yuan et al., 2014 [63] 82/83

SCC (16)
AC (34)

SCLC (2)
Others (9)

Unknown (21)

Urine LC-MS/MS N.A. Ca: 58.1 ± 5.2 b

Co: 58.0 ± 5.4 b M Shanghai, China
(SCS) N

Wang et al., 2015 [64] 100/100
SCC (35)
AC (51)

Others (14)
Serum LC-MS/MS and

HPLC N.A. Ca: 57.1 ± 9.2 b

Co: 56.6 ± 9.2 b
Ca: 52M, 48F
Co: 51M, 49F

Changchun, Jilin,
China

Ca: 48A, 20F, 32N
Co: 9A, 35F, 56N

Haznadar et al.,
2016 [65] 178/351

AC (59)
SCC (36)

NSCLC (19)
SCLC (29)

LCC (9)
Others (13)

Unknown (13)

Urine UPLC-MS Level 1 Ca: 57.7 ± 8.6 b

Co: 57.3 ± 8.5 b

Ca: 101M, 77F
Co: 194M,

152F

South-eastern
states, USA

(SCCS)

Ca: 127A, 39F, 7N
Co: 140A, 99F,

97N

Yuan et al., 2016 [66] 325/356

SCC (102)
AC (80)

SCLC (15)
Others (17)

Unknown (111)

Urine LC-MS/MS, GC-MS/MS N.A. Ca: 56.7 ± 4.9 b

Co: 56.7 ± 4.9 b M Shanghai, China
(SCS) A

Yuan et al., 2017 [67] 197/197

AC (51)
SCC (48)

SCLC (25)
Others (49)

Unknown (24)

Urine LC-MS/MS, GC-MS/MS N.A. 60.8 ± 6.2 b Ca: 165M, 32F
Co: 164M, 33F

Singapore
(SCHS) A

Fanidi et al., 2018 [68] 5364/5364

LCC (174)
SCLC (492)
SCC (836)
AC (2056)

Others/Unknown
(1806)

Plasma/Serum LC-MS/MS, GC-MS/MS
and microbiological assay N.A. 60 (44–72) e 2908M, 2456F

Europe, Australia,
China, Singapore,

USA
(LC3)

2519A, 1518F,
1327N

Haznadar et al.,
2018 [69] 406/437

AC (202)
SCC (108)

NSCLC (96)
Serum UPLC-MS N.A. Ca: 66.3 ± 10.0 b

Co: 67.0 ± 8.9 b

Ca: 214M,
192F

Co: 234M,
203F

Baltimore,
Maryland, USA

Ca: 191A, 186F,
29N

Co: 52A, 209F,
176N
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Table 1. Cont.

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Larose et al., 2018 [70] 5364/5364

LCC (174)
SCLC (492)
SCC (836)
AC (2056)

Others/Unknown
(1806)

Plasma/Serum LC-MS/MS N.A. 60 (44–72) e 2908M, 2456F

Europe, Australia,
China, Singapore,

USA
(LC3)

2519A, 1518F,
1327N

Gao et al., 2019b [71] 245/735 NR Urine Nitrite/nitrate
colorimetric assay N.A. 62 (59–68) c

Ca: 170M, 75F
Co: 509M,

226F

Germany
(ESTHER cohort)

Ca: 124A, 87F,
29N

Co: 365A, 260F,
93N

Seow et al., 2019 [72] 275/289

AC (135)
SCC (9)

Others (19)
Unknown (112)

Urine UPLC-MS and 600-MHz
hydrogen 1 NMR Level 2 Ca: 61 (52–65) c

Co: 62 (53–66) c F Shanghai, China
(SWHS) N

Studies reporting the concentration of metabolites in lung cancer patients and controls (n = 24)

Kukreja et al.,
1982 [39] 14 (Self-controlled)

SCC (8)
AC (4)

LCC (2)
Tumor tissue

Silicic acid
chromatography and
radioimmunoassay

N.A. NR M Chicago, Illinois,
USA NR

Hendrick et al.,
1988 [73] 29/18

AC/LCC (11)
SCC (9)

SCLC (8)
Plasma Radioimmunoassay N.A. Ca: 65.4 ± 7.0 b

Co: 65.5 ± 10.2 b
Ca: 20M, 9F
Co: 11M, 7F NR NR

Preti et al., 1988 [34] 10/8
SCC (6)
LCC (2) Exhaled

breath GC-MS Level 1 Ca: 54–77 d

Co: 57–66 d
Ca: 7M, 3F
Co: 4M, 4F

Pennsylvania,
USA

Ca: 4A, 6F
Co: 4A, 1F, 3N

Proenza et al.,
2003 [30] 14/14 NR Fasting

plasma HPLC N.A. Ca: 64.4 ± 6.0 b

Co:59.8 ± 7.9 b M Spain NR

Masri et al., 2005 [40] 11/35 NR Exhaled
breath

Chemiluminescent
analyzer, amperometric

sensor
N.A. NR NR Cleaveland, Ohio,

USA NR

Gencer et al.,
2006 [74] 38/26

EC (14)
SCLC (12)
AC (12)

Fasting serum Technicon RA-XT®

autoanalyzer
N.A.

AC: 54 ± 12 b

EC: 59.6 ± 14 b

SCLC: 52 ± 9 b

Co: 53.2 ± 12 b

AC: 9M, 3F
EC: 11M, 3F
SCLC: 10M,

2F
Co: 21M, 5F

NR NR
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Table 1. Cont.

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Zhang et al., 2006 [75] 10/12 NR 24H Urine HPLC and GC-MS/MS N.A. 30–70 d M Beijing, China Ca: 2A, 8F
Co: 8A, 4N

Esme et al., 2008 [76] 49/20
AC (24)
SCC (21)
LCC (4)

Blood Spectrophotometric
method N.A. Ca: 57.2 ± 10.1 b

Co: 52.1 ± 12.1 b
Ca: 40M, 9F
Co: 9M, 11F Turkey A

Hu et al., 2009 [26] 30/63 NSCLC
Non-fasting

serum &
Urine

HPLC, amino acid
analyzer N.A. Ca: 59.7 ± 8.0 b

Co: 67.0 ± 5.4 b
Ca: 7M, 3F
Co: 4M, 4F Anhui, China NR

Miyagi et al.,
2011 [28] 200/996

AC (133)
SCC (35)
SCLC (8)
Others (9)

Unknown (15)

Fasting
plasma

HPLC–electrospray
ionization mass

spectrometry
N.A. Ca: 65.0 ± 10.0 b

Co: 63.2 ± 9.2 b

Ca: 125M, 75F
Co: 635M,

371F
Japan

Ca: 84A, 54F, 60N,
2U

Co: 137A, 245F,
536N, 78U

Kami et al., 2013 [33] 9 (Self-controlled)

AC (3)
SCC (4)
LCC (1)
PC (1)

Tumor tissue
Capillary electrophoresis

time-of-flight mass
spectrometry

Level 2 56–82 d 8M, 1F NR NR

Okur et al., 2013 [41] 15 (Self-controlled) AC (3)
EC (12) Tumor tissue Chemiluminescence

assay N.A. 63.6 ± 9.2 b M Istanbul, Turkey A

Shingyogi et al.,
2013 [27] 86/323h

AC (55)
SCC (12)

Other NSCLC (8)
SCLC (11)

Unknown (3)

Fasting serum
HPLC–electrospray

ionization mass
spectrometry

N.A. Ca: 67.8 ± 8.2 b

Co: 61.9 ± 6.0 b
Ca: 68M, 18F

Co: 263M, 60F Japan

Ca: 29A, 36F, 18N,
3U

Co: 62A, 107F,
139N, 15U

Hwang et al.,
2014 [77] 74/85 NSCLC Urine LC-MS N.A. Ca: 64.0 ± 10.3 b

Co: 55.5 ± 7.2 b
Ca: 45M, 29F
Co: 23M, 62F

Goyang, South
Korea N

Kim et al., 2015 [78] 75/80

AC (37)
SCC (30)

Other NSCLC (4)
Unknown (1)

Fasting
plasma

HPLC–electrospray
ionization mass

spectrometry
N.A. Ca: 65.6 ± 9.2 b

Co: 63.2 ± 8.9 b
Ca: 51M, 21F
Co: 44M, 26F South Korea

Ca: 40A, 13F, 19N
Co: 8A, 25F, 34N,

3U

Klupczynska et al.,
2016a [79] 90/62 AC (40)

SCC (50) Fasting serum LC–MS/MS N.A. Ca: 64 ± 6.9 b

Co: 62 ± 8.8 b
Ca: 58M, 32F
Co: 40M, 22F Poznan, Poland Ca: 43A, 46N, 1U

Co: 11A, 49N, 3U

Klupczynska et al.,
2016b [80] 90/63 AC (40)

SCC (50) Fasting serum LC–MS/MS N.A. Ca: 64 ± 6.9 b

Co: 62 ± 8.7 b
Ca: 58M, 32F
Co: 41M, 22F Poznan, Poland Ca: 43A, 46N, 1U

Co: 11A, 49N, 4U

Ni et al., 2016 [81] 40/100 NR Serum LC–MS/MS N.A. Ca: 51–83 d

Co: NR
Ca: 26M, 14F

Co: NR Beijing, China NR
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Table 1. Cont.

Reference, Year
No. of Study
Participants

(Case/Control)

Type of
Lung Cancer

Cases (n)

Type of
Biological

Sample

Method Used for
Metabolite

Identification

Level of
Identification g

Age of Participants
at Recruitment

Gender of
Participants

Location of
Study (Study

Name, If
Applicable)

Smoking Status a

Yue et al., 2018 [31] 20/20 SCLC Fasting
plasma LC–MS/MS

Levels 1, 2 (for
different

metabolites)
NR NR Beijing, China NR

Kawamoto et al.,
2019 [29] 54/124 AC Urine Radioimmunoassay N.A. Ca: 66.6 ± 10.0 b

Co: 44.2 ± 12.9 b
Ca: 23M, 31F
Co: 52M, 72F Tokyo, Japan Ca: 30A/F, 24N

Co: 124N

Klupczynska et al.,
2019 [35] 20/20 AC (9)

SCC (11) Fasting serum

Triple quadrupole
tandem mass

spectrometer coupled
with HPLC

N.A. Ca: 62 ± 5 b

Co: 63 ± 6 b
Ca: 11M, 9F
Co: 8M, 12F Poznan, Poland Ca: 12A, 8F/N/U

Co: 6A, 14F/N/U

Ni et al., 2019 [36] 17/30

AC (4)
SCC (5)

SCLC (5)
Other NSCLC (3)

Fasting serum LC–MS/MS N.A. Ca: 53–77 d

Co: 34–85 d
Ca: 13M, 4F
Co: 23M, 7F Beijing, China

Ca: 4A, 5F, 8N
Co: 7A, 6F, 16N,

1U

Pietzke et al.,
2019 [25] 56/50 AC (31)

SCC (20)
Fasting
plasma GC-MS, LC-MS N.A. Ca: 66 ± 9 b

Co: 48 ± 14 b
Ca: 49M, 7F

Co: NR NR Ca: 28A, 28F/N/U
Co: NR

Zhang et al., 2019 [82] 28/38 NR Fasting
plasma HPLC-MS/MS N.A. Ca: 30–79 d

Co: 20–79 d
Ca: 23M, 5F

Co: 20M, 18F Shenyang, China Ca: 21A, 7N
Co: 15A, 8N, 15U

Studies reporting both the association between exposure to metabolite and lung cancer and the concentration of metabolites in lung cancer patients and controls (n = 2)

Church et al.,
2009 [83] 100/100 NR Non-fasting

serum GC-MS N.A. 55–74 d Ca: 71M, 29F
Co: 64M, 36F

USA
(PLCO) A

Skaaby et al.,
2014 [84]

12204
(126 cases) NR Serum

HPLC, immunoassay,
IDS-SYS 25-Hydroxy
Vitamin D method

N.A. 18–71 d 5866M, 6338F

Denmark
(Monica10,

Inter99,
Health2006)

4554A, 3401F,
4249N

AC Adenocarcinoma, ATBC Alpha-Tocopherol, Beta-Carotene Cancer Prevention, Ca Cases, CCHS Copenhagen City Heart Study, Co Controls, DCH Diet, Cancer and Health,
DOM Diagnostisch Onderzoek (investigation) Mammacarcinoom, EC Epidermoid carcinoma, EPIC European Prospective Investigation into Cancer and Nutrition, ESTHER Epidemiologische
Studie zu Chancen der Verhütung, Früherkennung und optimierten Therapie chronischer Erkrankungen in der älteren Bevölkerung, GC-MS/MS Gas chromatography–tandem mass
spectrometry, KMCC Korean Multi-center Cancer Cohort, LC3 Lung Cancer Cohort Consortium, LCC Large cell carcinoma, LC-MS/MS Liquid chromatography–tandem mass spectrometry,
MFhes Mini-Finland Health Survey, NMR Nuclear magnetic resonance, NR Not reported, NSCLC Non-small cell lung cancer, PC Pleomorphic carcinoma, PLCO Prostate, Lung, Colorectal,
and Ovarian Cancer Screening Trial, PPP Pomeranian Pilot Lung Cancer Screening Programme, SCC Squamous cell carcinoma, SCCS Southern Community Cohort Study, SCHS Singapore
Chinese Health Study, SCLC Small-cell lung cancer, SCS Shanghai Cohort Study, SWHS Shanghai Women’s Health Study, UPLC-MS Ultra-high-performance liquid chromatography–tandem
mass spectrometry, HPLC High-performance liquid chromatography, LC-MS/MS Liquid chromatography-tandem mass spectrometry, GC-MS Gas chromatography-mass spectrometry,
GC-MS/MS Gas chromatography-tandem mass spectrometry, UPLC-ESI-QTOF-MS Ultra-performance liquid chromatography-electrospray-ionization-quadrupole time-of-flight mass
spectrometry, N.A. not applicable. a Abbreviations for smoking status are as follows: A, Active smoker; E, Ever smoker (active or former smoker); F, Former smoker; N, Never smoker;
P, Passive smoker; U, Unknown smoking status. b Data reported as mean ± SD. c Data reported as median and interquartile range. d Data reported as range (minimum-maximum). e Data
reported as median, 5th percentile and 95th percentile. f Data reported as mean. g For untargeted metabolomics data: Level 1 identifies the compound by confirming with an authentic
standard; Level 2 is matching to databases.
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3.3. Quality of Eligible Studies

The quality score of the included studies ranged from 3 to 9 (mean score 7.0 ± 1.6, Table 2). Most of
the studies were of high quality (n = 37, 69.8%), while the remaining studies were mainly of moderate
quality (n = 15, 28.3%), with one being of low quality (n = 1, 1.9%).

Table 2. Methodological quality assessment of included studies (n = 53) using a 9-point
Newcastle–Ottawa Scale.

Reference, Year Selection
(4) a

Comparability
(2) b

Determination of
Exposure/Outcome

(3) c

Overall
Quality Score

Kukreja et al., 1982 [39] 1 2 3 6.8 d

Hendrick et al., 1988 [73] 3 0 2 5
Preti et al., 1988 [34] 3 0 2 5

de Waard et al., 1995 [50] 4 1 2 7
Ellard et al., 1995 [51] 4 2 2 8

London et al., 2000 [52] 4 1 3 8
Proenza et al., 2003 [30] 2 0 2 4

Masri et al., 2005 [40] 3 2 3 9 d

Boffetta et al., 2006 [53] 4 2 3 9
Gencer et al., 2006 [74] 2 0 2 4
Zhang et al., 2006 [75] 1 0 2 3

Loft et al., 2007 [54] 4 2 2 8
Esme et al., 2008 [76] 3 1 2 6

Kilkkinen et al., 2008 [48] 4 2 2 8
Church et al., 2009 [83] 4 2 2 8

Hu et al., 2009 [26] 3 0 2 5
Johansson et al., 2010 [55] 3 2 3 8

Miyagi et al., 2011 [28] 3 2 2 7
Timofeeva et al., 2011 [56] 4 2 2 8
Weinstein et al., 2011 [57] 4 2 2 8

Yuan et al., 2011 [58] 4 2 3 9
Yuan et al., 2012 [59] 4 2 3 9
Afzal et al., 2013 [49] 4 2 3 9
Eom et al., 2013 [60] 4 2 2 8
Kami et al., 2013 [33] 2 2 3 7.9 d

Okur et al., 2013 [41] 3 2 3 9 d

Shingyogi et al., 2013 [27] 3 0 2 5
Chuang et al., 2014 [61] 3 2 2 7
Hwang et al., 2014 [77] 2 1 2 5
Mathe et al., 2014 [62] 3 2 2 7
Skaaby et al., 2014 [84] 3 2 3 8
Yuan et al., 2014 [63] 4 2 3 9
Kim et al., 2015 [78] 3 2 2 7

Wang et al., 2015 [64] 3 2 2 7
Haznadar et al., 2016 [65] 3 2 2 7

Klupczynska et al., 2016a [79] 3 2 2 7
Klupczynska et al., 2016b [80] 3 0 2 5

Ni et al., 2016 [81] 3 2 2 7
Ordóñez-Mena et al.,

2016-ESTHER [42] 4 2 3 9

Ordóñez-Mena et al.,
2016-TROMSØ [42] 4 2 2 8

Yuan et al., 2016 [66] 4 2 3 9
Yuan et al., 2017 [67] 4 2 3 9

Fanidi et al., 2018 [68] 3 2 2 7
Haznadar et al., 2018 [69] 3 2 2 7

Larose et al., 2018 [70] 2 2 2 6
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Table 2. Cont.

Reference, Year Selection
(4) a

Comparability
(2) b

Determination of
Exposure/Outcome

(3) c

Overall
Quality Score

Yue et al., 2018 [31] 3 1 2 6
Gao et al., 2019a–ESTHER [43] 3 2 3 8

Gao et al., 2019a–TROMSØ [43] 3 2 2 7
Gao et al., 2019b [71] 3 2 3 8

Kawamoto et al., 2019 [29] 3 2 2 7
Klupczynska et al., 2019 [35] 2 2 2 6

Ni et al., 2019 [36] 3 2 2 7
Pietzke et al., 2019 [25] 2 0 2 4
Seow et al., 2019 [72] 4 2 2 8

Zhang et al., 2019 [82] 2 0 2 4

ESTHER Epidemiologische Studie zu Chancen der Verhütung, Früherkennung und optimierten Therapie chronischer
Erkrankungen in der älteren Bevölkerung cohort study, TROMSØ Tromsø study. a A maximum of four points may
be awarded to the study based on: (for case-control studies) adequacy of case definition, representativeness of cases,
selection of controls, and definition of controls; or, (for cohort studies) representativeness of exposed cohort, selection
of non-exposed cohort, ascertainment of exposure, and demonstration that outcome of interest was not present at
start of study. b A maximum of two points may be awarded to the study, based on the comparability between cases
and controls (for case-control studies) or comparability between the exposed and non-exposed group (for cohort
studies). One point was awarded if the study adjusted for age, and the other point was awarded if the following
factors were controlled for or stratified during analysis: age, smoking status, gender. c A maximum of three points
may be awarded to the study, based on: (for case-control studies) ascertainment of exposure, same method of
ascertainment for cases and controls, and same non-response rate or, (for cohort studies) assessment of outcome,
duration of follow-up for outcome, and adequacy of follow-up of cohorts. d For self-controlled case-control studies,
a modified version of the NOS was used, with the exclusion of the question on the definition of controls, such that
these studies could have a maximum of 8 points (instead of 9 points). The overall quality score of each of these
studies was scaled to a maximum score of 9 points, in order to facilitate comparison across all studies.

3.4. Association between Metabolites and Lung Cancer Risk

A total of 43 individual metabolites and 10 groups of metabolites were reported across all the identified
categorical studies (Table S2). Of these, 18 meta-analyses were performed on 12 metabolites, which were:
2-hydroxyethyl mercapturic acid (HEMA), 3-hydroxypropyl mercapturic acid (HPMA), 4-hydroxybut-2-yl
mercapturic acid (HBMA), cotinine, creatine riboside, cortisol sulfate, folate, methionine, N-acetylneuraminic
acid (NANA), pyridoxal 5′-phosphate, r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT)
and S-phenyl mercapturic acid (SPMA); and five groups of metabolites, which were:

• Total 3-hydroxycotinine (3-HC) (defined as the sum of concentrations of 3-HC and its glucuronide),
• Total cotinine (defined as the sum of concentrations of cotinine and its glucuronide),
• Total nicotine (defined as the sum of concentrations of nicotine and its glucuronide),
• Total NNAL (defined as the sum of concentrations of 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanol (NNAL) and its glucuronides), and,
• Total nicotine equivalent (TNE) (defined as the sum of the concentration of nicotine, cotinine,

3-HC and their respective glucuronides).

Twelve meta-analyses were performed using the fixed-effects model, while the other six were
performed using the random-effects model. Meta-analyses were not performed on the remaining
metabolites as they were solely reported in individual studies (Table S3).

Of the serum/plasma metabolites that were meta-analyzed, an increased concentration of cotinine
(OR = 14.19, 95% CI = 2.92 to 69.00, Table 3 and Figure S1a) and decreased concentration of folate
(OR = 0.82, 95% CI = 0.72 to 0.94, Table 3 and Figure S1b) were significantly associated with increased
lung cancer risk.
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Table 3. Odds ratio (OR) and 95% confidence interval (CI) of the association of lung cancer in relation to
metabolites that achieved statistical significance. Refer to Figure S1 for the forest plot of each metabolite.

Metabolite. OR 95% CI No. of
Studies I2 (%)

Cochran’s Q
Test’s p-Value Forest Plot

Serum/Plasma

Cotinine † 14.19 2.92–69.00 3 96.8 <0.001 Figure S1a
Folate 0.82 0.72–0.94 2 47.7 0.167 Figure S1b

Urine
Creatine Riboside † 3.30 1.33–8.15 2 84.7 0.011 Figure S1c

NANA 2.01 1.49–2.72 2 0.0 0.458 Figure S1d
PheT 2.49 1.53–4.05 2 0.0 0.673 Figure S1e

Total 3-HC (3-HC + 3-HC-Gluc) 3.71 2.41–5.72 2 0.0 0.499 Figure S1f
Total Cotinine (Cotinine + Cotinine-Gluc) 3.53 2.62–4.77 3 0.0 0.406 Figure S1g
Total Nicotine (Nicotine + Nicotine-Gluc) 2.51 1.71–3.70 2 8.9 0.295 Figure S1h

Total NNAL (NNAL + NNAL-Glucs) 2.17 1.63–2.89 3 28.3 0.248 Figure S1i
Total Nicotine Equivalent (Total nicotine +

Total cotinine + Total 3-HC) 3.75 2.45–5.73 2 16.3 0.274 Figure S1j

† Random-effects models were used for this metabolite.

Among urinary metabolites that were analyzed, increased concentration of creatine riboside
(OR = 3.30, 95% CI = 1.33 to 8.15, Table 3 and Figure S1c), NANA (OR = 2.01, 95% CI = 1.49 to 2.72,
Table 3 and Figure S1d), PheT (OR = 2.49, 95% CI = 1.53 to 4.05, Table 3 and Figure S1e), total 3-HC
(OR = 3.71, 95% CI = 2.41 to 5.72, Table 3 and Figure S1f), total cotinine (OR = 3.53, 95% CI = 2.62 to
4.77, Table 3 and Figure S1g), total nicotine (OR = 2.51, 95% CI = 1.71 to 3.70, Table 3 and Figure S1h),
total NNAL (OR = 2.17, 95% CI = 1.63 to 2.89, Table 3 and Figure S1i) and TNE (OR = 3.75, 95% CI = 2.45
to 5.73, Table 3 and Figure S1j) were significantly associated with increased lung cancer risk.

No statistically significant associations between the exposure of eight metabolites (plasma/serum
pyridoxal 5′-phosphate and methionine, and urinary cortisol sulfate, cotinine, HBMA, HEMA, HPMA
and SPMA) and lung cancer risk were observed (Figure S3).

Results were stratified by gender for cotinine, pyridoxal 5′-phosphate, total 3-HC, total cotinine,
total nicotine, total NNAL and TNE (Figures S1f–j and S4a–c), and by smoking status for cotinine, folate,
methionine and pyridoxal 5′-phosphate (Figure S4d–h). No clear trend between men and women
were observed with respect to the association between metabolites and lung cancer risk. Among the
stratified results, active or former smokers have a stronger association between cotinine, folate and
pyridoxal 5′-phosphate exposure and lung cancer risk, when compared to passive or never smokers.

Cotinine exposure was not significantly associated with lung cancer risk among never smokers
(serum/plasma cotinine: OR = 1.06, 95% CI = 0.52 to 2.14, Figure S4d) and passive smokers
(urinary cotinine: OR = 2.40, 95% CI = 0.70 to 8.30, Figure S4h), although it remained significant
for active smokers (serum/plasma cotinine: OR = 4.15, 95% CI = 2.59 to 6.66, Figure S4d; urinary
cotinine: OR = 9.80, 95% CI = 4.50 to 21.30, Figure S4h). The inverse association between serum/plasma
folate levels and lung cancer risk was stronger among active smokers (OR = 0.75, 95% CI = 0.42 to
1.32) and former smokers (OR = 0.64, 95% CI = 0.51 to 0.80) when compared with never smokers
(OR = 0.86, 95% CI = 0.65 to 1.13) (Figure S4e). The inverse association between serum/plasma
pyridoxal 5′-phosphate and lung cancer risk was statistically significant among active smokers
(OR = 0.77, 95% CI = 0.65 to 0.92) and former smokers (OR = 0.63, 95% CI = 0.45 to 0.89), but not
among never smokers (OR = 0.78, 95% CI = 0.20 to 3.09) (Figure S4g).

3.5. Quantitative Difference in Metabolite Level between Lung Cancer Patients and Controls

A total of 255 metabolites were reported across all the identified concentration studies (Table S4).
Of these, 40 meta-analyses were performed on 21 types of amino acid in plasma, 11 types of amino
acid in serum and eight types of carnitines in serum. Two meta-analyses were performed using the
fixed-effects model, while the other 38 were performed using the random-effects model. The remaining
metabolites were reported in only individual studies and thus were not meta-analyzed (Table S5).
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Of the meta-analyzed metabolites, lower concentration of plasma methionine (WMD = −2.04, 95%
CI = −4.01 to −0.06, Table 4 and Figure S2a) and tryptophan (WMD = −6.85, 95% CI = −11.07 to −2.63,
Table 4 and Figure S2b) and higher concentration of plasma proline (WMD = 15.98, 95% CI = 6.59 to
25.37, Table 4 and Figure S2c) were found in lung cancer patients, compared with healthy controls.
The differences in concentration of other amino acids and carnitines between lung cancer patients and
controls were not statistically significant (Figure S5).

Table 4. Weighted mean difference (WMD) and 95% confidence interval (CI) of the of the plasma
metabolite concentration between lung cancer patients and healthy controls, for metabolites that
achieved statistical significance. Refer to Figure S2 for the forest plot of each metabolite.

Metabolite WMD
(µmol/L)

95% CI
(µmol/L)

No. of
Studies I2 (%)

Cochran’s Q
Test’s p-Value Forest Plot

Plasma

Methionine † −2.04 −4.01–−0.06 5 86.0 <0.001 Figure S2a
Tryptophan † −6.85 −11.07–−2.63 4 87.1 <0.001 Figure S2b

Proline † 15.98 6.59–25.37 6 83.6 <0.001 Figure S2c
† Random-effects models were used for this metabolite.

4. Discussion

4.1. Overview

This systematic literature review and meta-analysis aimed to provide a review of the current
understanding of the association between metabolites and lung cancer risk. We had included 53 studies,
involving 297 metabolites across six different types of biological samples. Although many metabolomics
studies on lung cancer were included in this review, the data on any given metabolite is limited, due to
the differences in the research focus of each study. Thus, this discussion will primarily focus on the
metabolites that were meta-analyzed.

Meta-analyses were performed on 45 metabolites. Our findings indicated that three amino acids
(methionine, tryptophan and proline), two smoking-related metabolites (cotinine and PheT) and five
groups of smoking-related metabolites (total 3-HC, total cotinine, total nicotine, total NNAL and TNE),
a vitamin (folate), a sialic acid (NANA), and a novel compound (creatine riboside) had statistically
significant association with lung cancer risk.

4.2. Amino Acids

Amino acids have been reported to be associated with other types of cancer in earlier
reviews [88–91]. The amino acids identified in our meta-analyses (methionine, tryptophan and
proline) were identified in previous reviews, although the direction of association is different for
proline (i.e., positive association in our meta-analysis on lung cancer but inverse association for other
cancer types) [88,90,91]. A possible explanation for the discrepancy is that different cancer types have
dissimilar metabolism, therefore the association between the patient’s host protein metabolism and
amino acid levels with cancer risk may differ between cancer types [92–95].

4.2.1. Methionine

Results from concentration studies (Figure S2a) suggested that plasma methionine concentration
was lower in lung cancer patients. The findings from Kami et al. [33] also identified that the concentration
of methionine was increased in tumor tissue of lung cancer patients (Table S5). These observations
are largely consistent with the current understanding of the roles that methionine plays in cancer
cell proliferation.

The influential roles of methionine in cancer cell growth has been well-documented [96–99].
Methionine is involved in several critical activities in cancer cells, such as nucleotide biosynthesis
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via the one-carbon metabolism pathway [100–102] and protein synthesis [103]. Methionine is also a
precursor metabolite of S-adenosylmethionine, a co-substrate involved in methyl group donation, for
cellular processes such as epigenetic control and protein methylation [100,104,105]. Previous reviews
have identified that the DNA methylation patterns in lung cancer were altered, where genome-wide
hypomethylation, and hypermethylation of the promoter regions of several tumor suppressor genes,
such as DAPK, RASSF1A and RARβ, were commonly observed [106,107]. It is thus unsurprising to
observe an increased demand for methionine in cancer cells, given the multi-faceted role it plays in
oncogenesis. Consequently, cancer cells increase its uptake of essential amino acids, such as methionine,
through the up-regulation of essential amino acid transporters [108–110].

Methionine is also involved in glutathione formation, which serves as an antioxidant [111].
Lowered glutathione level is a biomarker of oxidative stress [112], and may contribute to chronic
inflammation and cancer development [113]. These observations suggest that lowered methionine
levels may also play a role in the precipitation of cancer cell proliferation, through the reduction in
antioxidant capacity. Methionine is also a direct target of reactive oxygen species (ROS) and acts as a
ROS scavenger [114,115].

4.2.2. Tryptophan

Similar to methionine, our findings indicated that the plasma levels of tryptophan were lowered
in lung cancer patients (Figure S2b). Furthermore, findings from Chuang et al. [61] suggested that
increased kynurenine and 3-hydroxykynurenine levels were associated with lung cancer risk, although
the association was not statistically significant (Table S3). These observations could be explained by a
potential mechanism that cancer cells use to bypass detection by the host immune system [116].

Tryptophan is a precursor molecule in the kynurenine pathway [117], which synthesizes several
metabolites with immunosuppressive activity. The metabolites then suppresses T-cell proliferation
and alters NK cell function [118]. A review by Heng et al. [119] identified that increased expression
of indoleamine-2,3-dioxygenase 1 (IDO1), an enzyme involved in the synthesis of kynurenine from
tryptophan, is positively correlated with poorer cancer prognosis across different cancers, including
lung cancer. They further illustrated that an increase in IDO1 would up-regulate the production of
kynurenine and its metabolites, which were then used to suppress T-cell activity.

4.2.3. Proline

Our findings indicated that the plasma levels of proline were higher among lung cancer patients
(Figure S2c). Unlike methionine and tryptophan, the biochemical rationale behind the increase in
plasma concentrations of proline is unclear.

The role of proline in lung carcinogenesis is an area of active research. A recent review by Phang
et al. provided an abridged overview of the functionality of proline in cancer cells, as a source for
cellular energy production and as an intermediate between the urea cycle and Krebs cycle [120].
Several studies have identified that overexpression of proline dehydrogenase, the enzyme involved
in proline degradation, promotes cancer progression [121–123]. Future studies could explore the
relationship between increased circulating proline concentrations and lung cancer risk.

4.3. Folate

Folate is a metabolite in the folate cycle, which is part of the one-carbon metabolism
pathway [100–102]. Folate is coupled with the methionine cycle as one of its metabolites,
5-methyltetrahydrofolate, is involved in the regeneration of methionine from homocysteine [100–102].
Similar to methionine, folate is involved in nucleotide biosynthesis. 10-formyltetrahydrofolate,
a metabolite in the folate cycle, serves as a formyl group donor for the formation of carbon-2 and
carbon-8 of the purine ring in de novo purine synthesis [100–102].

Our stratified analysis has identified that active and former smokers have a stronger inverse
association between folate levels and lung cancer risk when compared with never smokers (Figure S4e).
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A possible explanation for this observation may be the confounding effect of exposure to tobacco
smoke. The authors of the respective studies cautioned that despite adjusting for the cotinine level,
the results may still be confounded by smoking status, considering the influence that smoking has on
lung cancer risk [55,68].

4.4. Smoking-Related Metabolites

Smoking is well-established as a significant risk factor for lung cancer [124–127]. More than
5000 compounds were identified in tobacco smoke, among which, over 70 compounds were identified as
carcinogenic [128–130]. In this study, we conducted meta-analyses on nine smoking-related metabolites,
namely nicotine, cotinine, 3-HC, PheT, NNAL, HBMA, HEMA, HPMA and SPMA, either as single
metabolite, or as metabolite groups (as are the cases for the meta-analyses on total nicotine, total cotinine,
total 3-HC, total NNAL and TNE).

4.4.1. Nicotine and Cotinine

Cotinine is a major metabolite from nicotine metabolism in humans, accounting for 70–80% of
the metabolites formed [131]. Cotinine then undergo further metabolism before being excreted [132],
with 3-HC being a main metabolite found in urine [133]. Although nicotine and cotinine are associated
with lung cancer risk, it is imperative to note that neither are carcinogens. Several studies have shown
that nicotine and cotinine neither induced nor influenced lung tumorigenesis [134,135].

Results from our meta-analyses suggested that increased serum/plasma cotinine, urinary total
3-HC, cotinine and nicotine exposure were significantly associated with higher lung cancer risk
(Figure S1a,f–h). Urinary cotinine was also associated with higher lung cancer risk, albeit not
statistically significant (Figure S3d). These observed associations were noteworthy as nicotine exposure
is a consequence of cigarette smoke exposure, which itself contains carcinogens that may induce
tumorigenesis [128–130].

From the stratified analysis by smoking status, cotinine exposure was associated with lung
cancer risk among active smokers, but not among passive or never smokers (Figure S4d,h).
Our meta-analyses have also identified that urinary TNE, a biomarker that demonstrated high
correlation with smoking [136,137], is positively associated with lung cancer risk (Figure S1j). These
results further exemplified the significance of smoking, rather than nicotine exposure, as a risk factor
for lung cancer.

4.4.2. PheT

Polycyclic aromatic hydrocarbons (PAHs), are a class of compounds that are well-established
as carcinogens [138], with well-documented association between PAH exposure and lung cancer
risk [139,140]. Of these, benzoapyrene (BaP), a compound known for its carcinogenic effects,
was frequently studied and often used as a reference compound for the evaluation of carcinogenicity
of other PAHs [141]. The International Agency for Research on Cancer (IARC) classified several
PAHs as carcinogens or potential carcinogens [142]. PAHs are pro-carcinogens [143–146], with its
carcinogenicity potentiated by multi-step biotransformation of the parent compounds, through
several metabolic pathways, such as CYP1A1/1B1 and epoxide hydrolase pathway, and aldo-keto
reductases pathway [138]. Particularly, PAHs were activated through the formation of bay-region
diol epoxides [147]. The carcinogenic metabolites then form DNA adducts, causing errors in DNA
replication and altered epigenetic controls, and may contribute to carcinogenesis [143–146].

PheT, a metabolite of non-carcinogenic phenanthrene, is an established surrogate measure for
carcinogenic PAH exposure [147]. Results from our meta-analysis showed that increased PheT exposure
was associated with higher lung cancer risk (Figure S1e), consistent with the current understanding of
the roles that PAH may play in lung cancer.
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4.4.3. NNAL

NNAL is a metabolite of 4-(N-Nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK), one of the
compounds found in cigarette smoke [148]. NNAL can be further metabolized through glucuronidation
into either the O or N glucuronides [149]. Both NNK and NNAL are pro-carcinogens [149]. On its
own, both compounds do not have any carcinogenic effect [149]. However, its metabolites (such as
α-methylenehydroxy-NNK and 4-(3-pyridyl)-4-oxobutane-1-diazohydroxide) are carcinogenic and
may cause DNA damage through the formation of DNA adducts [149].

Total NNAL, the sum of urinary NNAL and its glucuronides, were validated biomarkers for NNK
exposure [150]. Our meta-analyses suggested that increased urinary total NNAL was significantly
associated with higher lung cancer risk (Figure S1i), further substantiating the current theory of the
role of NNAL (and NNK) in carcinogenesis.

4.4.4. HBMA, HEMA, HPMA and SPMA

HBMA, HEMA, HPMA and SPMA are mercapturic acid metabolites of crotonaldehyde, ethylene
oxide, acrolein and benzene respectively, and are validated biomarkers for the exposure to the
respective parent compounds [151]. Our findings suggested that increased exposure to any of these
four metabolites were not associated with lung cancer risk (Figure S3e–h).

Crotonaldehyde is a volatileα,β-unsaturated carbonyl compound [152]. Although crotonaldehyde
was shown to induce liver tumors in rats [153], to date, insufficient evidence was found to show that
crotonaldehyde exposure is associated with lung cancer risk. According to the IARC, crotonaldehyde
is “not classifiable as to its carcinogenicity to humans” [154].

Ethylene oxide is a volatile cyclic ether [155]. The IARC classified ethylene oxide as “carcinogenic to
humans”, based on animal data [154]. However, an earlier review suggested that current evidence was
insufficient to conclude the carcinogenicity of ethylene oxide on human. Similarly, our meta-analysis
did not find any association between ethylene oxide exposure and lung cancer risk (OR = 1.01,
95% CI = 0.64 to 1.59; Figure S3f).

Acrolein is a volatile α,β-unsaturated aldehyde [156]. Although acrolein had demonstrated
carcinogenicity in in vitro models [157], there is insufficient evidence to show that acrolein exposure is
associated with lung cancer risk to date. According to the IARC, acrolein is “not classifiable as to its
carcinogenicity to humans” [154].

Benzene is a volatile aromatic compound [155]. An earlier review summarized the carcinogenic
effects of benzene for different tumors in animals [158]. A review by IARC summarized that benzene
exposure was associated with increased lung cancer risk in a few studies, although most studies
have shown no association [159]. Similarly, our study suggested that increased exposure to SPMA is
associated to higher lung cancer risk, albeit not statistically significant (OR = 1.28, 95% CI = 0.83 to
1.96; Figure S3h). The IARC classified benzene as “carcinogenic to humans”, due to its association with
several types of leukemia and lymphoma [154,159].

4.5. NANA

Increased concentrations of NANA have been associated with several cancer types [160–165].
NANA is used in the formation of glycans [166], which in turn play several influential roles in cells,
such as inducing proper folding of newly synthesized proteins [167], cell signaling and adhesion [168].

Anomalous glycosylation is increasingly recognized as a hallmark of cancer [169]. Tumor cells are
known to produce increased amounts of glycans on the plasma membrane [170]. Excessive glycosylation
increases the negative charge on plasma membrane of tumor cells, promoting cell detachment and
encouraging metastasis [171].

Results from our meta-analysis concluded that increased NANA exposure was associated with
higher lung cancer risk (Figure S1d). Notably, the observation of increased NANA may be due to
increased turnover and shedding of cancer cells, resulting in glycans being released into the serum [166].
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4.6. Creatine Riboside

Creatine riboside is a novel metabolite that was not previously identified in other cancer studies.
To date, no studies were performed to elucidate the potential mechanisms behind the elevation of
creatine riboside concentration in lung cancer patients. In the study that identified creatine riboside as a
statistically significant metabolite, Mathe et al. [62] hypothesized that higher concentrations of creatine
riboside may be the consequence of both increased creatine concentrations and higher phosphate
turnover within tumor cells.

4.7. Strengths and Limitations of This Study

Previous reviews summarized recent work regarding the approaches in the identification
of metabolites that could serve as biomarkers for lung cancer and enumerated several potential
biomarkers [22,23]. On the other hand, previous meta-analyses focused only on exposure to vitamin
D [172,173]. Our current study further expanded on the existing reviews and meta-analyses by
identifying other types of metabolites and quantifying either the differences in concentrations between
lung cancer patients and controls or the lung cancer risk associated with levels of metabolite. By not
restricting the type of metabolite in our inclusion criteria, we included metabolites across different
metabolism pathways to provide a comprehensive overview of the current progress in the field.

The results of our meta-analysis should be interpreted with the following caveats in mind. Firstly,
most of the metabolites identified were only reported as individual, small-scale studies. The limited
quantity of evidence found for most metabolites suggests that further studies are merited in order
to validate the feasibility of using these metabolites as biomarkers for lung cancer. Furthermore,
about one-third (n = 16, 30.2%) of the included studies were of low-to-moderate quality. Thus, with
these points in consideration, the current results should be interpreted with prudence, and future
well-designed, large-scale studies are warranted.

Secondly, we could not perform extensive stratified analyses to explore sources of clinical
heterogeneity. Due to the limited studies available on each metabolite analyzed, we were only able to
perform subgroup analysis by gender and smoking status for those metabolites that were investigated
by sufficient number of studies. In addition, most studies did not include the definitions for smoking
status, nor did they provide stratified results by smoking status. Thus, we could not account for any
possible differences in smoking status. Some of the included studies only presented the combined
results of plasma and serum, therefore we were unable to separate them in our analysis [56,68,70].
Furthermore, we could not perform stratified analyses by histological subtype, stage of lung cancer and
study design. Although the majority of studies reported the histological subtype of lung cancer patients
(Table 1), most studies did not report stratified results based on lung cancer subtypes. Moreover, only a
handful of studies reported the lung cancer stage. Several reviews on other cancers, such as colorectal
cancer and gastric cancer, have identified that the metabolome profile is different between early-stage
and late-stage cancer [88,90]. Thus, future studies would benefit by exploring the influence of lung
cancer stage on the evaluated associations in relation to different metabolites.

We noted some heterogeneity in the identified studies. The heterogeneity may be attributed to
factors such as ethnicity and smoking status. We recognize that this is a knowledge gap in the current
state of research, and more studies should be performed to facilitate the identification of possible
factors for heterogeneity. The method used for metabolite identification may also be a possible source
of heterogeneity. Considering that studies used different analytical platforms and methodology to
identify and quantify the metabolites (Table 1), more work should be done to further harmonize the
workflow adopted by researchers in metabolite quantification. We recommend researchers to follow
the best practices for the quantification of the metabolites, such as that proposed by Lu et al. [174],
and adopt minimum reporting standards, such as that proposed by the Metabolomics Standards
Initiative [175], to facilitate the replication of studies and allowing for more meaningful comparisons
between different studies.
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Thirdly, we were unable to ascertain if the patients in the identified studies were free of
co-morbidities, or if it was adjusted for. Several co-morbidities, such as chronic obstructive pulmonary
disease (COPD), diabetes mellitus (DM) and other malignancies, were identified to be more prevalent
in lung cancer patients compared to the general population [176–178]. The metabolomic profile of
patients in disease states, such as COPD [179] and DM [180], were identified to be different from that
of a normal population. While we excluded studies involving patients with other malignancies or
having a history of any malignancy, we could not ascertain if patients were free of co-morbidities at the
time of sample collection. It is beneficial for future studies to consider the participants’ co-morbidities
as a criterion for recruitment, or to report it as part of the baseline characteristics of their participants.

5. Conclusions

This review identified several metabolites that are significantly associated with lung cancer.
Amino acids, smoking-related metabolites, folate, NANA and creatine riboside warrant further
investigation for use as potential biomarkers. Although a substantial number of studies were reviewed,
meta-analyses could only be performed on a subset of the identified metabolites, as most metabolites
were solely studied in individual studies. Out of the analyzed metabolites, plasma samples of amino
acids may hold more promise. Further studies are warranted to elucidate the possible link between
amino acid levels and lung cancer, and to validate the use of these metabolites as potential biomarkers
of lung cancer in a larger population.
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