organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-{2-[(E)-Cyclopentylidene]hydrazin-1vl}benzenesulfonamide

Abdulrahman O. Al-Youbi,^{a,b} Abdullah M. Asiri,^{a,b}‡ Hassan M. Faidallah,^a Seik Weng Ng^c and Edward R. T. Tiekink^c*

^aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ^bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 8 March 2012; accepted 22 March 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.123; data-to-parameter ratio = 16.7.

The title molecule, C₁₁H₁₅N₃O₂S, features a five-membered ring which is twisted about the middle CH₂-CH₂ bond. The benzene ring is inclined with respect to the imine residue [C-N-N-C torsion angle = $165.4 (2)^{\circ}$]. Supramolecular layers in the bc plane are formed by hydrogen bonds between the amine H atoms and sulfonamide O and imine N atoms, as well as by a weak hydrazine H-atom intermolecular interaction with the second sulfonamide O atom.

Related literature

For background to the biological applications of related sulfonamides, see: Al-Saadi et al. (2008). For related structures, see: Asiri et al. (2011, 2012).

Experimental

Crystal data

 $C_{11}H_{15}N_3O_2S$ $M_r = 253.32$ Monoclinic, $P2_1/c$ a = 14.1173 (14) Åb = 5.2038 (5) Å c = 16.4239 (19) Å $\beta = 94.019 \ (10)^{\circ}$

V = 1203.6 (2) Å³ Z = 4Mo Ka radiation $\mu = 0.26 \text{ mm}^-$ T = 100 K $0.35 \times 0.05 \times 0.02 \ \text{mm}$

Data collection

```
Agilent SuperNova Dual
  diffractometer with an Atlas
  detector
Absorption correction: multi-scan
  (CrysAlis PRO; Agilent, 2011)
  T_{\rm min}=0.914,\;T_{\rm max}=0.995
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.123$	independent and constrained
S = 1.03	refinement
2768 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
166 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
3 restraints	

4782 measured reflections

 $R_{\rm int} = 0.044$

2768 independent reflections 2007 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O1^{i}$ $N1 - H2 \cdots N3^{ii}$ $N2 - H3 \cdots O2^{iii}$	$\begin{array}{c} 0.88\ (1)\\ 0.88\ (1)\\ 0.88\ (1)\end{array}$	2.02 (1) 2.13 (1) 2.36 (1)	2.869 (3) 2.993 (3) 3.220 (3)	164 (3) 166 (3) 166 (3)
Symmetry codes: $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}.$	(i) $x, y + 1$, z; (ii)	-x + 1, -y + 1, -z	z + 1; (iii)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. The authors also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/ MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2126).

References

Al-Saadi, M. S., Rostom, S. A. F. & Faidallah, H. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 181-190.

Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2424.

Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, 0762-0763.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

‡ Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

supplementary materials

Acta Cryst. (2012). E68, o1196 [doi:10.1107/S1600536812012524]

4-{2-[(E)-Cyclopentylidene]hydrazin-1-yl}benzenesulfonamide

Abdulrahman O. Al-Youbi, Abdullah M. Asiri, Hassan M. Faidallah, Seik Weng Ng and Edward R. T. Tiekink

Comment

Sulfonamides related to the title compound, 4-(*N*-cyclopentylidenehydrazino)benzensulfonamide (I), have been shown to display biological activity (Al-Saadi *et al.*, 2008). In continuation of structural studies of these sulfonamides (Asiri *et al.*, 2011; Asiri *et al.*, 2012), the crystal and molecular structure of (I) is reported herein.

In (I), Fig. 1, the five-membered ring is twisted about the C9—C10 bond. The imine residue is not co-planar with the benzene ring with a twist apparent about the N2—C4 bond; the C4—N2—N3—C7 torsion angle is 165.4 (2)°.

The crystal packing is dominated by N—H···O and N—H···N hydrogen bonds. The amino-H atoms form hydrogen bonds with a sulfonamide-O and imine-N atoms. The hydrazine-H atom forms a weak intermolecular interaction with the second sulfonamide-O atom, Table 1. The result is the formation of supramolecular layers in the *bc* plane, Fig. 2. Layers stack along the *a* axis with no specific intermolecular interactions between them.

Experimental

Cyclopentanone (0.84 g, 10 mmol) in ethanol was refluxed with *p*-sulfamylphenylhydrazine (2.2 g, 10 mmol) for 1 h. The reaction mixture was cooled and the precipitated product was collected by filtration, washed with ethanol, dried and recrystallized from its ethanol solution. Yield: 78%. *M*. pt: 475–477 K.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, $U_{iso}(H) = 1.2U_{eq}(C)$] and were included in the refinement in the riding model approximation. The N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraint of N—H = 0.88±0.01 Å; their U_{iso} values were refined.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO* (Agilent, 2011); data reduction: *CrysAlis PRO* (Agilent, 2011); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the supramolecular layer in the *bc* plane in (I). The N—H…O and N—H…N hydrogen bonds are shown as orange and blue dashed lines, respectively.

Figure 3

A view in projection down the *b* axis of the unit-cell contents of (I) showing the stacking of layers along the *a* axis. The N -H \cdots O and N-H \cdots N interactions are shown as orange and blue dashed lines, respectively.

4-{2-[(*E*)-Cyclopentylidene]hydrazin-1-yl}benzenesulfonamide

Crystal data	
$C_{11}H_{15}N_3O_2S$	F(000) = 536
$M_r = 253.32$	$D_x = 1.398 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A}
Hall symbol: -P 2ybc	Cell parameters from 1078 reflections
a = 14.1173 (14) Å	$\theta = 2.5-27.5^{\circ}$
b = 5.2038 (5) Å	$\mu = 0.26 \text{ mm}^{-1}$
$b = 5.2038 (3) \text{ A}$ $c = 16.4239 (19) \text{ Å}$ $\beta = 94.019 (10)^{\circ}$ $V = 1203.6 (2) \text{ Å}^{3}$ $Z = 4$ Data collection	$\mu = 0.20 \text{ mm}$ T = 100 K Plate, colourless $0.35 \times 0.05 \times 0.02 \text{ mm}$
Agilent SuperNova Dual	Absorption correction: multi-scan
diffractometer with an Atlas detector	(<i>CrysAlis PRO</i> ; Agilent, 2011)
Radiation source: SuperNova (Mo) X-ray	$T_{min} = 0.914$, $T_{max} = 0.995$
Source	4782 measured reflections
Mirror monochromator	2768 independent reflections
Detector resolution: 10.4041 pixels mm ⁻¹	2007 reflections with $I > 2\sigma(I)$
ω scan	$R_{int} = 0.044$

$\theta_{\rm max} = 27.6^{\circ}, \theta_{\rm min} = 2.5^{\circ}$	$k = -4 \rightarrow 6$
$h = -18 \rightarrow 11$	$l = -21 \rightarrow 21$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.123$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
2768 reflections	and constrained refinement
166 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0372P)^2 + 0.8414P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.28398 (5)	0.43647 (12)	0.35890 (4)	0.01924 (18)
01	0.26446 (13)	0.1919 (3)	0.39559 (13)	0.0304 (5)
O2	0.25331 (13)	0.4780 (4)	0.27417 (11)	0.0276 (5)
N1	0.23242 (16)	0.6501 (4)	0.41081 (14)	0.0185 (5)
H1	0.238 (2)	0.811 (2)	0.3960 (17)	0.028 (8)*
H2	0.244 (2)	0.626 (6)	0.4636 (7)	0.042 (10)*
N2	0.70084 (16)	0.5585 (5)	0.36168 (14)	0.0238 (5)
Н3	0.7234 (19)	0.672 (4)	0.3286 (14)	0.025 (8)*
N3	0.76230 (15)	0.4003 (4)	0.40739 (13)	0.0210 (5)
C1	0.40782 (17)	0.4817 (5)	0.36814 (15)	0.0172 (5)
C2	0.46722 (18)	0.3075 (5)	0.41081 (15)	0.0192 (6)
H2A	0.4406	0.1709	0.4401	0.023*
C3	0.56513 (18)	0.3314 (5)	0.41102 (16)	0.0199 (6)
H3A	0.6054	0.2114	0.4400	0.024*
C4	0.60411 (18)	0.5343 (5)	0.36816 (15)	0.0182 (5)
C5	0.54389 (18)	0.7151 (5)	0.32815 (16)	0.0193 (6)
Н5	0.5703	0.8571	0.3012	0.023*
C6	0.44676 (18)	0.6888 (5)	0.32749 (15)	0.0187 (6)
H6	0.4063	0.8108	0.2996	0.022*
C7	0.84829 (18)	0.3891 (5)	0.38745 (16)	0.0202 (6)
C8	0.92115 (18)	0.2283 (6)	0.43640 (17)	0.0247 (6)
H8A	0.8971	0.0522	0.4445	0.030*
H8B	0.9378	0.3070	0.4904	0.030*
С9	1.00726 (19)	0.2246 (5)	0.38442 (17)	0.0252 (6)
H9A	1.0673	0.2150	0.4193	0.030*
H9B	1.0041	0.0767	0.3464	0.030*
C10	1.00007 (18)	0.4790 (5)	0.33771 (17)	0.0248 (6)
H10A	1.0339	0.4684	0.2870	0.030*
H10B	1.0275	0.6213	0.3717	0.030*
C11	0.89299 (18)	0.5202 (5)	0.31788 (16)	0.0220 (6)
H11A	0.8771	0.7055	0.3160	0.026*
H11B	0.8718	0.4405	0.2650	0.026*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0185 (3)	0.0147 (3)	0.0246 (4)	-0.0019 (3)	0.0025 (3)	-0.0034 (3)
01	0.0247 (11)	0.0141 (9)	0.0531 (15)	-0.0038 (8)	0.0079 (10)	-0.0002 (9)
O2	0.0233 (10)	0.0373 (12)	0.0215 (10)	-0.0024 (9)	-0.0031 (8)	-0.0091 (9)
N1	0.0220 (12)	0.0134 (11)	0.0203 (13)	0.0014 (9)	0.0032 (10)	0.0016 (10)
N2	0.0204 (12)	0.0261 (13)	0.0255 (13)	0.0024 (11)	0.0054 (9)	0.0109 (11)
N3	0.0200 (12)	0.0238 (12)	0.0191 (12)	0.0026 (10)	0.0003 (9)	0.0055 (10)
C1	0.0169 (13)	0.0186 (13)	0.0162 (13)	-0.0002 (10)	0.0021 (10)	-0.0031 (10)
C2	0.0242 (14)	0.0160 (13)	0.0180 (14)	-0.0013 (11)	0.0063 (11)	0.0008 (11)
C3	0.0232 (14)	0.0176 (13)	0.0189 (14)	0.0024 (11)	0.0014 (11)	0.0027 (11)
C4	0.0187 (13)	0.0201 (13)	0.0162 (13)	-0.0010 (11)	0.0029 (10)	-0.0026 (11)
C5	0.0229 (14)	0.0166 (13)	0.0189 (14)	-0.0014 (11)	0.0050 (11)	0.0004 (11)
C6	0.0230 (14)	0.0154 (12)	0.0175 (13)	0.0016 (11)	0.0001 (10)	-0.0009 (11)
C7	0.0201 (14)	0.0214 (14)	0.0190 (14)	-0.0013 (11)	-0.0006 (10)	0.0003 (11)
C8	0.0210 (14)	0.0310 (15)	0.0218 (15)	0.0034 (12)	-0.0003 (11)	0.0083 (12)
C9	0.0239 (15)	0.0278 (15)	0.0237 (15)	0.0043 (12)	0.0009 (11)	0.0027 (12)
C10	0.0179 (14)	0.0315 (16)	0.0248 (15)	0.0021 (12)	0.0003 (11)	0.0053 (12)
C11	0.0191 (14)	0.0257 (15)	0.0211 (14)	-0.0011 (11)	0.0009 (11)	0.0058 (12)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

S1—O2	1.4444 (19)	C5—C6	1.377 (4)
S1—O1	1.4430 (19)	С5—Н5	0.9500
S1—N1	1.606 (2)	С6—Н6	0.9500
S1—C1	1.760 (3)	C7—C8	1.513 (4)
N1—H1	0.878 (10)	C7—C11	1.507 (3)
N1—H2	0.879 (10)	C8—C9	1.534 (4)
N2—N3	1.379 (3)	C8—H8A	0.9900
N2-C4	1.383 (3)	C8—H8B	0.9900
N2—H3	0.875 (10)	C9—C10	1.530 (4)
N3—C7	1.281 (3)	С9—Н9А	0.9900
C1—C2	1.391 (4)	С9—Н9В	0.9900
C1—C6	1.400 (4)	C10—C11	1.539 (3)
C2—C3	1.388 (4)	C10—H10A	0.9900
C2—H2A	0.9500	C10—H10B	0.9900
C3—C4	1.403 (4)	C11—H11A	0.9900
С3—НЗА	0.9500	C11—H11B	0.9900
C4—C5	1.401 (4)		
O2—S1—O1	118.77 (12)	С5—С6—Н6	120.1
O2—S1—N1	106.95 (12)	C1—C6—H6	120.1
01—S1—N1	106.37 (12)	N3—C7—C8	120.7 (2)
O2—S1—C1	106.97 (12)	N3—C7—C11	128.9 (2)
01—S1—C1	107.43 (12)	C8—C7—C11	110.4 (2)
N1—S1—C1	110.25 (12)	C7—C8—C9	104.3 (2)
S1—N1—H1	117.4 (19)	C7—C8—H8A	110.9
S1—N1—H2	111 (2)	C9—C8—H8A	110.9
H1—N1—H2	113 (3)	C7—C8—H8B	110.9

N3—N2—C4	119.4 (2)	C9—C8—H8B	110.9
N3—N2—H3	119.8 (19)	H8A—C8—H8B	108.9
C4—N2—H3	120.8 (19)	C10—C9—C8	103.9 (2)
C7—N3—N2	117.3 (2)	С10—С9—Н9А	111.0
C2—C1—C6	119.9 (2)	С8—С9—Н9А	111.0
C2—C1—S1	121.1 (2)	С10—С9—Н9В	111.0
C6—C1—S1	118.9 (2)	С8—С9—Н9В	111.0
C3—C2—C1	120.5 (2)	H9A—C9—H9B	109.0
C3—C2—H2A	119.7	C9—C10—C11	104.9 (2)
C1—C2—H2A	119.7	C9-C10-H10A	110.8
C2—C3—C4	119.5 (2)	C11—C10—H10A	110.8
С2—С3—НЗА	120.3	C9—C10—H10B	110.8
C4—C3—H3A	120.3	C11—C10—H10B	110.8
N2—C4—C5	118.2 (2)	H10A—C10—H10B	108.9
N2—C4—C3	122.1 (2)	C7—C11—C10	103.5 (2)
C5—C4—C3	119.6 (2)	C7—C11—H11A	111.1
C6—C5—C4	120.6 (2)	C10-C11-H11A	111.1
С6—С5—Н5	119.7	C7—C11—H11B	111.1
С4—С5—Н5	119.7	C10—C11—H11B	111.1
C5—C6—C1	119.8 (2)	H11A—C11—H11B	109.0
C4—N2—N3—C7	165.4 (2)	N2-C4-C5-C6	175.1 (2)
O2—S1—C1—C2	-133.3 (2)	C3—C4—C5—C6	-2.9 (4)
O1—S1—C1—C2	-4.8 (2)	C4—C5—C6—C1	0.9 (4)
N1—S1—C1—C2	110.7 (2)	C2—C1—C6—C5	1.7 (4)
O2—S1—C1—C6	42.8 (2)	S1—C1—C6—C5	-174.46 (19)
O1—S1—C1—C6	171.4 (2)	N2—N3—C7—C8	177.6 (2)
N1—S1—C1—C6	-73.1 (2)	N2—N3—C7—C11	-2.2 (4)
C6—C1—C2—C3	-2.4 (4)	N3—C7—C8—C9	169.5 (3)
S1—C1—C2—C3	173.71 (19)	C11—C7—C8—C9	-10.6 (3)
C1—C2—C3—C4	0.4 (4)	C7—C8—C9—C10	28.9 (3)
N3—N2—C4—C5	173.1 (2)	C8—C9—C10—C11	-36.8 (3)
N3—N2—C4—C3	-8.9 (4)	N3-C7-C11-C10	168.0 (3)
C2-C3-C4-N2	-175.7 (2)	C8—C7—C11—C10	-11.8 (3)
C2—C3—C4—C5	2.3 (4)	C9—C10—C11—C7	29.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —H	H···A	D···A	D—H···A
N1—H1···O1 ⁱ	0.88(1)	2.02 (1)	2.869 (3)	164 (3)
N1—H2···N3 ⁱⁱ	0.88(1)	2.13 (1)	2.993 (3)	166 (3)
N2—H3····O2 ⁱⁱⁱ	0.88 (1)	2.36(1)	3.220 (3)	166 (3)

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, –*y*+1, –*z*+1; (iii) –*x*+1, *y*+1/2, –*z*+1/2.