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Abstract

Identifying overlaps between error-prone long reads, specifically those from Oxford Nanopore

Technologies (ONT) and Pacific Biosciences (PB), is essential for certain downstream applications,

including error correction and de novo assembly. Though akin to the read-to-reference alignment

problem, read-to-read overlap detection is a distinct problem that can benefit from specialized al-

gorithms that perform efficiently and robustly on high error rate long reads. Here, we review the

current state-of-the-art read-to-read overlap tools for error-prone long reads, including BLASR,

DALIGNER, MHAP, GraphMap and Minimap. These specialized bioinformatics tools differ not just

in their algorithmic designs and methodology, but also in their robustness of performance on a var-

iety of datasets, time and memory efficiency and scalability. We highlight the algorithmic features

of these tools, as well as their potential issues and biases when utilizing any particular method. To

supplement our review of the algorithms, we benchmarked these tools, tracking their resource

needs and computational performance, and assessed the specificity and precision of each. In the

versions of the tools tested, we observed that Minimap is the most computationally efficient, spe-

cific and sensitive method on the ONT datasets tested; whereas GraphMap and DALIGNER are the

most specific and sensitive methods on the tested PB datasets. The concepts surveyed may apply

to future sequencing technologies, as scalability is becoming more relevant with increased

sequencing throughput.

Contact: cjustin@bcgsc.ca, ibirol@bcgsc.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As today’s lion share of DNA and RNA sequencing is carried out on

Illumina sequencing instruments (San Diego, CA), most de novo as-

sembly methods have been optimized for short read data with an

error rate less than 1% (Laehnemann et al., 2016; Ross et al., 2013).

However, their associated short read length and GC bias sometimes

bring significant challenges for downstream analyses (Ross et al.,

2013; Smith et al., 2008). For instance, short read lengths make it

difficult to assemble entire genomes due to repetitive elements

(Alkan et al., 2010). The development of paired-end and mate-pair

sequencing library protocols has helped mitigate this, but they do

not completely resolve the issues inherent to short sequences

(Treangen and Salzberg, 2012). Co-localization of short reads is a

potential strategy to increase the contiguity of assemblies, using
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technologies such as Illumina TruSeq synthetic long reads (McCoy

et al., 2014) and 10X Genomics Chromium (Pleasanton, CA)

(Eisenstein, 2015); however, tandem repeats in the same long single

DNA fragment will continue to confound assembly methodologies.

Also, synthetic and single molecule long reads differ in the quality

and quantity of their output; hence they require using different bio-

informatics approaches.

Long read sequencing holds great promise, and has proved useful

in resolving long tandem repeats (Ummat and Bashir, 2014). Still,

the appreciable error rates associated with technologies offered by

Oxford Nanopore Technologies (Oxford, UK; ONT) and Pacific

Biosciences (Menlo Park, CA; PB) pose new challenges for the de

novo assembly problem.

Read-to-read overlap detection is typically the first step of de

novo Overlap-Layout-Consensus (OLC) assembly, the dominant ap-

proach for long read assembly (Berlin et al., 2015; Loman et al.,

2015). A read-to-read overlap is a sequence match between two

reads, and occurs when local regions on each read originate from

the same locus within a larger sequence. OLC is an assembly process

that uses these overlaps to generate an overlap graph, where each

node is a read and each edge is an overlap connecting them. This

graph is traversed to produce a layout of the reads, which is then

used to construct a consensus sequence (Myers, 2000; Simpson and

Mihai, 2015). Overlap detection has been identified as a major effi-

ciency bottleneck when using OLC assembly methodology (Myers,

2014) for large genomes.

In addition to the importance of overlaps in OLC, the first de

novo assembly methods for long reads employed error correction as

their initial pipeline step (Berlin et al., 2015; Chin et al., 2013;

Loman et al., 2015), which often requires read-to-read overlaps.

These error-corrected reads can then be overlapped again with

higher confidence and ease due to the lowered error rate.

Alternatively, one can forgo the error correction stages of assembly

in favor of overlap between uncorrected raw reads (Li, 2016). The

benefits of an uncorrected read-to-read overlap paradigm for assem-

bly include a potential for lower computation cost (Li, 2016), and

repressing artifacts that may arise from read correction, such as col-

lapsed homologous regions. On the other hand, for these methods,

correctness of the initial set of overlaps are even more critical, and

because this assembly methodology may not perform any error cor-

rection at all (Li, 2016) post-assembly polishing may be necessary.

At present, multiple tools are capable of overlapping error-prone

long read data at varying levels of accuracy. These methods differ in

their methodology, but have some common aspects, such as the use

of short exact subsequences (seeds) to discover candidate overlaps.

Here we provide an overview of how each tool addresses the overlap

detection problem, along with the conceptual motivations within

their design. We also provide an evaluation of their performance on

PB and ONT reads.

2 Background

2.1 Current challenges when using PB sequencing
PB sequencing uses a DNA polymerase anchored in a well small

enough to act as a zero-mode waveguide (ZMW) (Levene et al.,

2003). The polymerase acts on a single DNA molecule incorporating

fluorophores labeled nucleotides, which are excited by a laser. The

resulting optical signal is recorded by a high-speed camera in real

time (Eid et al., 2009). Base calling errors on this platform occur at

a rate of around 16% (Laehnemann et al., 2016), and are dominated

by insertions (Carneiro et al., 2012; Ross et al., 2013), which are

possibly caused by the dissociation of cognate nucleotides from the

active site before the polymerase can incorporate the bases.

Mismatches in the reads are mainly caused by spectral misassign-

ments of the fluorophores used (Eid et al., 2009). Deletions are

likely caused by base incorporations that are faster than the rate of

data recording (Eid et al., 2009). The errors seem to be non-

systematic and also show the lowest GC coverage bias as compared

to other platforms (Ross et al., 2013).

In addition to Phred-like quality values (QV) the instrument soft-

ware reports three error-specific QVs (insertion, deletion, mismatch)

(Jiao et al., 2013). As with other next-generation sequencing tech-

nologies (O’Donnell et al., 2013), the total QV score consists of

Phred-like values, which does not necessarily match the expected

Phred quality score (Carneiro et al., 2012; Ewing et al., 1998). We

note that, other than BLASR, the current state-of-the-art overlap al-

gorithms, tested herein, do not take quality scores into

consideration.

The error rate of PB sequencing can be reduced through the use

of circular consensus sequencing (CCS) (Travers et al., 2010). In

CCS, a hairpin adaptor is ligated to both sides of a linear DNA se-

quence. During sequencing, the polymerase can then pass multiple

times over the same sequence (depending on the processivity of the

polymerase). The multiple passes are called into consensus and col-

lapsed, yielding higher quality reads. The use of CCS reads simplifies

error correction and prevents similar, but independent, genomic loci

from correcting each other (Richards and Murali, 2015). However,

these reads are shorter and also result in a lower overall throughput,

so many PB datasets generated do not utilize this methodology.

Because of this trend, the methods for overlap detection outlined in

this paper have thus been designed for non-CCS reads.

2.2 Current challenges when using ONT sequencing
ONT sequencing works by measuring minute changes in ionic cur-

rent across a membrane when a single DNA molecule is driven

through a biological nanopore (Stoddart et al., 2009). Currently,

signal data is streamed to a cloud-based service called Metrichor

that, at the time of writing this paper, uses hidden Markov models

(HMM) with states for every possible 6-mer to render base calls on

the data. Metrichor also provides quality scores for each base call,

however, like other next-generation sequencing technologies

(O’Donnell et al., 2013), the values do not follow the Phred scale

(Laver et al., 2015).

In the current HMM base calling methodology, if one state is

identical to its next state, no net change in the sequence can be de-

tected. This means that homopolymer states longer than six cannot

be captured as they would be collapsed into a single 6-mer. It has

also been observed that there are some 6-mers, particularly homo-

polymers, underrepresented in the data (Jain et al., 2015; Loman

et al., 2015) when compared to the 6-mer content of the reference

sequence, suggesting that there may be a systematic bias to transi-

tion in some states over others. In addition, there is some evidence

suggesting GC biases within this type of data (Goodwin et al., 2015;

Laver et al., 2015). We note that the base calling problem is under

active development, with alternative base calling algorithms such as

Nanocall (David et al., 2016) and DeepNano (Bo�za et al., 2016), re-

cently made publicly available.

One can mitigate error rates in ONT data by generating two-

direction (2D) reads. Similar to CCS for the PB platform, 2D

sequencing involves ligating a hairpin adaptor, and allowing the

nanopore to process both the forward and reverse strand of a se-

quence (Jain et al., 2015). Combining information from both strands
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was shown to decrease the error rate from 30–40% to 10–20%

(Jain et al., 2015; Quick et al., 2014), similar to the error rates of

non-CCS PB sequencing. For the comparisons presented in this

paper, we only consider 2D reads, as we expect investigators to pre-

fer using higher quality ONT data.

3 Definitions and concepts

In the context of DNA sequencing, an overlap is a broad term refer-

ring to a sequence match between two reads due to local regions on

each read that originate from the same locus within a larger se-

quence (e.g. genome). A read-to-read overlap can be depicted at

varying levels of detail that has implications on both the down-

stream processing and computational costs associated with overlap

computation, as discussed below.

3.1 Definitions
The task of determining overlap candidates (Fig. 1A) is usually the

first step in an overlap algorithm, and it refers to a simple binary

pairing of properly oriented reads. To find overlap candidates on

error-prone long reads, most methods look for matches of short se-

quence seeds (k-mers) between the sequences.

Overlap distance (Fig. 1B) refers to the relative positions be-

tween two overlapping reads. These distances provide directionality

to the edges of the overlap graph. Theoretically, if the sequences are

insertion or deletion (indel) -free, then a correct overlap distance

would be sufficient to produce a layout and build a consensus from

the reads. However, even a single indel error in one of the reads will

cause a shift of coordinates, which would complicate consensus call-

ing. Also, one cannot distinguish between partial and complete over-

laps just with the distance information alone. Overlap distance can

be estimated without a full alignment, based on a small number of

shared seeds.

Overlap regions (Fig. 1C) refer to relative positions between

overlapping reads, with the added information of start and end pos-

itions of the overlap along each read. If no errors are present, the

sizes of the regions on both reads should be identical. In practice,

due to high indel errors in long reads, this is rarely the case.

Nevertheless, one can use this information to distinguish between

partial and full overlaps. Similar to overlap distance, overlap regions

can be estimated without a full alignment, but typically, more

shared seeds are required for confident estimations.

Overlap regions between two reads may be full (complete) or

partial, and may dovetail each other or one may be contained in the

other (Fig. 2). Full overlaps are overlaps that cover at least one end

of a read in an overlap pair, whereas partial overlaps cover any por-

tion of either read without the ends (Fig. 2). Sources contributing to

observed partial overlaps include false positives due to near-repeats,

chimeric sequences, or other artifacts (Li, 2016). Partial overlaps

may also be a manifestation of read errors or haplotypic variations

or polymorphisms, where mismatches between reads prevent the

overhangs to be accounted for in the other reads. Disambiguating

the source of the overhang in partial overlaps may be important to

downstream applications, especially when using non-haploid, meta-

genomic and transcriptomic datasets.

3.2 Alignments versus overlaps
There are many similarities between methods for local alignment

and methods for overlap detection since their use of seeds to find re-

gions of local similarity are common to both problems. Somewhat

similar to the discovery of partial overlaps, it may be important to

find local alignments, as they may help discover repeats, chimeras,

undetected vector sequences and other artifacts (Myers, 2014).

However, although a local aligner can serve as a read overlap tool

(Chaisson and Tesler, 2012; Sovi�c et al., 2016), overlaps are not the

same as local alignments.

Unlike a local alignment tool, at a minimum, a read overlapper

tool may simply indicate overlap candidates, and will typically only

provide overlap regions, rather than full base-to-base alignment co-

ordinates. In addition, local alignment algorithms require a refer-

ence and query sequence, typically indexing the reference in a way

that query sequence can be streamed against it. An overlap algo-

rithm does not require a distinction between query and reference,

leading to novel indexing strategies that facilitate efficient lookup

and comparison between reads without necessarily streaming reads.

Finally, although, it is possible for an overlap detection algorithm to

produce a full account of all the bases in overlapping reads, doing so

would typically require costly algorithms like Smith–Waterman

(Smith and Waterman, 1981). Indeed, though many tools presented

in this review can produce full local alignments, some tools provide

an option for computing overlap regions and local alignments separ-

ately (e.g. GraphMap (Sovi�c et al., 2016)). Alternatively, other tools

only provide overlap regions and do not provide any additional

alignment refinement (such as MHAP (Berlin et al., 2015) and

Minimap (Li, 2016)).

4 Long read overlap methodologies

Sequence overlap algorithms look for shared seeds between reads.

Due to the higher base error of PB and ONT sequence reads, these

seeds tend to be very short (Supplementary Figs S1 and S2).

Fig. 1. An overview of possible outcomes from an overlap detection algo-

rithm. Each level has a computational cost associated with it, with the general

trend being A<B<C. The common seeds-based comparison methods are not

the only way to obtain these overlaps, but it is the most popular method used

Fig. 2. Visualization of partial and full overlaps in dovetail or contained (con-

tainment) forms. The grey portion between the reads indicates the range of

the overlap region, note that partial overlaps do not extend to the end of the

reads

Detecting long read overlaps 1263

Deleted Text: -
Deleted Text: -
Deleted Text: C
Deleted Text: ,
Deleted Text: ,
Deleted Text: O
Deleted Text: -
Deleted Text: R
Deleted Text: O
Deleted Text: M
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw811/-/DC1


The core differences between algorithms (Fig. 3) relate to not only

how shared seeds are found, but in the way the seeds are used to de-

termine an overlap candidate. After a method finds candidates, it

will validate the overlaps and compute the estimated overlap regions

usually by comparing the locations of each shared seed, ensuring

that they are collinear and have a consistent distance relative to

other shared seeds. Each method produces a list of overlap candi-

dates, and provides an overlap region between reads. In some pipe-

lines, the majority of the computation time is spent on realigning

overlapping reads for error correction after candidates are found

(Sovi�c et al., 2016). In others, precise alignments may not be needed

(Li, 2016). Thus, the output of each overlap algorithm contains, at

minimum, the overlap regions, and often with some auxiliary infor-

mation for downstream applications (Table 1).

4.1 BLASR
BLASR was one of the first tools developed specifically to map PB

data to a reference (Chaisson and Tesler, 2012). It utilizes methods

developed for short read alignments but is adapted to long read data

with high indel rates, and combines concepts from Sanger and next-

generation sequencing alignments. BLASR uses an FM-index

(Ferragina et al., 2005) to find short stretches of clustered alignment

anchors (of length k or longer), generating a short list of candidate

intervals/clusters to consider. A score is assigned to the clusters

based on the frequency of alignment anchors. Top candidates are

then processed into a full alignment.

Although BLASR was originally designed for read mapping, it

has since been used to produce overlaps for de novo assembly of sev-

eral bacterial genomes (Chin et al., 2013). However, to use the

method for overlap detection one needs to carefully tune its param-

eters. For example, to achieve high sensitivity, BLASR needs prior

knowledge of the read mapping frequency to parameterize nBest

and nCandidates (default 10 for both) to a value higher than the

coverage depth. Runtime of the tool is highly dependent on these

two parameters (Berlin et al., 2015), which may be due to the cost

of computing a full alignment, the added computational cost per

lookup to obtain more anchors, or a combination of the two.

What slows down this method is the choice of data structure,

and its search for all possible candidates (not only the best candi-

dates) for each lookup performed. The theoretical time complexity

of a lookup in an FM-index data structure is linear with respect to

the number of bases queried (Ferragina et al., 2005), albeit not being

very cache efficient (Myers, 2014). Thus, if one maps each read to a

unique location, this would only take linear time with respect to the

number of bases in the dataset. However, since only short (and often

non-unique, cf. Supplementary Figs S1, S2) contiguous segments can

be queried due to the high error rate, extra computation is required

to consider all additional candidate anchor positions. Finally,

BLASR computes full alignments rather than just overlap regions,

thus, possibly utilizing more computational resources than needed

for downstream processes.

4.2 DALIGNER
DALIGNER was the first tool designed specifically for finding read-

to-read overlaps using PB data (Myers, 2014). This method focuses

on optimizing the cache efficiency, in response to the relatively poor

cache performance of the FM-index suffix array/tree data structure.

It works by first splitting the reads into blocks, sorting the k-mers in

each block, and then merging those blocks. The theoretical time

complexity of DALIGNER when merging a block is quadratic in the

number of occurrences of a given k-mer (Myers, 2014).

To optimize speed and mitigate the effect of merging,

DALIGNER filters out or decreases the occurrences of some k-mers

in the dataset. Using a method called DUST (Morgulis et al., 2006),

DALIGNER (-mdust option) masks out low complexity regions (e.g.

homopolymers) in the reads before the k-mers are extracted. Using a

Fig. 3. Visual overview of overlap detection algorithms. At the least, each method produces overlap regions. They may also generate auxiliary information, such

as alignment trace points or full alignments. We show different seed identification approaches from leading overlap detection tools in the central box. BLASR util-

izes the FM-Index data structure for seed identification. MHAP employs the MinHash sketch for seed selection. Minimap takes Minimizer sketch, a similar sketch

approach used by MHAP. GraphMap uses gapped q-grams for finding the seeds. DALIGNER takes advantage of a cache-efficient k-mer sorting approach for rapid

seed detection

Table 1. Summary of overlap tools output formats, associated pipelines and availability

Software Algorithm features Associated assembly

tools

Output Availability

BLASR FM-Index, anchor clusters PBcR SAM alignment, other proprietary

formats (overlap regions)

https://github.com/PacificBiosciences/

blasr

DALIGNER Cache efficient k-mer sort

(radix) and merge

DAZZLER, MARVEL,

FALCON

Local Alignments, LAS format

(alignment tracepoints)

https://github.com/thegenemyers/

DALIGNER

MHAP MinHash PBcR, Canu MHAP output format (overlap regions) https://github.com/marbl/MHAP

GraphMap Gapped q-gram (spaced seeds),

colinear clustering

Ra SAM alignment, MHAP output format

(overlap regions)

https://github.com/isovic/GraphMap

Minimap Minimizer colinear clustering Miniasm PAF (overlap regions) https://github.com/lh3/Minimap
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second method, it filters out k-mers in each block by multiplicity

(�t option), increasing the speed of computation, decreasing mem-

ory usage, and mitigating the effects of repetitive sequences.

However, these options also carry the risk of filtering out important

k-mers needed for overlaps.

To use DALIGNER efficiently on larger datasets, splitting of the

dataset into blocks is necessary. The comparisons required to per-

form all overlaps is quadratic in time relative to the number of

blocks. DALIGNER provides a means to split input data based on

the total number of base pairs and read lengths (using the DBsplit

utility). DALIGNER optionally outputs full overlaps, but will first

output local alignment tracepoints to aid in computing a full align-

ment in later steps, producing large auxiliary files.

4.3 MHAP
MHAP (Berlin et al., 2015) is a tool that uses the MinHash algo-

rithm (Broder, 1997) to detect overlaps based on k-mer similarity

between any two reads. MinHash computes the approximate simi-

larity between two or more sets by hashing all the elements in the set

with multiple hash functions, and storing the elements with the

smallest hashed values (minimizers) in a sketch list. Using the min-

imum hash value is a form of locality-sensitive hashing, since it

causes similar elements in a set to hash to the same value. In MHAP,

overlap candidates are simply two k-mer sets that have a Jaccard

index score above a predefined threshold. After the overlap candi-

dates are found, overlap regions are computed using the median

relative positions of the shared minimizers. These overlaps are vali-

dated by using the counts of a second set of shared minimizers that

may be of smaller size k (for accuracy) within 30% (–max-shift) of

each overlap region (Berlin et al., 2015).

The time complexity of computing a single MinHash sketch is

O(khl), where l is the number of k-mers in the read set for a sketch

size h. Evaluating n reads for all resemblances traditionally takes

O((hn)2) time (Broder, 1997), however, MHAP further reduces its

time complexity by storing h min-mers in h hash tables to use for look-

ups to find similar reads (Berlin et al., 2015). Because the sketch size

used for each read is the same, MHAP may unnecessarily use more

memory, and lose sensitivity if reads vary widely in length (Li, 2016).

Like DALIGNER, MHAP functions best when repetitive elem-

ents are not used as seeds. MHAP supports the input of a list of k-

mers, ordered by multiplicity, obtained by using a 3rd party k-mer

counting tool, such as Jellyfish (Marçais and Kingsford, 2011).

MHAP’s computational performance may be confounded by its

implementation. While most high-performance bioinformatics tools

utilize C/Cþþ for their performance benefits, MHAP is imple-

mented in Java. Another method called Minlookup (Wang and

Jones, 2015), written in C, utilizes a similar algorithm to MHAP

and it is designed with ONT datasets in mind. The authors demon-

strate improved performance associated with their implementation.

However, Minlookup was not evaluated here as it is in early devel-

opment, and cannot use multiple CPU threads.

4.4 GraphMap
GraphMap, like BLASR, was designed primarily as a read mapping

tool (Sovi�c et al., 2016), but for ONT data. It specifically addresses

the overlap detection problem, notably producing full alignments.

GraphMap also provides an option to generate overlap regions

exclusively.

In GraphMap the ‘-owler’ option activates a mode specifically

designed for computing overlaps. Like its standard mapping algo-

rithm, it first creates a hash table of seeds from the entire dataset.

The seeds it uses are not k-mers, but rather gapped q-grams

(Burkhardt et al., 2002) – k-mers with wild card positions, also

called spaced seeds (Keich et al., 2004). It is not clear what gapped

q-grams work optimally with ONT or PB data; more research is

needed to determine the optimal seeds to cope with high error rates.

The current implementation uses a hardcoded seed that is 12 bases

long with an indel/mismatch allowed in the middle (6 matching

bases, 1 indel/mismatch base, followed by 6 matching bases).

GraphMap then collects seed hits, using them for finding the longest

common subsequence in k-length substrings (Benson et al., 2013).

The output from this step is then filtered to find collinear chains of

seeds (private correspondence with Ivan Sovi�c). The bounds of these

chains are then returned, using the MHAP output format.

4.5 Minimap
Minimap (Li, 2016) is an overlapper/mapping tool that combines

concepts from many of its predecessors, such as DALIGNER (k-mer

sorting for cache efficiency), MHAP (computing minimizers) and

GraphMap (clustering collinear chains of matching seeds). Minimap

subsamples the hashed k-mer space by computing minimizers, and

compiles the corresponding k-mers along with their location on their

originating reads.

Like MHAP, the use of repetitive k-mers as the min-k-mer can

degrade the performance of overlap detection. To minimize the ef-

fect of repetitive elements, Minimap uses an invertible hash function

when choosing min-k-mers. This is similar to DALIGNER’s use of

DUST; it works by preventing certain hash values that correspond

to low complexity sequences. Similar to DALIGNER, Minimap

automatically splits datasets into batches (blocks) to reduce the

memory usage on large dataset.

Also similar to DALIGNER, Minimap was designed with cache

efficiency in mind. It stores its lists of minimizers initially in an

array, which is later sorted for the seed merging step. Though the

computational cost incurred by sorting the list can negatively impact

performance compared with the constant cost of insertion in a hash

table, its cache performance outperforms a conventional hash table.

All hits between two reads are then collected using this sorted set,

and are clustered together into approximately collinear hits. The

overlap regions for each pair of overlaps are then finally outputted

in pairing mapping format (PAF) (Li, 2016).

5 Benchmarking

We profiled and compared results from BLASR, DALIGNER,

MHAP, GraphMap and Minimap, using publicly available long read

datasets with the newest chemistries available at the time of the study

(Supplementary Table S1). We simulated E.coli datasets for the PB

and ONT platforms using PBSim (Ono et al., 2013) and NanoSim

(Yang et al., 2016), respectively (Supplementary Note S3), and simu-

lated ONT C.elegans reads using NanoSim (Supplementary Table

S1). We used experimental PB E.coli (P6-C4) and C.elegans whole

genome shotgun sequencing datasets and experimental ONT E.coli

(SQK-MAP-006) dataset. In-depth evaluations of specificity and sensi-

tivity required a comprehensive parameters sweep, thus only the E.

coli datasets were investigated in this section, as the larger C.elegans

dataset proved to be intractable when used with some of the tools.

5.1 Sensitivity and FDR
We profiled the sensitivity and false discovery rate (FDR¼1 – preci-

sion) on the experimental PB P6-C4 E.coli and the ONT SQK-MAP-

006 E.coli datasets. We also evaluated the tools on simulated data
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generated based on these datasets. Our ground truth for the real

dataset was determined via bwa mem alignments to a reference,

using -x pacbio and ont2d options, respectively (Li and Durbin,

2009).

We note that the ground truth may have missing or false align-

ments. In addition, Minimap was originally validated using bwa

mem alignments, which may bias the performance measurements of

this tool. In the same vein, it is possible for BLASR and bwa to share

similar biases since they both use suffix arrays, and have similar al-

gorithmic approach. However, these alignments can still serve as a

good estimate for ground truth comparisons, since mismatch rate to

a reference is much lower than the observed mismatch between

overlapping reads. In the latter case, reads that are, say, 80% accur-

ate will have a mutual agreement of 64% on average. In addition,

due to our reference-based approach, our metrics are resilient

against false overlaps caused by repetitive elements. Further, all

tools are compared against the same alignments; hence we expect

our analysis to preserve the relative performance of tools. Finally,

there is no ambiguity for ground truth in the simulated datasets, as

each simulation tool reports exactly where in the genome the reads

were derived from, allowing us to calculate the exact precision and

sensitivity of each method.

To produce a fair comparison, we used a variety of parameters

for each tool (Supplementary Note S1). These parameters were

chosen based on tool documentation, personal correspondence with

the authors, as well as our current understanding of their algo-

rithms. We ran MHAP with a list of k-mer counts derived from

Jellyfish (Marçais and Kingsford, 2011) for each value of k tested to

help filter repetitive k-mers. Unfortunately, GraphMap could not be

parameterized when running in the ‘owler’ mode, and had only one

set of running parameters. In this regard, our results for GraphMap

may not be impartial; the more the parameters we evaluated for an

algorithm, the better the chance of this algorithm to outperform the

others in the Pareto-optimal results.

We counted an overlap as correct when the overlapping pair was

present in our ground truth with the correct strand orientation.

With these metrics, we did not take into account reported lengths of

overlap (Supplementary Fig. S4), but note that this information may

be important (e.g. to improve performance of realignment). For

each tool we plotted these results on receiver operating characteristic

(ROC)-like plots (featuring FDR rather than the traditional false

positive rate) (Supplementary Note S1, Supplementary Fig. S3). For

ease of these comparisons, we computed the skyline, or Pareto-

optimal results (the points with the highest sensitivity for a given

FDR) (Fig. 4.).

We can see that although many tools have similar sensitivity and

FDR depending on the parameterization, the overall trends reveal

differences in sensitivity and FDR on each specific datatype. For in-

stance, MHAP can achieve high sensitivity on all datasets, but lacks

precision compared to most other methods on the ONT datasets.

The only other tool that may have less precision on the ONT data-

sets is BLASR. DALIGNER proves to have a high sensitivity and

precision, but it is not always the winner, especially on the ONT

dataset. Minimap has high sensitivity and precision on the ONT

datasets, but does not maintain such performance on the PB dataset.

Finally, the results for GraphMap were competitive despite using a

single parameterization.

These plots reveal that selection of operating parameters very

much depends on the balance of project-specific importance attrib-

uted to sensitivity and precision, as expected. For instance, the im-

portance of sensitivity is clear as it provides critical starting material

for downstream processing. On the other hand, low sensitivity can

be tolerated if the downstream method employs multiple iterations

of error correction, because as errors are resolved within each iter-

ation, the sensitivity is expected to increase. However, these down-

stream operations of course may come with a high computing cost.

The F1 score (also F-score or F-measure) represents a common

way to combine the two scores we used. It is the harmonic mean be-

tween the sensitivity and precision. To better compare these meth-

ods, we computed F1 scores for each using a range of parameters,

and considered the highest value for each method to be representa-

tive of its overall performance. We calculated confidence intervals

for the F1 scores using three standard deviations around the

observed values, which revealed that reported F1 values were statis-

tically significantly different from each other.

For the simulated PB data, GraphMap has the highest F1 score

(despite being designed for ONT data and not PB data) followed by

DALIGNER, Minimap, MHAP and BLASR (Table 2). For the real

PB data DALIGNER has the highest F1 score followed by

GraphMap, MHAP and BLASR. For both the simulated and real

ONT datasets, Minimap was the best method, yielding the highest

F1 score, followed by GraphMap, MHAP and BLASR (Table 2).

Overall, these results suggest that some tools may perform sub-

stantially differently on data from different platforms. We hypothe-

size that, differences in the read length distributions and error type

frequencies could be responsible for this behaviour.

5.2 Computational performance
To measure the computational performance of each method, we ran

each tool with default parameters (with some exceptions see

Supplementary note S2), as well as another run with optimized par-

ameters yielding the highest F1 score (Table 2 and Supplementary

note S1) obtained after a parameter sweep on the simulated datasets.

We note that GraphMap’s owler mode could not be parameterized,

except for choosing the number of threads, so there was no differ-

ence in the settings for default and highest F1 score parameterization

runs. We ran our tests serially on the same 64-core Intel Xeon CPU

Fig. 4. ROC-like plot using BLASR, DALIGNER, GraphMap, MHAP, GraphMap

and MHAP. Top left: PB P6-C4 E.coli simulated with PBsim. Top right: PB P6-

C4 E.coli dataset. Bottom left: ONT SQK-MAP-006 E.coli simulated with

Nanosim. Bottom right: ONT SQK-MAP-006 E.coli dataset
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E7-8867 v3 @ 2.50 GHz machine with 2.5 TB of memory. We

measured the peak memory, CPU and wall clock time across read

subsets to show the scalability of each method.

We investigated the scalability of the methods, testing them using

4, 8, 16 or 32 threads of execution on the E. coli datasets

(Supplementary Figs S5–S12). Despite specifying the number of

threads, each tool often used more or fewer threads than expected

(Supplementary Figs S5, S6, S13, S14). In particular, MHAP tended

to use more threads than the number we specified.

On all tested E.coli datasets in our study, we observe that

Minimap is the most computationally efficient tool, robustly pro-

ducing overlap regions at least 3–4 times faster than all other meth-

ods, even when parameterizing for optimal F1 score (Supplementary

Figs S9, S10). Determining the next fastest method is confounded by

the effect of parameterization. For instance when considering only

our F1 score optimized settings, the execution time of DALIGNER

was generally within an order of magnitude or less of the execution

time of Minimap. On the other hand, DALIGNER can be 2–5 times

slower than MHAP on some datasets under default parameters.

With default settings, DALIGNER performs up to 10 times

slower than with F1 score optimized settings. This primarily occurs

because the k-mer filtering threshold (-t) in the F1 optimized param-

eterization not only increases specificity, but also reduces runtime.

In contrast, our parameterization to optimize the F1 score in MHAP

decreases the speed (by a factor of 3–4). In this case, the culprit was

the sketch size (–num-hashes) used; larger sketch sizes increase sensi-

tivity at the cost of time.

Finally, GraphMap is generally the least scalable method, the

slowest when considering default parameters only, and only 1–2

times faster than BLASR when considering F1 optimized settings.

BLASR is also able to scale better, using more threads than

GraphMap (Supplementary Figs S9, S10).

In addition to its impressive computational performance,

Minimap uses less memory than almost all methods on tested E.coli

datasets (Supplementary Figs S11, S12), staying within an order of

magnitude of BLASR on average, despite the latter employing an

FM-index. Memory usage in GraphMap seems to scale linearly with

the number of reads at a rate nearly 10 times that of the BLASR or

Minimap, likely owing to the hash table it uses. The memory usage

characteristics of DALIGNER and MHAP are less clear, drastically

changing depending on the parameters utilized. Overall MHAP has

the worst memory performance even when using default parameters.

The cause of the memory increase between optimized F1 and default

setting in MHAP is again due to an increase in the sketch size be-

tween runs. Because of k-mer multiplicity filtering, DALIGNER’s

memory usage is 2–3 times lower when parameterized for an opti-

mized F1 score.

Many of the trends from the C.elegans datasets mirror the per-

formance on the smaller E.coli dataset. Again, computational per-

formance on the larger C.elegans datasets is still dominated by

Minimap (Fig. 5, Supplementary Figs S13, S14), being at least 5

times faster than any other method. DALIGNER’s performance

seems to generally scale well, especially when k-mer filtering is per-

formed (within an order of magnitude of Minimap). With default

settings, MHAP is 2-3 times faster than DALIGNER, but is several

orders of magnitude slower, when the F1 score is optimized. The

performance of GraphMap shows that it does not scale well to large

number of reads (>100 000), and its calculations take an order of

magnitude longer than BLASR.

Of note is the performance of BLASR when run on PB and ONT

datasets with default settings, which is roughly on par with that of

DALIGNER (Fig. 5, Supplementary Figs S13, S14). When using

optimized parameters, BLASR is also at least twice as fast as MHAP

(Fig. 5, Supplementary Figs S13, S14). We had expected the compu-

tational time for DALIGNER and MHAP to scale better than

BLASR on the large C.elegans datasets, as any upfront costs (e.g.

MinHash sketch computation) would be amortized on larger

Table 2. An overview of sensitivity and precision on simulated and real error-prone long read datasets

Tool Simulated PB E.coli Simulated ONT E.coli PB P6-C4 E.coli ONT SQK-MAP-006 E.coli

Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%) Sens. (%) Prec. (%) F1 (%)

BLASR 91.0 81.9 86.2 95.2 75.1 84.0 66.0 96.5 78.3 89.9 73.0 80.6

DALIGNER 92.4 91.9 92.1 94.9 97.6 95.9 83.8 85.8 84.8 92.9 91.0 91.9

MHAP 91.5 88.0 89.8 95.1 86.5 90.6 79.8 79.8 79.8 91.2 82.0 86.3

GraphMap 90.1 96.5 93.1 90.4 96.0 93.1 71.7 94.0 81.4 90.6 93.4 92.0

Minimap 88.9 94.8 91.8 94.6 99.0 96.7 59.6 83.8 69.7 91.2 95.4 93.2

In both the PB and ONT simulated datasets, the best values, shown in bold face, are statistically significantly better than the other values. We derived these val-

ues from the best settings of each tool (according to the best F1 score) after a parameter search. We calculated confidence intervals for the sensitivity, specificity

and F1 scores using three standard deviations around the observed values. In the worst case, the error never exceeded 60.1%, 60.1% and 60.2% respectively.

Fig. 5. Wallclock time and memory on the PB P6-C4 (top) and simulated ONT

(bottom) C.elegans dataset on 100 000 randomly sampled reads. Each tool

was parameterized using default settings (left), or using settings from runs

yielding the highest F1 score on the simulated E.coli datasets (right)
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datasets. We note that these results seemingly contradict the results

found in previous studies (Berlin et al., 2015; Myers, 2014). This

may be due to different datasets and technology versions used by the

two studies, but to a greater extent this likely highlights the import-

ance of careful parameterization of each tool. Specifically, for

DALIGNER, it is important to filter the occurrences of k-mers (-t)

in each batch to maintain not only specificity, but also computa-

tional performance. For MHAP, increasing the sketch size increases

the sensitivity of the initial filter but increases computation.

The trends in memory performance on the C.elegans datasets are

generally consistent with E.coli datasets (Supplementary Figs S13,

S14). A notable exception however is the memory usage of

DALIGNER, which begins leveling off with increased number of

reads. Unlike with the E.coli dataset, this dataset is large enough

that DALIGNER begins to split the data into batches, reducing its

memory usage.

6 Discussion

Our study highlights that there are important considerations to fac-

tor in while developing new tools or improving existing ones.

6.1 Modularity
A tool that can report intermediate results may help reduce compu-

tation in downstream applications. For example, modularizing over-

lap candidate detection, overlap validation, and alignment can

provide flexibility when used in different pipelines. GraphMap’s

owler mode is an example of this, enabling users to generate

MHAP-like output for overlap regions, rather than a more detailed

alignment on detected regions. Further, compliance to standardized

output is highly recommended, including for generating intermedi-

ate results. Doing so would not only allow one to perform compara-

tive performance evaluations on a variety of equivalent metrics, but

also allow for flexibility in creating new pipelines. Examples of

emergent output standards include the Graphical Fragment

Assembly (GFA) (https://github.com/pmelsted/GFA-spec) format,

PAF (Li, 2016), and the MHAP output format.

6.2 Cache efficiency
Given the concepts presented, and along with our benchmarks per-

formed herein indicates that theoretical performance estimations

based on time complexity analysis might not be enough to conclude

on what works best. Traditional algorithm complexity analysis suf-

fers from an assumption that all memory access costs are the same.

However, on modern computers intermediate levels of fast-access

cache exist between the registers of the CPU and main memory. A

failed attempt to read or write data in the cache is called a cache

miss, causing delays by requiring the algorithm to fetch data from

other cache levels or main memory.

Cache efficiency in algorithmic design has become a major consid-

eration, and in some cases will trump many time complexity based

motivations for algorithmic development. For instance, though the ex-

pected time complexity of DALIGNER has a quadratic component

based on the number of occurrences of a k-mer in the dataset, its ac-

tual computational performance seems to be much better empirically.

The authors claim this is due to the cache efficiency of the method

(compared to using an FM-index) (Myers, 2014), and in practice this

also seems to be the case, as observed in our comparisons.

The basic concept of a cache efficient algorithm relies on mini-

mizing random access whenever possible, by serializing data

accesses in blocks that are small enough to fit into various levels of

cache, especially at the levels of cache with the lowest latency.

Algorithms that exploit a specific cache configuration utilize an I/O-

model (also called the external-memory model) (Aggarwal et al.,

1988; Demaine, 2002). Conceptually, these algorithms must have

explicit knowledge of the size of each component of the memory

hierarchy, and will adjust the size of contiguous blocks of data to

minimize data transfers from memory to cache.

In contrast to the I/O model, algorithms that are designed with

cache in mind, but do not explicitly rely on known cache size blocks

are called cache oblivious (Frigo et al., 1999). Cache oblivious algo-

rithms are beneficial, as they do not rely on the knowledge of the

processor architecture; instead they utilize classes of algorithms that

are inherently cache efficient such as scanning algorithms (e.g.

DALIGNER’s merging step of a sorted list).

6.3 Batching and batch/block sizes
For many of the methods surveyed in this paper, memory usage scales

linearly to the number of reads in the set, sometimes exceeding

100 GB on only 100 000 long reads (Fig. 5, Supplementary Fig. S12,

S13). Thus, to perform all necessary comparisons on large datasets (i.

e. to compute an upper triangular matrix of candidate comparisons)

the data must be processed in batches. Generally, it is better to use as

few blocks as possible, since the time required to perform all overlaps

is quadratic relative to the number of batches. Methods that have a

very low memory usage overall will be able to have the computational

benefit of splitting the data into fewer batches. Batching is handled in

different ways depending on the tool. Some tools have built-in split-

ting (DALIGNER/DAZZLER database with DBsplit and -I with

Minimap), and others have this process built into their associated

pipelines (e.g. MHAP and PBcR). Though BLASR may have more

scalable memory usage, it will eventually require splitting as the index

it uses is limited to 4 GB in size. To encourage the adoption of a tool

in different pipeline contexts, built-in batching is a desirable attribute

to ensure that memory usage scales with the dataset size.

6.4 Repetitive elements and sequence filtering
Any common regions due to homology or other repetitive elements

may confound read-to-read overlaps, and may be difficult to disam-

biguate from true overlaps. Such repetitive elements may lead to

many false positives in overlap detection, and may increase the com-

putational burden, leading to lower quality in downstream assem-

bly. Thus, it is common for overlap methods to employ sequence

filtering, by removal or masking of repetitive elements to improve

algorithmic performance both in run time and specificity. Many of

the methods compared utilize k-mer frequencies to filter highly re-

petitive k-mers using an absolute or percent k-mer multiplicity (e.g.

MHAP). These filtering approaches can be affected by the batch size

when filters are seeded based on their multiplicity in each batch, ra-

ther than in the entire dataset (e.g. DALIGNER, Minimap). Another

common filtering strategy is to prevent the use of low complexity se-

quences (e.g. DALIGNER, Minimap).

Some overlaps caused by repetitive elements can be useful for

some assembly pipelines, such as in the identification of repeat

boundaries. Thus, provided that it is computationally tractable, it

may be beneficial for future overlap algorithms to assess the likeli-

hood that an overlap is repeat-induced; this metric would ideally be

standardized to facilitate modularity between pipelines.

6.5 Tuning for sensitivity and specificity
As we have presented in our review, methods to compute read-to-

read overlap vary in their designs and implementations, although
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they share similar concepts and parameters. For example, many of

the methods are k-mer based and, as expected, behave similarly

when that parameter is tuned; for instance, increasing k increases

specificity but decreases sensitivity especially on sequencing data

with high base error. At the current error rates for both PB and

ONT technologies, a k of 16 is optimal, but it can be expected to in-

crease as error rates decrease.

Another common theme amongst read overlap tools is that,

many methods employ an initial candidate discovery stage, followed

with a more specific candidate validation stage. Increasing sensitiv-

ity at the cost of specificity at the initial stage is typically tolerated

by the second stage. However, because the second stage is often

computationally expensive, one must accordingly tune parameters

such as –nCandidates in BLASR, which control the number candi-

dates considered for the validation stage.

Growing in popularity is the use of another prominent method,

minimizers (e.g. MinHash sketches), to generate a reduced representa-

tion of each sequence to help reduce memory usage and speed-up

comparisons. In this approach, tuning the corresponding parameters

(e.g. –w in Minimap and –num-hashes in MHAP) in a way that more

closely traces the original data representation will result in higher sen-

sitivity and sensitivity, but at a greater computational cost.

7 Conclusions

There are many challenges in evaluating algorithms that function on

error-prone long reads, such as those from PB and ONT instru-

ments. Although both sequencing technologies have comparable

error rates, characteristics of their errors as well as their read length

distributions are substantially different. Also, within each technol-

ogy there are rapid improvements in quality (Jain et al., 2015; Laver

et al., 2015), causing disagreement between datasets derived from

the same technology.

Despite these issues, we show that Minimap is the most compu-

tationally efficient method (in both time and memory) and is the

most specific and sensitive method on the ONT datasets tested. We

note that Minimap is not as sensitive or as specific as Graphmap,

DALIGNER or MHAP on the PB datasets tested. Our results shown

that GraphMap and DALIGNER are most specific and sensitive

method on PB datasets tested, though DALIGNER scales better

computationally. PB being a more mature technology compared to

ONT, it is not surprising to see several tools performing well on the

platform.

Here, we have provided an overview of leading read-to-read

overlap detection methods, comparing their concepts and perform-

ances. We think our results will guide researchers to make informed

decisions when choosing between these methods. As well, our eluci-

dation to open problems may help developers improve on existing

overlap detection tools, or build new ones.
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Marçais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient

parallel counting of occurrences of k-mers. Bioinformatics, 27, 764–770.

McCoy,R.C. et al. (2014) Illumina TruSeq synthetic long-reads empower de

novo assembly and resolve complex, highly-repetitive transposable elem-

ents. PLoS One, 9, e106689.

Morgulis,A. et al. (2006) A Fast and Symmetric DUST Implementation to

Mask Low-Complexity DNA Sequences. J. Comp. Biol., 13, 1028–1040.

Myers,E.W. (2000) A whole-genome assembly of Drosophila. Science, 287,

2196–2204.

Myers,G. (2014) Efficient local alignment discovery amongst noisy long reads.

In: International Workshop on Algorithms in Bioinformatics. Springer

Berlin Heidelberg, pp. 52–67.

O’Donnell,C.R. et al. (2013) Error analysis of idealized nanopore sequencing.

Electrophoresis, 34, 2137–2144.

Ono,Y. et al. (2013) PBSIM: PacBio reads simulator–toward accurate genome

assembly. Bioinformatics, 29, 119–121.

Quick,J. et al. (2014) A reference bacterial genome dataset generated on

the MinIONTM portable single-molecule nanopore sequencer. Gigascience, 3, 22.

Richards,S. and Murali,S.C. (2015) Best practices in insect genome sequenc-

ing: what works and what doesn’t. Curr. Opin. Insect Sci., 7, 1–7.

Ross,M.G. et al. (2013) Characterizing and measuring bias in sequence data.

Genome Biol., 14, R51.

Simpson,J.T. and Mihai,P. (2015) The theory and practice of genome sequence

assembly. Annu. Rev. Genomics Hum. Genet., 16, 153–172.

Smith,D.R. et al. (2008) Rapid whole-genome mutational profiling using next-

generation sequencing technologies. Genome Res., 18, 1638–1642.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

Sovi�c,I. et al. (2016) Fast and sensitive mapping of nanopore sequencing reads

with GraphMap. Nat. Commun., 7, 11307.

Sovi�c,I. et al. (2016) Evaluation of hybrid and non-hybrid methods for de

novo assembly of nanopore reads, Bioinformatics, 32, 2582–2589.

Stoddart,D. et al. (2009) Single-nucleotide discrimination in immobilized

DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. U.

S. A., 106, 7702–7707.

Travers,K.J. et al. (2010) A flexible and efficient template format for

circular consensus sequencing and SNP detection. Nucleic Acids Res., 38,

e159.

Treangen,T.J. and Salzberg,S.L. (2012) Repetitive DNA and next-generation

sequencing: computational challenges and solutions. Nat. Rev. Genet., 13,

36–46.

Ummat,A. and Bashir,A. (2014) Resolving complex tandem repeats with long

reads. Bioinformatics, 30, 3491–3498.

Wang,J.R. and Jones,C.D. (2015) Fast alignment filtering of nanopore

sequencing reads using locality-sensitive hashing. In: 2015 IEEE

International Conference on Bioinformatics and Biomedicine (BIBM).

Yang,C. et al. (2016) NanoSim: nanopore sequence read simulator based on

statistical characterization. bioRxiv, 044545.

1270 J.Chu et al.


	btw811-TF1

