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Abstract
Plant ecologists require spatial information on functional soil properties but are often 
faced with soil classifications that are not directly interpretable or useful for statistical 
models. Sand and clay content are important soil properties because they indicate soil 
water-holding capacity and nutrient content, yet these data are not available for much 
of the landscape. Remotely sensed soil radiometric data offer promise for developing 
statistical models of functional soil properties applicable over large areas. Here, we 
build models linking radiometric data for an area of 40,000 km2 with soil physico-
chemical data collected over a period of 30 years and demonstrate a strong relation-
ship between gamma radiometric potassium (40K), thorium (²³²Th), and soil sand and 
clay content. Our models showed predictive performance of 43% with internal cross-
validation (to held-out data) and ~30% for external validation to an independent test 
dataset. This work contributes to broader availability and uptake of remote sensing 
products for explaining patterns in plant distribution and performance across 
landscapes.
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1  | INTRODUCTION

Plant ecologists require accurate, spatially explicit environmental data 
to explain and predict vegetation pattern and process with quantitative 
models. Among environmental variables, edaphic variables are perhaps 
the most important for understanding plant ecology. Soil characteristics, 
often generalized as texture, nutrient availability, and influence on water, 
are critical in limiting plant species distributions (Diekmann, Michaelis, & 
Pannek, 2015) through influence on colonization and growth (Laliberté 
et al., 2012), and recovery and degradation patterns (Baer, Meyer, Bach, 
Klopf, & Six, 2010). Therefore, soil data are invaluable for developing 
spatial models in plant ecology. But, outside of agricultural land, there 

is a scarcity of accurate soil data at fine grain over large extents, partic-
ularly in natural and seminatural contexts. Field data (from point esti-
mates) are often extensively interpolated across the landscape (Taylor, 
Smettem, Pracilio, & Verboom, 2002) and groundtruthing is not always 
possible because soil data are costly and time-consuming to collect 
(Diekmann et al., 2015; Pracilio, Adams, Smettem, & Harper, 2006). 
Further, while soil maps generally provide categorical data on soil prop-
erties such as soil class (Moonjun, Shrestha, Jetten, & van Ruitenbeek, 
2017; IUSS Working Group WRB, 2015), continuous data such as per-
cent clay or sand content are seldom available. Continuous variables are 
desirable because they allow for flexibility in choice of modeling method 
and for more precise and generalizable models.
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Recent research suggests a remote sensing alternative to field 
sampling and soil analysis (Dent, MacMillan, Mayr, Chapman, & 
Berch, 2013). Soil radiometric data extracted from airborne gamma-
ray spectrometry have potential to be a cheaper and more precise 
method for continuous and quantitative soil mapping across large 
landscapes (McBratney, Mendonca Santos, & Minasny, 2003; Wong & 
Harper, 1999). Gamma-ray radiation, emitted from the natural decay 
of radioactive elements in the earth’s surface, is passively sensed 
by radiometers mounted on aircraft (Bierwith, 1996) or from porta-
ble ground-based units for small-scale observation (Viscarra Rossel, 
McBratney, & Minasny, 2010). The intensity of gamma-ray emissions is 
influenced by the bedrock and the processes of weathering and depo-
sition (IUSS Working Group WRB, 2015) and is proportional to the 
relative abundance of three elements: potassium (40K), thorium (²³²Th), 
and uranium (²³8U). The majority of emissions detected by spectrom-
eters are restricted to the top 30 cm of the ground surface (Taylor 
et al., 2002), with radiation signals attenuating with increased soil bulk 
density (Cook, Corner, Groves, & Grealish, 1996) and soil moisture 
(Carroll, 1981). To date, airborne gamma radiometric data have been 
applied widely in agriculture and geology, for precision fertilizer appli-
cation (Pracilio et al., 2006; Wong & Harper, 1999), determining soil 
moisture content (Carroll, 1981) and thickness of surface litter (Aznar, 
Paucar-Munoz, Richer-Laflèche, & Bégin, 2010), detection of differ-
ent rock types (Cook et al., 1996), and ore exploration in the mining 
industry (Bierwith, 1996). Many recent studies have linked variation 
in ground-based gamma-ray emissions with soil physical properties, 
bedrock, and chemistry (e.g., Dierke & Werban, 2013; Priori, Bianconi, 
& Costantini, 2014; Coulouma, Caner, Loonstra, & Lagacherie, 2016; 
Heggemann et al. 2017), demonstrating the considerable promise of 
and limitations of the approach. Plant ecologists are unlikely to be 
able to access ground-sensed radiometric data at the spatial scales of 
interest, but the potential of airborne radiometric data to represent 
landscape variation in soil physical properties is still poorly under-
stood (see Cattle, Meakin, Ruszkowski, & Cameron, 2003; Dent et al., 
2013; Grundy et al., 2015; Rouze, Morgan, & McBratney, 2017; Taylor 
et al., 2002).

White et al. (2003) observed that soil gamma radiometric K and 
Th signals, together with annual rainfall data, were correlated with 
vegetation patterns in the expansive alluvial plains and aeolian dune 
fields of northwestern Victoria, Australia. White et al. proposed that 
radiometric data were potentially a surrogate for soil texture in predic-
tive models of vegetation composition and structure. Soil texture is a 
measure of the relative proportion of sand, silt, and clay particles in the 
soil (McDonald, Isbell, Speight, Walker, & Hopkins, 1990). It influences 
plant growth directly by affecting root penetration (Bengough, 2005) 
and indirectly through its effect on soil moisture availability (Coffin 
& Lauenroth, 2011; Fernandez-Illescas, Porporato, & Laio, 2001) and 
availability of critical nutrients such as nitrogen (Fernandez-Illescas 
et al., 2001; Pugnaire, Armas, & Valladares, 2004). Around the same 
time as White et al.’s study, in 10 physiographic case studies of similar 
physiographic formations, Cattle et al. (2003) found that topsoils with 
strong clay content were distinguishable from sandy soils using radio-
metric Th and K.

Since the publication by White et al. (2003), plant ecologists have 
identified several relationships between vegetation structure and 
radiometric signal. For instance, gamma Th and K data were related 
to Eucalyptus microcarpa seed production (Vesk, Davidson, & Chee, 
2010), biological crust cover (Read, Duncan, Vesk, & Elith, 2008, 
2011), and nutrient contents (N, P, and K) of soils in remnant wood-
lands (Duncan, Dorrough, White, & Moxham, 2007).

Soil scientists (e.g., Cattle et al., 2003) have provided rich mech-
anistic insight into how the interplay between erosion and deposi-
tion sources may combine to influence gamma radiometric signal at 
local scales, but plant ecologists are eager to know to what extent 
radiometric data may be used as a surrogate for soil texture or 
other soil properties in modeling applications. The objectives of this 
study therefore were to better understand the relationship at land-
scape scales between soil signals of ɣTh and ɣK and soil properties. 
Specifically, we used boosted regression tree models to (i) explore 
explanatory relationships between soil physical properties (including 
soil texture, electrical conductivity, and soil pH) and gamma spec-
trometry data for a region of 40,000 km2; and (ii) test the usefulness 
of ɣTh and ɣK to predict soil texture to an independent dataset from 
the same region.

2  | MATERIALS AND METHODS

We developed explanatory and predictive models of the relation-
ships between soil properties and gamma radiometric data using two 
independent datasets.

2.1 | Study region

Data for this study were collected in northwest Victoria, Australia 
(34.0°–37.0°S and 141.0°–144.4°E; Figure 1), across a region of some 
40,000 km2. The region is relatively flat with mean elevation of less 
than 200 m above sea level. The geomorphology of the region is char-
acterized by unconsolidated to sublithic surficial materials deposited 
in a series of episodic aeolian, lacustrine, and fluvial processes (Bowler 
& Magee, 1978). Extensive siliceous and calcareous dunes and parna 
mantle much of the landscape apart from more restricted regions of 
active alluvial deposition or groundwater-controlled deflation (Pell, 
Chivas, & Williams, 2001; White et al., 2003). These overlapping 
phases of deposition and the disparate origins of the deposited mate-
rials have resulted in a landscape with contrasting soil properties, from 
fine-textured fertile clays to coarse-textured infertile sands (White 
et al., 2003). Importantly, exposures of bedrock and waterlogged soil, 
which may interfere with relationships between radiometric data and 
soil properties, are restricted in extent.

The region has a Mediterranean climate and is semiarid with 
prolonged periods of low rainfall (White, 2006). Long-term average 
monthly temperature ranges from 22.4°C in summer to 8.5°C in 
winter. At Beulah (a location in the center of the study area), average 
annual rainfall is approximately 370 mm, and most precipitation oc-
curs between May and October (Bureau of Meteorology 2017).
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2.2 | Data

Two soil datasets were available for modeling, which varied slightly 
in collection methodology and data available. A primary dataset was 
used for model training and development; a secondary dataset was 
used for model validation (testing).

The primary dataset was extracted from the Victorian 
Government Department of Economic Development, Jobs, Transport 
and Resources’ Victorian Soil Information System (VSIS; Hunter, 
Williams, & Robinson, 2010). The VSIS database collates soil data 
on 145 soil variables for approximately 1,500 sites within the study 
region.

Soil samples were collected from soil pits, existing vertical ex-
posures, soil core, or auger boring between 1967 and 1997. We 
extracted data for 925 sites and 20 soil variables and hereafter call 
this the “VSIS training dataset” (variables are detailed in Table 2). 
Criteria for including data were as follows: Variables must be ordi-
nal or continuous; variables must have data for >1,000 sites; vari-
ables must not be highly correlated; and samples must have been 
collected from upper soil profiles (<30 cm depth) because most 
measurable gamma rays emanate from the upper soil foundation 
(Wong & Harper, 1999). Soil samples were taken within the A and B 
horizons of the vertical soil profile at each site (where N = 895 and 
867 sites per horizon, respectively). Because sampling depth for 
each horizon varied somewhat between sites, average values were 
calculated for each site. Data for these two horizons were modeled 
separately.

The secondary dataset was provided by the Department of 
Environment, Land Water and Planning (hereafter “DELWP test data-
set”). These data from 398 locations were originally collected by White 
et al. (2003) to investigate native vegetation associations in north-
western Victoria. Soil samples were collected by auger boring at 5 
and 30 cm deep at each site (note, 30-cm data were missing from two 
sites). This dataset was used for independent model evaluation. All soil 
variables are detailed in Table 1.

2.3 | Soil texture variables

While both datasets included field estimates of soil texture class 
(McDonald et al., 1990) for all sites, laboratory analyses of soil particle 
fractions were only available for a subset of 209 of the 925 sites in the 
“VSIS training dataset.” This “VSIS subset” dataset comprised particle 
size analysis (PSA) for the A horizon at 189 sites and B horizon at 118 
sites. In lieu of PSA data for the full VSIS dataset and the “DELWP test 
dataset,” we predicted mean soil particle fraction from field estimates 
for the remaining sites (in both VSIS and DELWP datasets) following 
Minasny et al. (2007). Minasny et al. modeled the relationship be-
tween field soil classification and laboratory PSA. We used their model 
to transform the categorical field texture classes into two new numeric 
variables: sand (%) and clay (%). We chose to omit silt (%) from our 
analysis because it is the more difficult to estimate in the field, it is less 
common in the study area, and sand, clay, and silt components sum to 
100, so it was superfluous to model all three components. Sites that 
had multiple texture entries within a soil horizon (such as A1, A21, and 
A22) were first transformed into numerical values and then averaged.

Field texture assessment is subjective and can be influenced 
strongly by other soil properties such as organic matter content 
(Minasny et al., 2007). We tested for a linear relationship between 
predicted field texture variables and laboratory PSA (for the VSIS sub-
set dataset) to ascertain whether the relationship between the two 
variables was reasonable. In a regression of transformed field texture 
estimates versus laboratory PSA measurements, points located above 
a 1:1 trend line would indicate field measurements underestimate 
the true particle size, whereas points below the line would indicate 
overestimation.

2.4 | Gamma radiometric data and 
environmental variables

Spatially explicit independent data for all soil pit and auger loca-
tions were extracted from relevant databases. This included gamma 

F IGURE  1 Map of the study area in 
Australia (inset), featuring a grayscale image 
of radiometric Th (darker shade = greater 
emission), with the locations of soil pits 
(training dataset, crosses), and the test 
dataset (circles) superimposed
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radiometric data (Minty, Franklin, Milligan, Richardson, & Wilford, 
2009) and modeled terrain and climate data. Further details of soil 
radiometric and environmental variables are provided in Table 1.

The airborne radiometric survey records the data in units of count 
per second; however, the available dataset consists of data on trans-
formed scales (% for K and parts per million for Th) intended to reflect 
ground-level abundance in a way that is comparable across the land 
surface. Artifacts such as negative % K and ppm Th values can occur 
where site detection measures fall below background radiation levels 
(Minty et al., 2009). Radiometric U signal was not extracted because it 
generally existed as small traces with high background variation.

2.5 | Statistical modelling

We had two distinct purposes for modeling the “VSIS training data-
set.” First, we aimed to determine what physical soil properties 
explained variation in either ɣTh or ɣK signals (i.e., explanatory mod-
eling). Second, we aimed to understand how well ɣTh and ɣK plus 
environmental variables predict the fraction of sand and clay in soils 
(i.e., predictive modeling). These are typical regression modeling prob-
lems. We used boosted regression tree (BRT) models for both tasks 
because they can reveal relevant relationships and have a demon-
strated capability for reliable variable selection, automatic detection 

Training Test

Radiometric variables

γK (%)a −0.32 to 4.13 −0.28 to 2.83

γTh (ppm)a −2.11 to 27.9 −3.16 to 19.2

Soil profile (horizon or depth 
(cm))

A B 5 30

Soil texture variablesb

Sand (%) 27–94 (66) 27–94 (41) 27–94 (69) 27–94 (59)

Clay (%) 4–57 (24) 4–57 (44) 4–57 (22) 4–57 (30)

Soil chemical variables

pH 4.3–9.8 4.6–10.2 5–9.4 4.8–9.8

EC (dS/m) 0–86 0–44.7 0.05–8.2 0.05–11

Exchangeable Ca (meq/100 g) 0–36 (55%) 0–32 (70%) N/A N/A

Exchangeable K (meq/100 g) 0–4.2 (55%) 0.1–5.1 (70%) N/A N/A

Exchangeable Mg (meq/100 g) 0–21 (55%) 0.8–30 (70%) N/A N/A

Exchangeable Na (meq/100 g) 0–24 (55%) 0–22 (70%) N/A N/A

Chloride (mg/kg) 0–18 (32%) 0–2.4 (53%) N/A N/A

Organic carbon (%) 0–99 (48%) 0.1–2.5 (18%) N/A N/A

Available water capacity (AWC 
%)

0–54 (35%) 2–31 (36%) N/A N/A

Climate and environmental variables

Annual radiation (MJ/m²/
day × 10)c

151–184 165–185

Annual precipitation (mm)c 261–900 259–518

Annual temperature (°C × 10)c 106–166 138–167

Topographic wetness index 
(TWI)d

6341–10365 7202–10343

aDerived from 50-m gridded rasters, Department of Economic Development, Jobs, Transport and 
Resources, Victoria, for airborne gamma radiometric spectrometry surveys.
bEstimate from field texture following Minasny et al. (2007).
cDerived from maps computed from a 50-m digital elevation model (DEM) using the software package 
ANUCLIM 5.1 (Houlder, Hutchinson, Nix, & McMahon, 2000). The variables annual radiation and an-
nual temperature had been premultiplied by 10.
dTopographic wetness index computed using the Shuttle Radar Topography Mission (SRTM) 100-m 
digital elevation model and TOPOCROP version 1.2 (Schmidt, 2002) with an extension for ArcView 3.2 
that implements various Terrain Indices.
Minimum and maximum values are shown, and mean values for sand and clay (%) are given in paren-
theses. Percent of data available for each variable is indicated in parentheses where dataset was incom-
plete; N/A indicates data not available. Soil sampling locations are indicated, where VSIS sampling was 
stratified by A and B horizons (n = 895 and 867 sites, respectively) and DELWP sampling was stratified 
by depth 5 or 30 cm (398 and 396 sites, respectively).

TABLE  1 Soil and environmental 
variables used in modeling for both the 
primary “VSIS training dataset” and the 
“DELWP test dataset.”
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of interactions, and robust fitting of trends (Hastie, Tibshirani, and 
Friedman (2009). BRTs are a form of regression modeling from the 
machine-learning discipline that use boosting to combine many sim-
ple regression trees to improve predictive performance, and their 
value has been previously demonstrated in ecological studies (Buston 
& Elith, 2011; Elith, Leathwick, & Hastie, 2008; Fabricius & De’ath, 
2008; Read et al., 2008).

A cross-validation procedure was used for training and testing 
both the explanatory and predictive models of the “VSIS training data-
set” and to develop models that fit the main trends in the data but 
would remain general enough to predict well. We used 10-fold cross-
validation to identify the best tree with minimum predictive error (i.e., 
minimum error of predictions to new samples), where the data were 
split in ten “folds” and the model built from nine and validated against 
the tenth, ten times. Predictive performance was indicated by the 
“percent deviance explained” for the independent or held-out data in 
each iteration of the model.

We used field-estimated soil particle fraction (predicted from 
Minasny et al., 2007) for all boosted regression tree models, rather 
than PSA of soil texture, because we only had 209 observations of PSA 
compared to 925 field observations for the “VSIS training dataset.” In 
all cases, predictive deviance was lower for the subset compared to 
the full dataset.

All BRT models in this study were fitted in R (version 2.12.2, R 
Core Development Team 2011), using “gbm” package version 1.6-3.1 
(Ridgeway, 2010) plus custom code written by Elith et al. (2008). We 
used a slow learning rate of 0.005 and a tree size of 3. These settings 
allowed for reliable estimation of relationships and sufficient complex-
ity to model potential interactions between variables. All response 

variables were modeled as Gaussian following log transformation 
of ɣTh, square-root transformation of ɣK, and logit transformation 
of sand and clay content (i.e., logit ((y*0.998)+0.001)) to normalize 
response data.

2.6 | Independent dataset for model evaluation

We used the secondary “DELWP test dataset” from the same study 
region to evaluate predictive performance of models developed 
from the “VSIS training dataset.” We were particularly interested in 
how well ɣTh and ɣK plus environmental variables can predict soil 
fractions in an independent dataset. This provides a strong test of 
the predictive power of our original predictive models of sand and 
clay fraction, because the datasets were independent, and because 
the two datasets were collected under projects with nature conser-
vation (DELWP) and agriculture and economic development (VSIS) 
objectives, respectively.

To predict to the independent dataset, we used model objects 
from our predictive models (where the response was sand or clay frac-
tion in the upper soil horizon) and performed an external validation 
procedure on the independent DELWP dataset, following Elith et al. 
(2008). While the mean and quartiles of the upper soil profiles were 
equivalent between the datasets, mean sand and clay fraction of the 
lower soil profile (30 cm depth) of the DELWP dataset were 144% and 
68% of mean sand and clay fraction of the B horizon in the VSIS data-
set, respectively (Table 1). This was likely because soil samples in the 
DELWP dataset were taken at specific depths rather than by horizons. 
While a depth of 5 cm would capture the A horizon most of the time, 
a depth of 30 cm could sample A, B, and/or C horizon. We therefore 

F IGURE  2 Partial dependence plots of five most influential variables in explanatory boosted regression tree (BRT) models for potassium 
(ɣK %) and thorium (ɣTh ppm) radiometric data (from “VSIS training dataset”). A and B indicate upper and lower soil horizons, respectively. The 
model for ɣK had a predictive deviance of 36%, and variable contribution to the final model was as follows: sand % (A, 22.0%), clay % (A, 18.3%), 
soil pH (A and B, 8.7% and 6.2%, respectively), and soil chloride mg/kg (A, 5.5%). The model for ɣTh had predictive deviance of 53%, and variable 
contribution to final model was as follows: clay % (A, 20.8%), pH (A, 19.1%), sand % (A, 18.6%), pH (B, 7.8%), and chloride mg/kg (A, 4.6%). NB. 
Y-axis is plotted in the original scale for γK and γTh, but models were run on square-root-transformed data for γK and log-transformed data 
for γTh. Gray lines show 95% confidence intervals
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decided to restrict external model validation with the DELWP dataset 
to the upper (5 cm) profile only.

3  | RESULTS

3.1 | Comparison between transformed field texture 
variables and PSA

Transformed field texture measurements estimated sand and clay par-
ticle fractions, as measured by laboratory particle size analysis (PSA), 
with R2 = 0.64 for relationship between field-estimated clay and PSA 
and R2 = 0.67 for sand. Linear relationships between the transformed 
field estimates and laboratory particle size measurements (i.e., PSA) 
for the two soil texture variables in the “VSIS subset dataset” were 
very close to the ideal 1:1 lines, with relatively narrow confidence 
intervals (Fig. S1).

However, the range of field-estimated clay and sand fractions for 
the “VSIS training dataset” were restricted compared to particle size 
analysis (PSA) measures from the same dataset (Fig. S1). Maximum field-
estimated clay content was 60%, compared to ~20 measures of PSA be-
tween 60% and 80%, while field-estimated sand had a minimum content 
of ~25% compared to >20 measures of PSA between 10 and 20.

3.2 | Explanatory models for radiometric K and Th

Boosted regression tree models explained 53% and 36% of cross-
validation deviance for ɣTh and ɣK, respectively, in the “VSIS train-
ing dataset” (Figure 2). Sand and clay fraction (%) were generally the 
most influential variables in both models with sand explaining 22.0% 
of ɣK and 18.6% of ɣTh, and clay explaining 18.3% of ɣK and 20.8% 
of ɣTh. Other influential variables in the both final models were soil 
pH (horizons A and B) and soil chloride mg/kg (horizon A) and AWC. 
Results from explanatory models of the smaller “DELWP test dataset” 
were consistent with models of the “VSIS training dataset” (see Table 
S1 for further information).

3.3 | Predictive models for soil texture variables

Soil radiometric data, combined with environmental data, successfully 
predicted soil texture in the upper A horizon, using boosted regres-
sion tree models (Table 2, Figure 3). Cross-validation of models with 
held-out data gave predictive deviances of ~43% for both sand and 
clay fractions, respectively. External validation with the independent 
DELWP dataset showed weaker predictive power with deviances of 
~30% for both sand and clay fractions, respectively.

Both ɣTh and ɣK were the most important predictors of soil tex-
ture (A horizon) in predictive BRT models (Table 2). ɣTh had relative 
influence of ~45% on both sand and clay fractions, while ɣK had less 
relative influence of ~26% on both fractions. Sand (%) was negatively 
and clay was positively related to radiometric counts (ɣTh and ɣK), 
with similar response shapes for both types of gamma-ray emissions: a 
steep slope for low levels of emissions followed by a plateau at 10 for 
ɣTh and 2 for ɣK (Figure 3).

TABLE  2 Predictive boosted regression tree (BRT) models of 
field-estimated sand (%) and clay (%) in the upper (A) and lower (B) 
soil profiles for the “VSIS training datasets,” showing relative 
influence (%) of model variables: gamma radiometric (ɣTh and ɣK 
count) data, topographic wetness index (TWI), and climate data

Sand Clay

A B A B

Relative influence

γTh 44.7 42.5 45.0 40.2

γK 26.0 8.2 25.5 8.2

TWI 16.1 10.8 16.8 12.0

Annual precipitation 9.1 26.6 8.6 27.4

Annual temperature 2.6 4.6 2.6 4.0

Annual radiation 1.4 7.3 1.3 8.1

Predictive deviance

Internal cv on held-out 
data

43.0 29.2 43.2 29.8

External validation on 
“DELWP test dataset”

30.0 – 30.25 –

Predictive deviance (%) of the BRT model was calculated by internal cross-
validation on held-out VSIS training data and external validation on the 
independent “DELWP test dataset” (where the upper profile (A) is depth 
5 cm and lower (B) is depth 30 cm). Sand and clay content were classified 
in the field, transformed to percent following Minasny et al. (2007), and 
logit-transformed (logit ((y*0.998)+0.001)) prior to analyses.

F IGURE  3 Partial dependence plots of percent sand and clay 
(A horizon) from predictive boosted regression tree (BRT) models 
of “VSIS training dataset.” Plots show the influence of radiometric 
variables potassium (ɣK %) and thorium (ɣTh ppm). Soil texture 
percentage was transformed from field-estimated soil texture 
classes following Minasny et al. (2007). Gray lines show 95% 
confidence intervals. For details on variable relative influence, refer to 
Table 2. Note, plots show back-transformed response variables; the 
original models were run on logit-transformed data
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3.4 | External model validation

The range of soil fractions predicted by our BRT models for the in-
dependent DELWP test dataset were narrower than those observed 
(Figure 4). Predicted clay fraction at 5 cm depth ranged from ~9 to 
35 compared to the observed range of 4%–57%, while predicted 
sand fraction at 5 cm depth ranged from ~50 to 86 compared to the 
observed range of 27%–94%.

4  | DISCUSSION

Airborne radiometric data are readily available (Minty et al., 2009), 
accurate, and continuously scaled and show potential as a surrogate 
of soil texture for use in plant and vegetation modeling. Our study 
demonstrates that airborne gamma radiometric signals of potassium 
and thorium (ɣK and ɣTh) were moderately explained by soil physi-
cal variables within the context of our 40,000-km2 study region and 
that in turn K and Th could be useful predictors of soil texture at that 
scale. The results of this study, together with the underlying theory 
and mechanistic explanations from the literature, provide qualified 
support for the use of radiometric data as surrogates of soil texture in 
the study region.

4.1 | Effects of soil texture on radiometric signals

The most important soil physical properties explaining variation in 
the gamma radiometric data in northwestern Victoria were soil sand 
and clay fractions in the A horizon. We found that gamma radiomet-
ric Th and K both had strong positive relationships with clay (%) and 
negative relationships with sand (%). This result conforms with the 
expectation, and earlier studies relating soil properties and proxi-
mal sensing of gamma emissions (e.g., Coulouma et al., 2016). The 
relationship with clay and sand likely reflects the relationship be-
tween soil texture and cation exchange capacity (CEC). While CEC 
may vary with parent material and degree of weathering (Wilford & 
Minty, 2006), soils with a higher clay fraction tend to have a high 
CEC and soils with a high sand fraction tend to have a low to neg-
ligible CEC (Donahue, Miller, & Shickluna, 1977). Pure sand has 

no electrical charge and a low specific surface area, whereas clay 
minerals have surfaces that have negatively charged sites, which 
adsorb and retain positively charged ions (including metallic ions of 
thorium and potassium) and have a high specific surface area (Ellis, 
1987; Leonte, Nott, & Dunsmuir, 2003; Rachkova, Shuktomova, 
& Taskaev, 2010). In similar orographic formations in New South 
Wales, Cattle et al. (2003) confirmed that gamma radiometric data 
moderately explained soil composition, particularly clay and silt 
enrichment of topsoils.

While these results generally vindicate the use of gamma radio-
metric data as a coarse surrogate for soil texture in previous studies 
(White et al., 2003; Duncan et al., 2007; Vesk et al., 2010; Read et al., 
2008; 2011), considerable residual variation and prediction error re-
mained from our model validation procedures. This residual variation 
could be due to the nature of our investigation, which integrated in-
dependent and variously complete datasets over a considerable geo-
graphic scale with a wide range of pedogenic and geomorphological 
processes.

4.2 | Sources of error and the predictive 
performance of models

The performance of boosted regression tree (BRT) models predicting 
sand and clay content was higher when predicting to held-out data 
(with internal cross-validation) than to the independent “DELWP test 
dataset” (Table 2). This reduced performance predicting to an inde-
pendent dataset is unsurprising given distinct purposes of sampling 
between the two datasets and that their soil survey methodology was 
not identical. The “VSIS training dataset” was collected over a thirty-
year period by a large number of individuals, whereas the DELWP 
dataset was collected during a targeted survey by a small team of 
dedicated fieldworkers. Also, soil sampling was stratified into A and B 
horizons for the VSIS dataset, whereas soil sampling was stratified by 
depth for the DELWP dataset. Both these factors would contribute to 
the reduced model performance when predicting to the independent 
DELWP dataset.

While the strong positive relationships between PSA and 
field-estimated soil texture (Fig. S1) support the utility of Minasny 
et al.’s (2007) conversion table for transforming texture classes into 

F IGURE  4 Plot of observed A-horizon 
soil fractions in “DELWP test data” versus 
predicted soil fractions derived from 
boosted regression tree (BRT) model 
of “VSIS training data.” Observed soil 
fractions were from field-estimated sand 
and clay content, transformed to % sand 
and clay, and predicted soil fractions were 
from the VSIS (training) model based 
on field estimate of soil sand and clay 
content, transformed to % sand and clay. 
Transformations followed Minasny et al. 
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continuous variables, our data suggest this transformation is most use-
ful for calculating soil sand and clay fraction at moderate levels. Field 
estimates of soil texture tended to offer poor detection of sand con-
tent <25% and clay content >60%. Overall, field studies appeared to 
underestimate clay and overestimate sand content, with plots of field-
estimated texture vs laboratory PSA (Fig. S1) showing linear trend lines 
above the 1:1 for clay and below 1:1 for sand.

Considering the error related to field-estimated texture data, we 
believe our models provide strong support for the utility of radiomet-
ric data as a surrogate of soil texture. Equivalent models developed 
with PSA data would likely show a higher predictive performance, 
but our PSA dataset included <30% of the number of observations of 
the field-estimated dataset, so we did not detect improved predictive 
performance of BRT models developed with PSA data.

4.3 | Effects of pH on radiometric signals

Gamma K and Th data were related to soil pH, with stronger radio-
metric signals on acidic soils (Figure 2; Table 2). Dierke and Werban 
(2013) also found a negative relationship between Th and pH in a 
high-resolution study of one experimental site with homogenous tex-
ture. They observed that the relationship was only applicable up to pH 
of 7. Our models suggest a similarly constrained relationship between 
K and pH, but for Th, the negative relationship was sustained up to 8 
for the A-horizon sample and up to the maximum pH sampled for K in 
the B horizon. By contrast, Wong and Harper (1999) found a strong 
log-linear relationship between ground-based measured ɣK data and 
soil pH, but they observed stronger ɣK signals with more alkaline soil. 
They concluded the relationship was spurious. Together, results in-
dicate potential relationships between gamma radiation and soil pH 
exist, but suggest the relationships are not simple and may vary with 
study area.

4.4 | Limitations on the gamma radiation—soil 
texture relationship and broader application

The geomorphology of our study region is expected to be a rela-
tively favorable landscape for relating gamma radiometric signal to 
soil properties, being mostly comprised of well-sorted surficial mate-
rials deposited by wind and water and with virtually no outcroppings 
of groundwater and bedrock. Even so, Wilford, Bierwirth, and Craig 
(1997) noted interpretation of radiometric data could be compli-
cated where parent materials of those wind- and water-transported 
sediments have different origins. For example, Cattle et al.’s (2003) 
10 detailed case studies of ground-based and airborne gamma ra-
diometric data and associated soil formation narratives, found that 
superficially similar particles may be K-enriched or K-depleted de-
pending on the parent material, and thus emit considerably differ-
ent levels of gamma radiation. Their work suggests a natural limit 
on a soil textural interpretation of soil radiometric data within our 
study area and invites further exploration of radiometric data and 
soil properties with more tightly coupled datasets over similarly ex-
tensive landscapes.

The degree to which the relationships identified in our study 
area could be extrapolated to other regions has not been well tested. 
Researchers in similarly extensive and relatively uniform sedimentary 
landscapes could have some optimism, and anticipate a better result 
from the incorporation of contemporaneous, and uniformly collected 
soil site data. For other landscape types, there is good reason to be 
circumspect: Mixtures of sedimentary, plutonic, and volcanic geology; 
outcropping rock; greater relief; and variable microtopography would 
all individually be expected to increase the difficulty of modeling soil 
texture from radiometric data, to say nothing of their combination.

4.5 | Some lessons from proximal sensing

Ecologists interested in the prospects of reliably modeling soil texture 
from remotely sensed sources should also heed the insights emerging 
from studies using proximally sensed radiometric data, which permit 
tighter linking of soil properties and emissions. For example, Priori 
et al. (2014) predicted soil clay and sand content relatively well across 
three pedogenic groupings but found that surface stony elements sig-
nificantly complicated proximal gamma radiation signal, either imped-
ing emissions (calcareous stones) or contributing to strong emissions 
in the case of materials with high radionuclide content. Nonetheless, 
using proximally sensed radiometric data, Heggeman et al. (2017) re-
cently obtained good predictive performance of soil texture across a 
heterogeneous set of 10 pedogenically distinct sites using supervised, 
nonlinear machine-learning modeling techniques. While their exam-
ple is based on intensive replication within relatively few sites, it is 
encouraging.

Given the local idiosyncrasies of soil landscapes, other inherently 
interpolative spatial modeling approaches used in geostatistics such 
as such as regression kriging, multiadaptive regression splines, and 
multivariate thin-plate splines (Hutchinson and Gessler 1993; Omuto 
& Vargas, 2014; Ballabio, Panagos, & Monatanarella, 2016) may be 
better suited to transforming radiometric data and soil pit data into 
spatially explicit models of soil properties. Moreover, Gray, Bishop, 
and Wilford (2016) recently noted that the effective modeling of soil 
properties awaits useful covariates that represent parent material. 
Presumably, such developments will greatly improve the utility of air-
borne radiometric data for modeling soil properties in landscapes and 
contexts such as ours, and beyond.

5  | CONCLUSION

Plant ecologists will be encouraged to know there is a remote sens-
ing product that, in particular geomorphological contexts, is informa-
tive at broad scales about the soil properties most commonly related 
to vegetation associations. Our study demonstrated that radiometric 
data are a promising, although qualified, surrogate for soil texture. 
Relationships still need to be built and validated for a wider range of 
soil types and pedogenic and geomorphological contexts, probably 
combining and contrasting remote and proximally sensed gamma-ray 
emission data, but we are optimistic that useful tools for improving 



1982  |     READ et al.

predictive power of plant distribution and dynamic landscape vegeta-
tion models are not far away.
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