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With the development of industrialization in recent years, infrasound has become an important component of public noise. To
date, diverse studies have revealed the negative effects of infrasound on the central nervous system (CNS), especially the
learning and memory ability. It is widely reported that environmental enrichment (EE) ameliorates the learning and memory
deficits in different models of brain injury. Therefore, the present study was designed to determine the possible benefits of pre-
exposure to EE in preventing functional deficits following infrasound exposure and their related mechanism. Adult male rats
were given enriched or standard housing for 30 days. Following enrichment, the rats were exposed to 16Hz, 130 dB infrasound
for 14 days, and then their learning and memory ability was assessed. Changes to neuroinflammation, apoptosis, and oxidative
stress in the hippocampus were also detected. Our results showed that the infrasound-induced deficit in learning and memory
was attenuated significantly in EE pre-exposed rats. Pre-exposure to EE could induce a decrease in proinflammatory cytokines
and increased anti-inflammatory cytokines and antioxidant properties in the hippocampus. Moreover, pre-exposure to EE also
exerted antiapoptosis functions by upregulating the B-cell lymphoma/leukemia-2 (Bcl-2) level and downregulating the P53
level in the hippocampus. In conclusion, the results of the present study suggested that EE is neuroprotective when applied
before infrasound exposure, resulting in an improved learning and memory ability by enhancing antioxidant, anti-
inflammatory, and antiapoptosis capacities.

1. Introduction

Infrasonic noise refers to acoustic oscillation with a fre-
quency below 20Hz, which is hard to detect by the human
ear [1]. There are many natural sources of infrasonic noise,
including volcanic eruptions, ocean waves, and wind [2].
Currently, modern society has greatly increased infrasound
generation through man-made sources, such as occupational
conditions, industrial installations, vibration of mechanical
equipment inside enclosed spaces, wind turbines, and trans-
portation [3]. Opening the rear window in a car traveling at
100 km/h for example exposes the passengers to levels of
infrasound as high as 125 dB [4]. Its characteristics of strong
vibration/penetration, low attenuation during long distance
propagation, and difficulty in protection mean that infra-

sound has become an important component of noise pollu-
tion and a new health hazard to the public at large [5].

Mammalian organs’ inherent vibration frequencies are
just within the range of those of infrasound; therefore, infra-
sound can disturb normal functions of multiple organs by
triggering biological resonance [6, 7], in which the central
nervous system (CNS) is the most vulnerable organ [8–10].
Substantial and growing evidence has revealed that exposure
to infrasound can markedly impair the learning and mem-
ory ability of rats [9, 11]. The underlying mechanisms
include enhanced neuronal apoptosis, production of proin-
flammatory cytokines, oxidative stress, and microglial acti-
vation in the rat hippocampus [11–13]. However, it is
difficult to prevent human beings from infrasound-induced
learning and memory deficit because it is detectable in most
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cases [14]. Thus, it is necessary to explore novel methods
that effectively prevent against infrasound-induced learning
and memory deficit.

Environmental enrichment (EE) is a paradigm consist-
ing of enriched and novel housing conditions. EE has been
reported to be capable of ameliorating cognitive function
deficits associated with various brain injuries [15–17]. For
example, EE has shown its potential protective effects against
memory deficits in a rat model of traumatic brain injury
(TBI) [18–20]. This effect is achieved by decreasing the level
of proinflammatory cytokines (interleukin- (IL-) 1β and
tumor necrosis factor alpha (TNFα)) and increasing the level
of the anti-inflammatory cytokine (e.g., IL-10) [18–20]. In a
rat stroke model, EE was also shown to prevent stroke-
induced learning and memory disorder [21–23]. In this
process, EE alleviated oxidative stress, suppressed neuroin-
flammation, reduced cytokines, and alleviated astroglial
activation [21–23]. Our recent research also showed that
EE can protect against sepsis-associated encephalopathy-
(SAE-) induced learning and memory deficits by decreas-
ing the cytokines in the hippocampus and this effect was
mediated by vasopressin (VP) binding to the VP receptor
1a [24]. Although EE therapy is effective in reducing neg-
ative outcomes, its efficacy is limited by the fact that the
damage has already occurred, and its usage is palliative
rather than preventative. In recent years, a growing body
of research has focused on the preventive effect of EE
exposure before injury. Johnson and colleagues demon-
strated that preinjury exposure to EE enhanced resistance
against cognitive deficits caused by TBI [25]. In an exper-
imental model of cerebral ischemia, exposure to EE before
cerebral ischemia induction also exhibited a cognitive neuro-
protective effect [26]. Further research showed that pre-
exposure to EE can reduce the level of the inflammatory
cytokines and relieve the oxidative damage that contributes
to cognitive impairment [26, 27]. All these findings suggest
that pre-exposure to EE might be capable of generating
tolerance against infrasound-induced learning and memory
impairment. However, little information is available in the lit-
erature regarding the protective effects of pre-exposure to EE
against infrasound-induced learning andmemory impairment.

Accordingly, the aim of the present study was to evaluate
the preventive effect of pre-exposure to EE on infrasound-
induced learning and memory impairment and its underly-
ing mechanism. To this end, rats were given enriched or
standard housing for 30 days, and then exposed to 16Hz,
130 dB infrasound for 14 days. Their learning and memory
abilities were then evaluated. Additionally, we detected the
changes in neuroinflammation, apoptosis, and oxidative
stress in the hippocampus. If it demonstrates a protective
effect on learning and memory ability, pre-exposure to EE
could be an effective method to protect against learning
and memory deficits after infrasound pollution and could
be applied in clinical practice.

2. Materials and Methods

2.1. Animals. Male Sprague-Dawley (SD) rats (200–250 g)
were provided by the Animal Center of the China-Japan

Friendship Hospital, Beijing, China. The experimental pro-
cedures were carried out in accordance with the Guidelines
for the use of animals in neuroscience research (published
in the Membership Directory of the Society, pp 27-28,
1992) and were approved by the committee of Animal Use
for Research and Education of the China-Japan Friendship
Hospital. The animals were housed under a 12 h light/dark
cycle in a temperature-controlled room at 24± 1°C with free
access to food and water. In addition, animals were allowed
one week of acclimation to the experimental room before the
experiments.

2.2. Housing Conditions. Two housing conditions were used
in this study: EE conditions and standard environment con-
ditions (SE).

SE: Rats were housed in standard-sized polycarbonate
cages (25 cm×40 cm×20 cm), with two rats per cage located
in a quiet room. The cages allowed for moderate activity and
exploration.

EE: Rats were housed in a large cage (40 cm×54cm×30cm)
with six rats per cage. As previously described, the cages
contained multiple objects including wooden blocks, plastic
bone-shaped toys, a running wheel, and a plastic tunnel
[24]. Suspended ropes allowed for climbing from one level
to another. Objects were replaced twice a week. During the
enrichment period, food and water were available ad libi-
tum. After 30 days of EE housing, the levels and toys were
removed from the cages such that the animals no longer
received additional enrichment.

2.3. Experimental Grouping. According to the results of pre-
liminary experiments and previous studies [11, 28], the sam-
ple size for each experiment was determined.

For learning and memory testing, 24 rats were assigned
in equal numbers to four groups (6 rats in each group)
(Figure 1(a)): (1) the Sham-SE group. In this group, the rats
were maintained under SE conditions and were then placed
in the infrasonic chamber for 2 h once daily for 14 days, but
without infrasound exposure (IE) (i.e., sham IE); (2) the
Sham-EE group. In this group, the rats were maintained
under EE conditions and then received sham IE; (3) the
IE-SE group. In this group, the rats were maintained under
SE conditions, placed in the infrasonic chamber, and treated
with 16Hz and 130 dB IE for 2 h once daily for 14 days; (4)
the IE-EE group. In this group, the rats were maintained
under EE conditions and then placed in the infrasonic
chamber for and treated with 16Hz and 130 dB IE for 2 h
once daily for 14 days. For more detailed information about
infrasound device and its parameters, see Section 2.4.

There were no differences in the outcomes of the Morris
Water Maze (MWM) test between the Sham-EE group and
Sham-SE group (see Section 3.1 and Figure 2); therefore,
we only set a Sham-SE group as the control for the mecha-
nism experiments (Figure 1(b)). Rats (n=54) were assigned
in equal numbers to three groups for the mechanism exper-
iments (18 rats in each group): the Sham-SE group, the IE-
SE group, and the IE-EE group (Figure 1(b)). To investigate
the mechanism of pre-exposure to EE, we detected the level
of inflammatory/anti-inflammatory mediators, oxidative/
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antioxidant activity, apoptosis, and apoptosis-related mole-
cules and pathway. Thus, in each group, 6 rats were used
to detect the level of apoptosis and apoptosis-related mole-
cules using Fluoro-Jade C (FJC) staining and immunofluo-
rescent microscopy. The rats were sacrificed and brain
sections containing the hippocampus were prepared for
staining. Another 6 rats were used to detect the oxidative/
antioxidant activity. The rats were sacrificed and the hippo-
campus was homogenized. Then, homogenates were tested
for oxidant and antioxidant activity. Another 6 rats were
used to detect the levels of inflammatory/anti-inflammatory
mediators and apoptosis-related molecules using quantita-
tive real-time reverse transcription PCR (qRT-PCR) and
enzyme-linked immune-absorbent assays (ELISAs). The rats
were sacrificed and their brains were divided into the two
hemispheres. The hippocampus on one side was used for
qRT-PCR and the hippocampus on the other side was used
for ELISA.

2.4. Infrasound Device. After 30 days of housing (EE or SE),
the rats were given infrasound treatment.

The infrasound device used in this study has been
described in our previous study [7]. The infrasound device
consists of an infrasound generator (1110B, Beijing Intensity

Environment Institute, Beijing, China) with a power ampli-
fier (No. 7101, Beijing 702 Institute of Spaceflight Co, Bei-
jing, China), a chamber containing four loudspeakers
(YD500-8XA, Nanjing Electroacoustic Equipment Co., Nan-
jing, China), an infrasonic sensor (ACO Pacific, Belmont,
CA, USA), and a data collection system. The electric-
actuated infrasound generator can generate infrasound of
16Hz at 90–130 dB. A real-time ultra-low frequency signal
acquisition system was used to collect and analyze the fre-
quency and intensity of infrasound. The frequency and
intensity of infrasound are monitored using an infrasonic
sensor and displayed on the computer. The infrasonic gener-
ator system can generate standard infrasonic waves with a
frequency range from 2 to 20Hz and a sound pressure level
from 90 to 140 dB. The intensity and frequency were held
steady during 2 h of animal exposure and were monitored
by the data collection system.

According to previous studies [7], the rats’ learning and
memory abilities were most seriously affected when exposed
to 16Hz at 130 dB infrasound, and thereby this parameter
was adopted in the present study. The IE-SE or IE-EE groups
were exposed to infrasound of 16Hz and 130dB for 2 h once
daily for 14 days. The Sham-SE or Sham-EE group was
placed into the chamber without infrasound exposure.
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Figure 1: Experimental flow chart. (a) Learning and memory testing. (b) Mechanism experiments.
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2.5. Learning and Memory Testing. The MWM is widely
used to detect spatial learning and reference/working mem-
ory [29, 30]. This maze comprised a dark circular tank
(178 cm in diameter) that was virtually divided into four
quadrants (A, B, C, D). The tank was filled with water
(approximately 37 cm deep). A plexiglass platform (10.2 cm
in diameter) was submerged to a depth of 2 cm below water-
line (i.e., invisible to the rat) and placed approximately
28 cm from the pool wall of quadrant C. To provide external
space clues, several extra-maze visual objects of different
shapes and sizes were hung on the wall of the experimental
room. In this test, spatial learning was detected using a 5-
day block comprising of four trials per day. For each trial,
the rats were placed in the pool facing the wall at random
quadrants. If the rats did not climb onto the platform in
120 s, they were physically guided to it. Once they reached
the platform, the rats remained on it for 30 s and were then
given a 5-minute break before the next trial. As a control, the
platform was raised 2 cm above the water surface (visible to
the rat) on day 6 to identify the contributions of non-spatial
factors. On the same day, memory retention was also mea-
sured through a single probe trial. The platform was
removed, and the rats explored the tank for 30 s. The percent
time spent in the target quadrant (quadrant C) and the num-

ber of crossings of the platform’s previous location were
recorded.

2.6. Enzyme-Linked Immune-Absorbent Assay (ELISA).
Inflammatory mediators in the hippocampus were measured
using ELISAs. Rats were killed and decapitated. Tissues were
collected for ELISA as previously described [31]. Briefly, the
brains were placed in a chilled matrix and microdissected on
a chilled glass plate. The hippocampus was isolated, homog-
enized with normal saline, and centrifuged at 2000 rpm, 4°C
for 10min. The supernatants were used to detect interleukin
IL-10, IL-6, IL-1β, TNF-α, BCL2 associated X, apoptosis reg-
ulator (BAX), and caspase-3 using ELISA kits (Nanjing Jian-
cheng Bioengineering Institute, Jiangsu, China) following
the manufacturer’s instructions.

2.7. Measurement of Oxidant Activity in the Hippocampus

2.7.1. Lipid Peroxidation. To determine the extent of lipid
peroxidation in hippocampal homogenates, thiobarbituric
acid-reactive substances (TBARS) were determined using
the method described by Mihara and Uchiyama [32], with
minor modifications. Hippocampi were isolated and soni-
cated in 10% (w/v) using radioimmunoprecipitation assay
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Figure 2: (a) From day 3 onwards, the rats in the IE-SE group showed a longer latency time to the platform than the rats in the Sham-SE,
Sham-EE, or IE-EE group. Sham-SE vs. IE-SE: ####p < 0:0001; IE-SE vs. IE-EE: ∗∗∗∗p < 0:0001; IE-SE vs. Sham-EE: aaaap < 0:0001. (b) No
differences were exhibited in the latency to the visible platform. (c) The rats in the IE-SE group spent less time in target quadrant C
compared with the rats in the Sham-SE, Sham-EE, or IE-EE group. ∗p < 0:05, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001. (d) The rats in the IE-SE
group had lower target crossing times compared with the rats in the Sham-SE, Sham-EE, or IE-EE group. ∗∗p < 0:01, ∗∗∗p < 0:001. (e)
No differences were observed in the swimming speed. The assignment of order was counterbalanced across rats in this test. Data
represent means ± SEM, n=6.
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(RIPA) buffer (Tris 50mM pH7.4, 1% Triton X-100, NaCl
150mM, NaF 5mM, 0.1% sodium dodecyl sulfate, and 1%
sodium deoxycholate), to which a protease inhibitor cocktail
(Sigma, St. Louis, MO, USA) was added. Homogenates were
incubated on ice for 30min and then centrifuged at 600× g
for 10min (4°C). The supernatants were stored at -80°C until
analysis. A malondialdehyde acid (MDA) standard curve
was obtained by acid hydrolysis of tetraethoxypropane.
The TBA-MDA reaction was carried out by incubation at
95°C for 10min. Fluorescence was measured at an excitation
wavelength of 515nm and an emission wavelength of
548nm.

2.7.2. Advanced Oxidation Protein Products (AOPP). Mea-
suring AOPP directly determines the amounts of oxidized
proteins in biological samples. For AOPP determination,
tissue was homogenized by sonication in cold buffer con-
taining 50mM NaH2PO4 and 1mM EDTA at pH7.5. Then,
homogenates were centrifuged at 10,000× g for 10min (4°C).
Spectrophotometric determination of AOPP levels was per-
formed at 340 nm according to Barsotti’s method [33].

2.7.3. Nitric Oxide (NO). The final and stable end products of
NO in vivo are nitrates and nitrites, the sum of which (NOx)
reflects the total NO production. NOx was determined using
a colorimetric assay (Cayman Chemical Company, Ann
Arbor, MI, USA) as described previously [34]. The nitrates
in the sample homogenates were enzymatically converted
into nitrites by incubation with nitrate reductase and
NADPH, and total nitrite (nmol/mg protein) were then
monitored using the Griess reaction at 540nm.

2.8. Measurement of Antioxidant Activity in
the Hippocampus

2.8.1. Glutathione System. Reduced glutathione (GSH) and
glutathione disulfide (GSSG; oxidized glutathione) concen-
trations were measured in hippocampal extracts. A sample
of tissue was homogenized in a cold 1 : 1 mixture of 0.1M
potassium phosphate, 5mM EDTA (pH6.8), and 10% meta-
phosphoric acid. The homogenate was incubated on ice for
30min and then centrifuged at 100,000× g for 30min. The
resulting supernatant was used to determine GSH and GSSG
using the fluorescent probe ophthalaldehyde (OPA). Ali-
quots for GSSG determination were first incubated with N-
ethylmaleimide, which complexes with GSH, to avoid inter-
ference. After a further 15min of incubation with OPA, fluo-
rescence was determined at 420nm (excitation 350nm). The
total brain proteins were determined using the Bradford
protein assay. For glutathione reductase (GR, EC 1.8.1.7)
and glutathione peroxidase (GPx, EC 1.11.1.9) determina-
tions, hippocampi were sonicated in cold buffer containing
50mM NaH2PO4 and 1mM EDTA at pH7.5. Then, the
homogenates were centrifuged at 10,000× g for 10min
(4°C). The supernatant was used to determine either GR or
GPx activity using a kit (Nanjing Jiancheng Bioengineering
Institute) according to the manufacturer’s instructions.

2.8.2. Superoxide Dismutase. Hippocampal tissue was
homogenized by sonication as described in Section 2.7.

Then, homogenates were centrifuged at 600× g for 10min
(4°C). The superoxide dismutase activity (SOD, EC
1.15.1.1.) was estimated from the supernatant using a kit
(Nanjing Jiancheng Bioengineering Institute).

2.9. Immunofluorescent Microscopy. Rats were sacrificed by
perfusion fixation, in which the animals were deeply anes-
thetized using an injection of sodium pentobarbital (40mg/
kg, i.p.) and perfused transcardially with 10ml of saline,
followed by 40ml of phosphate buffer (PB; pH7.4) contain-
ing 4% paraformaldehyde. The brains were removed imme-
diately and placed in 0.1MPB containing 30% sucrose
overnight at 4°C. Next day, the brain samples containing
the hippocampus were cut serially into coronal sections of
25μm thickness on a freezing microtome. These brain sec-
tions were mounted onto glass slides or collected in phos-
phate buffered saline (PBS, pH7.4) for staining.

To identify B-cell lymphoma/leukemia-2 (Bcl-2) or p53
protein expression, mouse anti-p53 IgG (1 : 250, Abcam,
Cambridge, MA, USA) and rabbit anti-Bcl-2 IgG antibodies
(1 : 200, Abcam) were used. The negative control for every
experiment was constructed by replacing the primary anti-
bodies with 1% bovine serum albumin (BSA)-PBS. Immuno-
fluorescence staining was performed on the hippocampus
sections. Briefly, the sections were incubated for 48 h at
48°C with a mixture of primary antibodies in 0.01M PBS
(pH7.4) containing 1% normal donkey serum, 3% BSA,
and 0.1% Triton X-100. Subsequently, the sections were
rinsed in 0.01M PBS (pH7.4), and then incubated with
Alexa Fluor 488 conjugated donkey antimouse IgG (1 : 500;
Molecular Probes, Eugene, OR, USA) or Alexa Fluor488
conjugated donkey antirabbit IgG (1 : 500; Molecular
Probes) diluted in PBS for 4 h at room temperature. After
washing, the sections were mounted on gelatin-coated glass
slides, and coverslipped in 0.01M PBS (pH7.4) containing
50% glycerine and 2.5% triethylenediamine, and examined
using laser scanning confocal microscopy (LSCM).

2.10. Fluoro-Jade C Staining. We used FJC (Chemicon,
Temecula, CA, USA), which can specifically stain degenerat-
ing neurons in the CNS subject to various neurotoxin insults
and neurological diseases [35, 36].

Brain sections containing the hippocampus were pre-
pared as in Section 2.9. FJC staining was carried out using
the following standard procedures [35, 36]: (1) pretreat-
ment with an alcohol-sodium hydroxide mixture. The sec-
tions were immersed in a solution containing 1% sodium
hydroxide in 80% alcohol for 5min, followed by 70% alco-
hol and distilled water each for 2min. (2) Pretreatment
with potassium permanganate. The sections were then
transferred into a solution of 0.06% potassium permanga-
nate for 10min, and rinsed in distilled water for 2min. (3)
FJC staining. The sections were immersed into 0.0001%
solution of FJC dye (Chemicon) dissolved in 0.1% acetic
acid vehicle (pH3.5) and stained for 10min. (4) Post
FJC treatment. The slides were washed with distilled water
three times for 1min each time and left to dry overnight
in the dark at room temperature. (5) The sections were
air-dried, dehydrated in ethanol, cleared in xylene, and
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coverslipped with DPX (distyrene, a plasticizer, and xylene).
Finally, the FJC-stained sections were examined under an
epifluorescence microscope or by LSCM (FluoView1000,
Olympus, Tokyo, Japan). The FJC-positive staining appeared
as a strong green color using the same filter system as that
used for activating fluorescein.

2.11. Quantitative Real-Time Reverse Transcription PCR
(qRT-PCR) Analysis. qRT-PCR analysis was performed for
apoptosis-related genes in the hippocampus. The rat supra-
optic nucleus (SON) or hippocampus was collected and total
RNA was obtained from the tissues using the Trizol reagent
(Invitrogen, Waltham, MA, USA) according to the manufac-
turer’s protocol. The mRNA was then reverse transcribed to
cDNA. The quantitative real-time PCR step was performed
using the ABI 7901HT sequence detection system (Applied
Biosystems, Foster City, CA, USA) using a Power SYBR
green PCR Master Mix kit (Applied Biosystems) and the
cDNA as the template. All the data were normalized to Actb
(β-actin) expression.

The primers used were designed and synthesized by
Takara (Dalian, China) and their sequences were as follows:
Actb, forward primer: CACGATGGAGGGGCCGGACTC
ATC, reverse primer: TAAAGACCTCTATGCCAACAC
AGT; Bcl2 (Bcl-2), forward primer: ATGCCTTTGTGGAA
CTATATGGC, reverse primer: GGTATGCACCCAGAGT
GATGC; p53, forward primer: AAGCCCTCCAAGTGTC
AGC; reverse primer: CGTCACCATCAGAGCAACG; Bax
(Bcl-2 associated X protein), forward primer: TGAAGA
CAGGGGCCTTTTTG, reverse primer: AATTCGCCGGA
GACACTCG; and Casp3 (caspase-3), forward primer: AT
GGAGAACAACAAAACCTCAGT; reverse primer: TTGC
TCCCATGTATGGTCTTTAC.

2.12. Statistical Analysis. The results are expressed as the
mean± S.E.M. The data were tested for normality using the
Kolmogorow–Smirnov (K-S) test. For the MWM data, the
differences between the Sham-SE, Sham-EE group, IE-SE
group, and IE-EE group were analyzed using two-way anal-
ysis of variance (ANOVA). For the data of FJC staining,
immunofluorescent microscopy, qRT-PCR, ELISA, oxidant
activity, and antioxidant activity testing, one-way ANOVA
was used. When a statistically significant difference was
found, Tukey’s post-hoc analysis was conducted. p < 0:05
was considered statistically significant. The statistical analy-
sis was performed using GraphPad Prism 9.0 software
(GraphPad Inc., La Jolla, CA, USA).

3. Results

3.1. Pre-Exposure to EE Ameliorated Infrasound-Induced
Learning and Memory Impairment. In this part, the effect
of pre-exposure to EE on learning and memory was deter-
mined using the MWM, a hippocampus-dependent learning
and memory task.

During the acquisition phase (learning testing), escape
latency (latency to reach the hidden platform) was recorded
for 5 consecutive days. The findings revealed that the Sham-
SE rats, the Sham-EE rats, and IE-EE rats performed better

in terms of escape latency than the IE-SE rats at days 3, 4,
and 5, suggesting that pre-EE housing ameliorated the
infrasound-induced impairment of learning (at day 3: IE fac-
tor F (1, 20) =64.7, p ≤ 0:001; environmental factor F (1, 20)
=0.3513, p = 0:5600; interaction F (1, 20) =9.290, p = 0:0063;
at day 4: IE factor F (1, 20) =54.90, p ≤ 0:001; environmental
factor F (1, 20) =29.91, p ≤ 0:001; interaction F (1, 20)
=15.45, p ≤ 0:001; at day 5: IE factor F (1, 20) =84.60, p ≤
0:001; environmental factor F (1, 20) =70.85, p ≤ 0:001;
interaction F (1, 20) =111.0, p ≤ 0:001. Post-hoc analysis:
Sham-SE vs. IE-SE group: day 3: p ≤ 0:001, day 4: p ≤ 0:001,
day 5: p ≤ 0:001; Sham-EE vs. IE-SE group: day 3: p ≤ 0:001,
day 4: p ≤ 0:001, day 5: p ≤ 0:001; IE-EE vs. IE-SE group: day
3: p = 0:0784, day 4: p ≤ 0:001, day 5: p ≤ 0:001; Figure 2(a)).
In addition, latency to the visible platform was also recorded
at day 6. The results showed no significant differences among
the three groups (IE factor F (1, 20)=0.7492, p = 0:3970;
environmental factor F (1, 20)=0.01529, p = 0:9028; interac-
tion F (1, 20)=0.01529, p = 0:9028; Figure 2(b)), confirming
that vision was not responsible for the differences observed
in escape latencies. The above results suggested that pre-
exposure to EE ameliorated infrasound-induced learning
deficits.

At day 6, the platform was removed and time spent in
quadrant C and crossing times of the platform zone were
recorded and analyzed for reference/working memory reten-
tion. The results showed that the rats in the Sham-SE, Sham-
EE, and IE-EE group displayed enhanced memory retention,
as demonstrated by a greater percentage of allotted time
spent in quadrant C, when compared with the IE-SE rats
(IE factor F (1, 20) =32.27, p ≤ 0:001; environmental factor
F (1, 20) =9.468, p = 0:0059; interaction F (1, 20) =0.8964,
p = 0:3551. Post-hoc analysis: Sham-SE vs. IE-SE group:
p ≤ 0:001; Sham-EE vs. IE-SE group: p ≤ 0:001; IE-SE
vs. IE-EE group: p = 0:0455; Figure 2(c)), suggesting that
pre-exposure to EE relieved infrasound-induced memory
impairment. The results of the crossing times of the
platform zone showed similar results. The rats in the
Sham-SE, Sham-EE, and IE-EE group crossed the plat-
form zone more often than those in the IE-SE group
(IE factor F (1, 20) =14.31, p = 0:0012; environmental
factor F (1, 20) =5.990, p = 0:0237; interaction F (1, 20)
=8.366, p = 0:009. Post-hoc analysis: Sham-SE vs. IE-SE
group: p ≤ 0:001; Sham-EE vs. IE-SE group: p = 0:0014; IE-
SE vs. IE-EE group: p = 0:0060; Figure 2(d)).

Lastly, no significant differences in swimming speed
were observed among the three groups (IE factor F (1, 20)
=0.052, p = 0:8208; environmental factor F (1, 20) =1.536,
p = 0:2296; interaction F (1, 20) =0.608, p = 0:4443;
Figure 2(e)), indicating that no motor deficits contributed
to the above differences.

No differences were shown between the Sham-EE group
and Sham-SE group in the learning and memory testing,
which indicated that environmental factors had no effect
on the sham rats. Thus, to highlight the mechanisms under-
lying the positive effect of pre-exposure to EE on the learn-
ing and memory ability under IE conditions, we only set a
Sham-SE group as the control in the following mechanism
experiments.
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3.2. Pre-Exposure to EE Inhibited Inflammatory Cytokines
but Enhanced Anti-Inflammatory Cytokines. In the hippo-
campus, accumulating evidence has demonstrated that
inflammatory mediators play important roles in the impair-
ment of learning and memory [37–40]. Accordingly, in the
present study, we examined the changes of inflammatory
mediators in the hippocampus.

Compared with that in the Sham-SE group, there was an
increase in IL-1β, IL-6, TNF-α, and IL-10 levels in the hip-
pocampus of the IE-SE rats (Sham-SE vs. IE-SE group: IL-
1β: p ≤ 0:001, IL-6: p ≤ 0:001, TNF-α: p ≤ 0:001, IL-10: p =
0:0136; Figures 3(a)–3(d)). At the same time, the levels of
IL-1β, IL-6, and TNF-α in the IE-EE group were also lower
than those in the IE-SE group (IE-SE vs. IE-EE group: IL-1β:
p = 0:0010, IL-6: p = 0:0036, TNF-α: p = 0:0187, Figures 3
(a)–3(d)). In contrast, as an anti-inflammatory cytokine,
the IL-10 level in the IE-EE group exhibited an increased
trend when compared with that in the IE-SE group (IE-SE
vs. IE-EE group: IL-10: p = 0:0120; Figures 3(a)–3(d)),
indicating that pre-EE housing skewed the IE-induced

proinflammatory profile towards an anti-inflammatory pro-
file in the hippocampus.

Taken together, these results suggested that pre-exposure
to EE induced a decrease in proinflammatory cytokines and
an increase in anti-inflammatory cytokines.

3.3. Pre-Exposure to EE Decreased Oxidative Stress in the
Hippocampus. It is widely reported that oxidative stress is
responsible for the learning and memory impairment in var-
ious pathological conditions [41, 42]. In this part, we
detected the changes in oxidant activity in the hippocampus.

In the IE-SE group, there was a significant increase in
TBARS level when compared with that in the Sham-SE
group (Sham-SE vs. IE-SE group: p = 0:0048; Figure 4(a)),
while the TBARS level in the IE-EE group did not differ
significantly from that in the Sham-SE group and was lower
than that in the IE-SE group (IE-SE vs. IE-EE group: p =
0:0121; Figure 4(a)).

A similar response was found for AOPP (Figure 4(b)).
After infrasound exposure, the AOPP level in the
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Figure 3: (a) The IL-1β level in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (b) The IL-6 level
in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (c) The TNFα level in the hippocampus in the
IE-SE group was higher than that in the Sham-SE or IE-EE group. (d) The IL-10 level in the hippocampus in the IE-SE group was higher
than that in the Sham-SE group and was lower than that in the IE-EE group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001. Data
represent means ± SEM, n=6.
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hippocampus of the IE-SE group was significantly higher
than that in the Sham-SE group (Sham-SE vs. IE-SE group:
p ≤ 0:001; Figure 4(b)). Again, the IE-EE group also pre-
sented a lower AOPP level compared with that in the IE-
SE group (IE-SE vs. IE-EE group: p = 0:0097; Figure 4(b)).

In this study, we also detected the changes in NOx. As
expected, IE also induced a significant increase in the level
of NOx compared with that in the Sham-SE group (Sham-
SE vs. IE-SE group: p ≤ 0:001; Figure 4(c)). However, for
the rats subjected to pre-exposure to EE and IE, the NOx
level returned to basal values and showed no difference with
that in the Sham-SE group (IE-SE vs. IE-EE group: p =
0:0012; Figure 4(c)).

Analysis of the markers of oxidative stress showed that
exposure to infrasound caused significant oxidative stress,
which could be inhibited by pre-exposure to EE.

3.4. Pre-Exposure to EE Enhanced Antioxidant Activity in the
Hippocampus. Oxidative stress depends on the balance
between antioxidant and oxidant elements. Considering that
IE increased hippocampal oxidative stress, the present
results also showed that IE led to a significant decrease in
the principal antioxidant molecules in the hippocampus,
GSH, and SOD.

GSH was oxidized after IE, with a reduction in its hippo-
campal level when compared with that in the Sham-SE

group (Sham-SE group vs. IE-SE group: p = 0:029, Figure 5
(a)). Correspondingly, after IE, an increase in GSSG was
found in the hippocampus (Sham-SE vs. IE-SE group: p ≤
0:001; Figure 5(b)), which resulted in a decrease in the oxi-
dized GSH/GSSG ratio in the IE-SE group (Sham-SE vs.
IE-SE group: p ≤ 0:001; Figure 5(c)). However, after pre-
exposure to EE, the decrease in GSH and the increase in
GSSG caused by IE were inhibited (IE-SE vs. IE-EE group:
GSH: p = 0:0185, GSSG: p = 0:0065; Figures 5(a) and 5(b)),
leading to a relative higher GSH/GSSG ratio (IE-SE vs. IE-
EE group: p = 0:0072; Figure 5(c)).

Another important enzyme with antioxidant activity is
superoxide dismutase (SOD), which showed a significant
decrease in the IE-SE group (Sham-SE vs. IE-SE group: p ≤
0:001; Figure 5(d)). However, in the IE-EE group, the SOD
activity in the hippocampus was restored during IE (IE-SE
vs. IE-EE group: p = 0:0313; Figure 5(d)).

3.5. Pre-Exposure to EE Regulated Apoptosis-Related
Molecules. Exposure to infrasound causes a significant
increase in apoptosis, which also contributes to the impair-
ment of learning and memory. P53 and Bcl-2 have been
shown to regulate the apoptotic processes in opposite man-
ners [43–45].

As shown in Figure 6(a), p53-positive neurons were
present in the hippocampus. In the Sham-SE group, the
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Figure 4: (a) The TBARS level in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (b) The AOPP
level in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (c) The NOx level in the hippocampus
in the IE-SE group was higher than that in the Sham-SE or IE-EE group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. Data represent means ± SEM,
n=6.
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mean number of p53-positive neurons was about 2.83± 0.87
(Figures 6(a) and 6(b)). However, in the IE-SE group, the
mean number of p53-positive neurons increased signifi-
cantly to 17.17± 1.32, whereas this increase was inhibited
in the IE-EE rats (9.50± 0.88) (Sham-SE vs. IE-EE group:
p = 0:0012; IE-SE vs. IE-EE group: p ≤ 0:001 (Figures 6(a)
and 6(b)). However, the number of Bcl-2-positive neurons
showed the reverse change: after IE, the mean number of
Bcl-2-positive neurons significantly decreased from 22.50
± 0.87 to 8.33± 1.28 (Sham-SE vs. IE-SE group: p ≤ 0:001,
Figures 7(a) and 7(b)). As expected, in the IE-EE group,
the mean number of Bcl-2-positive neurons was partially
restored to 16.00± 1.46, which was higher than that in
the IE-SE group (IE-SE vs. IE-EE group: p = 0:0032,
Figures 7(a) and 7(b)). These results suggested that EE is
capable of ameliorating the IE-induced increase in p53-
positive neurons and the decrease in Bcl-2-positive neu-
rons. Moreover, the results from ELISA experiments also
showed increased p53 or decreased Bcl-2 protein levels
in the hippocampus after IE, and pre-exposure to EE
could neutralize these changes to the p53 and Bcl-2 levels
caused by IE (p53: Sham-SE vs. IE-EE group: p ≤ 0:001,
Sham-SE vs. IE-EE group: p = 0:1372; IE-SE vs. IE-EE group:

p ≤ 0:001; Bcl-2: Sham-SE vs. IE-SE group: p ≤ 0:001,
Sham-SE vs. IE-EE group: p = 0:0019; IE-SE vs. IE-EE
group: p = 0:0138; Figures 6(c) and 7(c)).

Previous studies have shown that Bcl-2 reduced apopto-
sis by influencing Bax and caspase-3 [28]. Therefore, we also
detected the changes in Bax and caspase-3 in the hippocam-
pus using ELISA. As expected, infrasound exposure
increased the levels of Bax and caspase-3 (Bax: Sham-SE
vs. IE-SE group: p = 0:0426, caspase-3: Sham-SE vs. IE-SE
group: p ≤ 0:001; Figures 8(a) and 8(c)) and pre-exposure
to EE could inhibit the increase in the levels of Bax and
caspase-3 (Bax: IE-SE vs. IE-EE group: p = 0:0108, caspase-
3: IE-SE vs. IE-EE group: p = 0:0026; Figures 8(a) and 8(c)).

qRT-PCR showed similar results. IE induced increases in
P53, Bax, and Casp3 expression, but a decrease in Bcl2
expression in the hippocampus, which could be blocked by
pre-EE housing (p53: Sham-SE vs. IE-SE group: p ≤ 0:001,
IE-SE vs. IE-EE group: p ≤ 0:001; Bcl2: Sham-SE vs. IE-SE
group: p = 0:0048, IE-SE vs. IE-EE group: p = 0:0461; Bax:
Sham-SE vs. IE-SE group: p ≤ 0:001, IE-SE vs. IE-EE group:
p = 0:0105; casp3: Sham-SE vs. IE-SE group: p ≤ 0:001, IE-
SE vs. IE-EE group: p = 0:0303; Figures 6(d), 7(d), and 8(b)
and 8(d)).
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Figure 5: (a) The GSH level in the hippocampus in the IE-SE group was lower than that in the Sham-SE or IE-EE group. (b) The GSSG level
in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (c) The ratio of GSH/GSSG in the
hippocampus in the IE-SE group was lower than that in the Sham-SE or IE-EE group. (d) The SOD level in the hippocampus in the IE-
SE group was lower than that in the Sham-SE or IE-EE group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001. Data represent means
± SEM, n=6.
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Thus, pre-exposure to EE exhibited antiapoptosis activ-
ity under infrasound exposure conditions by affecting the
levels of p53 and the Bcl-2/Bax/caspase-3 signaling pathway.

3.6. Pre-Exposure to EE Inhibited the Apoptotic Response to
IE. In the present study, apoptotic neurons were stained
using FJC dye in the hippocampus. As shown in Figure 9,
the FJC-positive cells were clearly observed in the hippocam-
pal pyramidal layer and granular cells of the dentate gyrus.
In the Sham-SE group, no FJC-positive neurons were
detected in the hippocampus (Figures 9(a) and 9(b)). How-
ever, in the IE-SE group, the mean number of FJC-positive
neurons dramatically increased to 30.17± 2.74 (Sham-SE
vs. IE-SE group: p ≤ 0:001; Figures 9(a) and 9(b)). Further-
more, in the IE-EE group, the mean number of FJC-
positive neurons was 16.50± 1.61, which was less than that
in the IE-SE group (IE-SE vs. IE-EE group: p ≤ 0:001;
Figures 9(a) and 9(b)). These results suggested that infra-
sound enhanced apoptosis in the hippocampus, which could
be inhibited by pre-exposure to EE.

4. Discussion

The results of the present study provided evidence that 30
days of EE before infrasound treatment protects learning

and memory, as indicated by the results of the MWM test.
Animals pretreated with EE has better prognosis following
infrasound exposure. This is likely achieved by enhancing
antioxidant, anti-inflammatory, and antiapoptosis capacities.

In the present study, we used the MWM to evaluate the
learning and memory ability. The MWM is widely used to
assess hippocampus-dependent spatial learning and mem-
ory and is closely related to hippocampal long-term potenti-
ation (LTP) [46–48]. In the present study, the increased
escape latency, less time in target quadrant C, and reduced
target crossing times after IE indicated impaired learning
and memory, which were consistent with the results of
previous studies [7, 11]. Our study also revealed that pre-
exposure to EE was capable of counteracting the
infrasound-induced impairment of learning and memory.
We noticed that the rats swam at about the same speed in
the pool among the groups, suggesting that no locomotor
factor disturbed their performance in the MWM. In addi-
tion, land-based locomotor impairment is not related to
swimming speed, which also accounts for the independence
of learning and memory performance in the MWM from
locomotor effects.

Neuroinflammation plays important roles in learning
and memory deficits under pathological conditions
[49–51]. In the present study, we demonstrated that after
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Figure 6: (a) P53 staining in the hippocampus in the Sham-SE, IE-SE, and IE-EE groups. (b) The number of p53-positive neurons in
the hippocampus in the IE-SE group was significantly higher than that in the Sham-SE or IE-EE group. (c) The p53 protein level in the
hippocampus in the IE-SE group was significantly higher than that in the Sham-SE or IE-EE group. (d) The p53 mRNA level in
the hippocampus in the IE-SE group was significantly higher than that in the Sham-SE or IE-EE group. ∗∗p < 0:01, ∗∗∗p < 0:001,
∗∗∗∗p < 0:0001. Data represents means ± SEM, n=6.
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infrasound exposure, the levels of IL-1β, IL-6, and TNF-α
increased significantly, which were consistent with the
results of previous studies [11, 12]. As a proinflammatory
cytokine, an increased IL-1β level inhibits LTP in the hippo-
campus by affecting Ca2+ conductance through N-methyl-
D-aspartate receptors (NMDARs) [52]. In increased IL-6
level also impairs the LTP by decreasing extracellular regu-
lated kinase (ERK)1/2 activation in the hippocampus [53].
Moreover, increased hippocampal TNFα concentrations
can block glutamate transporter activity and promote gluta-
mate neurotoxicity, eventually leading to an impaired LTP
[54]. Therefore, our results indicated that IE might impair
the learning and memory ability by increasing these proin-
flammatory cytokines. By contrast, IL-10 is the most impor-
tant anti-inflammatory cytokine, which counteracts the
damage caused by excessive inflammation. In this study,
we found that infrasound exposure induced an obvious
increase in anti-inflammatory cytokine (IL-10). By acting
on the IL-10 receptor in neurons, IL-10 facilitates the LTP
via regulation of GABAB synaptic transmission, thereby
increasing the learning and memory ability [55]. The
increase in IL-10 might be the result of a self-protection
mechanism against infrasound exposure. In addition, the
present study found that EE pre-exposure counteracted the
IE-induced change in inflammatory mediators in the hippo-
campus, suggesting a positive effect of EE on the learning

and memory ability under IE conditions. In fact, it has been
reported that EE affects cytokines, various immune compo-
nents, and glial cells under various pathological conditions
[24, 56–58]. The antineuroinflammatory effect of EE might
be achieved through several immune pathways [59, 60]: (i)
increased migration of macrophages into the CNS and
enhancement of their regulatory effects on microglia; (ii)
upregulation of mitogen-activated protein kinase (MAPK)
phosphatase-1 (MKP-1), which exhibits negatively regula-
tory roles in proinflammatory macrophage MAPK activa-
tion; and (iii) modulation of hippocampal T cells, which
are responsible for the modulation of microglia. Accord-
ingly, we will investigate the effect of EE pre-exposure on
these immune pathways under infrasound exposure condi-
tions in a future study.

The present study also indicated that TBARS and AOPP
(markers of oxidative stress) increased after infrasound
exposure and EE pre-exposure could reduce these increases
in oxidative stress. Past studies have shown that increased
learning and memory performance in rats is related to a
decrease in hippocampal oxidative stress [61–63]. For exam-
ple, amyloid β (Aβ) can induce spatial learning and memory
impairment that can be inhibited by blocking the increase in
oxidative stress [64]. Therefore, in the present study, we pro-
pose the improvement of learning and memory caused by
EE pre-exposure function by decreasing oxidative stress.
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Figure 7: (a) Bcl-2 staining in the hippocampus in the Sham-SE, IE-SE, and IE-EE groups. (b) The number of Bcl-2-positive neurons in the
hippocampus in the IE-SE group was significantly lower than that in the Sham-SE or IE-EE group. (c) The Bcl-2 protein level in the
hippocampus in the IE-SE group was significantly lower than that in the Sham-SE or IE-EE group. (d) The Bcl2 mRNA level in the
hippocampus in the IE-SE group was significantly lower than that in the Sham-SE or IE-EE group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗∗p < 0:0001.
Data represent means ± SEM, n=6.
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Under physiological conditions, there is a balance
between oxidative stress and the antioxidant system. In the
present study, infrasound reduced the amount of GSH in
the hippocampus and increased the amount of GSSG, with
a consequent reduction of the GSH/GSSG ratio, indicating
lower scavenging capacity of the glutathione system in the
hippocampus. Besides the reduced GSH/GSSG ratio, the

SOD level was also suppressed by infrasound. SOD can cat-
alyze superoxide anions into oxygen and hydrogen peroxide
[65], which has an important protective role against the
effects of reactive oxygen species (ROS). These results agree
with some previous studies [9, 11]. In this study, we found
that pre-exposure to EE was effective to block the
infrasound-induced decrease in the GSH/GSSG ratio and
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Figure 8: (a) The Bax level in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (b) The BaxmRNA
level in the hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (c) The caspase-3 level in the
hippocampus in the IE-SE group was higher than that in the Sham-SE or IE-EE group. (d) The Casp3 mRNA level in the hippocampus
in the IE-SE group was higher than that in the Sham-SE or IE-EE group. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001. Data represent means ±
SEM, n=6.
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Figure 9: (a) FJC staining in the hippocampus in the Sham-SE, IE-SE, and IE-EE groups. (b) The number of FJC-positive neurons in the
hippocampus in the IE-SE group was significantly higher than that in the Sham-SE or IE-EE group. ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001. Data
represent means ± SEM, n=6.
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SOD level in the hippocampus, indicating that EE pre-
exposure improved the antioxidant system. Oxidative stress
increases the production of ROS in the brain, which plays
a positive role in modulating the production of proinflamma-
tory mediators by preventingMAPK and nuclear factor kappa
B (NF-κB) activation in microglia cells [66]. Therefore, we
concluded that EE pre-exposure skews the infrasound-
induced increase in oxidative stress and decreased the antiox-
idant system, resulting in a decrease in proinflammatory
cytokines.

Infrasound induces neuronal apoptosis, which is also
associated with learning and memory deficiency [67–69].
The present study observed that pre-exposure to EE inhib-
ited neuronal apoptosis in the hippocampus, suggesting
antiapoptosis as one of the mechanisms underlying EE
pre-exposure blockade of infrasound-induced impairment
of learning and memory. Our results also showed that pre-
exposure to EE could inhibit the infrasound-induced
increase in p53 and decrease in Bcl-2. The p53 protein
mainly regulates cell-cycle arrest, senescence, and apoptosis
[70, 71]. Clearly, stress or trauma can lead to p53 activation
[72]. Therefore, as a background stressor, infrasound
activates p53, which results in increased apoptosis in the
hippocampus. Unlike p53, Bcl-2 is a small intracellular non-
glycosylated protein that inhibits the apoptotic pathway
when overexpressed in cells [73]. Our study also demon-
strated a significant inverse relationship between Bcl-2 and
p53 protein levels in the hippocampus after infrasound
treatment. This finding is in line with previous studies about
relationship between Bcl-2 and p53 protein levels [74].
There is also the crosstalk between Bcl-2/p53 and inflamma-
tory mediators. For example, activation NF-κB/p53 signaling
can enhance the increase in inflammatory mediators [75],
while Bcl-2 exerts an anti-inflammatory function through
inhibition of NF-κB [76].

This study had some limitation: (1) We assessed the
learning and memory ability, detected cytokine levels, oxida-
tive stress, antioxidant activity, apoptosis-related molecules,
and apoptosis only at a single time point (i.e., after 14 days
of infrasound exposure). In a future study, we will measure
the above indices at different exposure times to determine
the temporal effect of pre-exposure to EE. (2) In the mecha-
nism experiments, we only set a Sham-SE group as the con-
trol. Although there were no differences between the Sham-
EE group and Sham-SE group in the outcome of the MWM,
a Sham-EE group should have been included in the mecha-
nism experiments. Nonetheless, the primary aim of mecha-
nism experiments was to identify the mechanisms
underlying the effect of pre-exposure to EE on the learning
and memory ability under IE conditions. The evidence from
the present experimental design was sufficient to determine
the possible mechanisms underlying this process. In addi-
tion, past studies also revealed no differences in the level of
inflammatory factors between the Sham-EE group and
Sham-SE group [77, 78]. (3) Besides the enriched and novel
environment, EE housing is also accompanied by social
enrichment and intermittent physical exercise in animal
experiments, which are known to promote neuroprotection
[79]. Therefore, we did not rule out the role of social enrich-

ment or physical exercise in the pre-exposure to EE-induced
improvement of learning and memory in the present study.
A recent study showed that EE and physical exercise have
better neuroprotective effects than social enrichment in
memory deficits related to amyloid β (Aβ) neurotoxicity in
an Alzheimer’s (AD) disease model [79].

In conclusion, the results of the present study showed
that pre-exposure to EE is effective to ameliorate the learning
andmemory impairment caused by infrasound exposure. This
process is related to a decrease in proinflammatory cytokines,
oxidative stress, and apoptosis, and an increase in anti-
inflammatory cytokines and antioxidant activity. The exact
molecular mechanism will be explored in a future study.
Therefore, these results supported the view that pre-exposure
to EE could be a viable training mechanism to improve resil-
ience against the consequences of infrasound.
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