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Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel dis-
ease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are 
located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota 
and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction 
results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to 
protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including 
 Cl−/HCO3

− exchangers,  Cl− channels, aquaporins,  Na+/H+ exchangers, and  K+ channels. Here, we provide novel prospects 
for the treatment of GI mucosal diseases.
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Introduction

The gastrointestinal (GI) mucosa is a defense barrier against 
many harmful and immunogenic substances in the GI tract. 
The gastric mucosa lining the mucus-bicarbonate border 
comprises a continuous layer of epithelial cells connected 
by tight junctions (TJs) and blood vessels that supply oxy-
gen and nutrients [1]. A key aspect of the acid resistance 
of the gastric mucosa involves the diffusion of bicarbonate 
produced by parietal cells to the mucous layer [2]. The first 
layer of the intestinal barrier consists of the flora in the cav-
ity. The second layer is a microenvironment composed of 

an unstirred water layer, the glycocalyx, and a mucus layer. 
The third layer comprises intestinal epithelial connected by 
TJs and immune cell secretions in the lamina propria [3]. 
Acid–base imbalance, bacterial infection, mucus layer dam-
age, and microbial dysbiosis lead to mucosal diseases, such 
as peptic ulcer, hypergastrinemia, autoimmune gastritis, GI 
tumors and inflammatory bowel disease (IBD) [4–7].

Ion channels and transporters embedded in the cell 
membrane are essential for maintaining acid–base bal-
ance [8]. The stomach needs to withstand the high gastric 
acid environment caused by parietal cells, a condition that 
increases the probability of gastric mucosal damage and 
can even cause perforation [9]. The key to gastric mucosal 
resistance to acid is the production of bicarbonate; indeed, 
regardless of how much acid is produced, the correspond-
ing amount of bicarbonate can neutralize it [2]. Loss of ion 
channels and transporters causes GI mucosal injury, such 
as bicarbonate and mucous layer destruction [10–13], epi-
thelial cell loss [14, 15], glandular mucosal atrophy [16], 
TJ protein loss [17–19], flora imbalance [20] and mucosal 
blood flow changes [21]. Thus, ion channels and transport-
ers play important roles that directly affect the mucosa, 
as well as TJs, microbial distribution, and mucosal blood 
flow. In addition, ion channels and transporters are the most 
important component of acid–base equilibrium and closely 
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related to mucosal diseases. This review summarizes recent 
studies focusing on the pathophysiological role of ion chan-
nels and transporters in GI mucosal diseases, including 
 Cl−/HCO3

− exchangers,  Cl− channels, aquaporins,  Na+/H+ 
exchangers, and  K+ channels. (Table 1, Fig. 1).

Cl−/HCO3
− exchangers

Both the anion exchanger (AE) family (also known as the 
SLC4 family) and solute carrier 26 (SLC26) family mediate 
the transport of  Cl− and  HCO3

−. Members the AE family are 
 Cl−/HCO3

− exchanger proteins independent of  Na+ trans-
porters and have vital roles in regulating cell volume and 
maintaining intracellular pH [22]. Members of the SLC26 
family are the second-largest membrane proteins encoded 
by the human genome, including ten genes (SLC26A1–A11; 
SLC26A10 is a pseudogene) that are responsible for vari-
ous monovalent and divalent anion transmembrane transport 
pathways, affecting the composition and pH of secreted flu-
ids in the body. Among them, SLC26A1, -2, -3, -6, -7, -9, 
and -11 are expressed on the apical or basolateral membrane 
of GI epithelial cells [23–25].

Expression pattern and functional role of  Cl−/HCO3
− 

exchangers in the GI tract

AE2 in the GI tract

The AE family (SLC4A1–3) includes three subtypes: AE1, 
AE2, and AE3. AE2 is highly expressed on the basolateral 
membrane of gastric parietal cells, especially parietal cells 
in the neck of gastric glands [26]. Its activity is closely 
related to parietal cell secretion. AE2 mediates exchange of 
 Cl− and  HCO3

−, not only neutralizing luminal  H+ but also 
providing  Cl− for apical membrane secretion [27, 28]. AE2 
activity is considered the main mechanism for the outflow of 
 HCO3

− and the inflow of  Cl− in acid secretion on the baso-
lateral membrane. Mice lacking AE2 show reduced gastric 
acid and parietal cell numbers. Pathological conditions such 
as moderate expansion of the gastric gland cavity, severely 
impaired secretory tubule development, impaired secretory 
canaliculi, and decreased tubulovesicles also occur. There-
fore, AE2 is necessary for parietal cells to secrete gastric 
acid [29]. Although AE2 (a, b), one of the AE2 mRNA 
variants, does not affect basal acid secretion when it losses, 
but significantly reduces acid secretion after carbachol/his-
tamine stimulation [27].  NH4

+ can regulate AE. In an acidic 
environment, activation of AE2 by  NH4

+ helps to maintain 
 Cl−/HCO3

− exchange activity [30]. Carbonic anhydrase 
IX (CAIX) colocalizes with AE2 at the basolateral mem-
brane, forming a bicarbonate transport complex. Interaction 
between the extracellular catalytic domain of CAIX and 

AE2 maximizes the acid secretion capacity of parietal cells. 
CAIX reacts  CO2 with  H2O to produce  H+ and  HCO3

−, pro-
viding the required  H+ for apical membrane secretion; AE2 
provides  Cl− and pumps out excess  HCO3

− to maintain the 
acid–base balance in parietal cells. The catalytic domain of 
CAIX binds to AE and enhances transmembrane  HCO3

− flux 
[31]. In addition, CAIX and AE2 interaction promotes cell 
migration by controlling the pH of the protruding fronts of 
moving cells [32].

SLC26A3 in the intestinal tract

SLC26A3 (DRA), which is highly expressed on the api-
cal membrane of the ileum and colon, is closely related to 
bicarbonate secretion, a stable mucus layer, and the mucosal 
barrier. Mice lacking DRA exhibit a weakened mucus layer 
and low  HCO3

− secretion rate [10, 33]. DRA also directly 
binds to the TJ protein of intestinal epithelial cells, which 
can stabilize the structure of TJ and reverse the effect of 
tumor necrosis factor-α (TNF-α) on mechanical barrier 
damage. Even in the presence of TNF-α in IBD, cells 
overexpressing DRA show significantly increased levels 
of ZO-1 and occludin [17]. A recent report indicated that 
DRA is involved in maintaining healthy biological flora in 
the gut. DRA-deficient mice exhibit dysbiosis, especially 
in butyrate-producing bacterial [20]. Butyrate regulates the 
assembly and expression of TJ proteins, promotes intestinal 
barrier function, stabilizes the transcription factor hypoxia 
inducible factor-1 (HIF-1), and enhances epithelial barrier 
function [34, 35]. Therefore, abundant expression of DRA 
in the colonic epithelium may be an indispensable factor 
for maintaining the integrity of the epithelium, helping to 
protect the intestinal barrier from damage. In general, over-
expression of DRA is beneficial in an inflammatory environ-
ment. Although the signaling pathway remains unclear, these 
findings provide a new research direction.

Dysfunction in  Cl−/HCO3
− exchangers results 

in the development of mucosal diseases

Downregulation of AE2 is closely related to gastric cancer 
(GC) and hypergastrinemia

AE2 has been found to be downregulated in human GC 
tissues. It was reported that the occurrence of GC and 
insufficient gastric acid secretion in GC patients is related 
to downregulation of AE2 [36]. One of its mechanisms 
may be that overexpression of AE1/P16 in GC cells 
promotes degradation of AE2 in GC cells. Under physi-
ological conditions, AE2 mRNA is translated into pro-
tein, though translation of AE1 and P16 mRNAs is often 
inhibited for many reasons. However, the opposite occurs 
under pathological conditions [37]. After gastric acid 
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secretion is reduced, negative feedback often causes an 
increase in gastrin. Gastrin is a GI hormone that is mainly 
produced and secreted by G cells, stimulating gastric acid 
secretion and gastric fundus mucosa growth [38]. Stud-
ies have found that AE2 (a, b) knockout in mice causes 
G cell proliferation and hypergastrinemia [27]. Gastrin 
increases expression of AE2 in GC through early growth 
response 1 (EGR1), but this does not directly affect AE2 
[39]. In addition, trastuzumab combined with gastrin has 
been proven to be effective in treating GC, and one of its 
mechanisms is upregulation of AE2 in GC tissues [40]. 
Despite few studies on AE2 in gastric mucosal diseases, 
AE2 is reportedly a vital membrane protein for prevent-
ing GC, and it is expected to become a new target for 
GC treatment. Indeed, upregulating AE2 expression may 
improve therapy for GC.

DRA participates in the occurrence of IBD and promotes 
the transition to tumors

Mutations in the SLC26A3 gene can cause congenital chlo-
ride diarrhea (CLD) [41]. CLD patients are prone to IBD, 
including acute and chronic intestinal inflammation. The 
incidence of IBD in CLD patients is higher than that in 
healthy individuals, as verified in the latest research [42]. 
A large amount of evidence shows that IBD is related to 
intestinal barrier damage [43–45]. Ulcerative colitis (UC) 
is a type of IBD. Early events in the pathogenesis of UC 
include structural weakness of the colonic mucosal bar-
rier [46]. DRA is reduced in UC patients, especially in the 
absence of active inflammation [47]. Ding et al. showed that 
TNF-α interacts with DRA and downregulate its expression, 
leading to intestinal inflammation [48]. One possible regu-
latory mechanism is that TNF-α activates nuclear factor 
kappa-B (NF-κB), causing it to bind to the DRA promoter, 
which is also the primary mechanism for downregulating 
DRA expression [49]. Therefore, anti-TNF-α monoclonal 
antibodies are commonly used in the clinical treatment of 
IBD [50]. DRA is also regarded as a colon tumor suppressor 
[51], and its downregulation is associated with colorectal 
cancer (CRC) progression [52]. In summary, the absence of 
DRA may lead to mucosal diseases, including IBD and IBD-
related tumors, indicating that DRA may be a new treatment 
target for these mucosal diseases.

Cl− channels

Chloride channels are proteins on the cell membrane that are 
permeable to chloride ions or other anions and are divided 
into the voltage-gated ClC family, PKA-activated cystic 
fibrosis transmembrane regulator (CFTR) and intracellular 
CLICs. Both ClC-2 and ClC-3 belong to the ClC family 
[53]. As an active substance that protects the mucosa, pros-
taglandin (PG) has long been reported to stimulate chloride 
secretion [54]. Similarly, chloride is considered to be key to 
PG-induced recovery of the mucosal barrier in early stages 
[55], suggesting a particular relationship between chloride 
channels and the GI mucosa.

Expression pattern and functional role of  Cl− 
channels in the GI tract

ClC family in the GI tract

Both ClC-2 and ClC-3 belong to the ClC family. The former 
acts as a voltage-gated anion channel on the plasma mem-
brane of mammalian cells, and the latter mediates exchange 
of  Cl− and  H+ but is not a voltage-dependent anion channel 
[53].

Fig. 1  Dysfunction of ion channels and transporters resulted in gas-
trointestinal mucosal diseases. A Gastric mucosal diseases. B Intes-
tinal mucosal diseases. (The upward arrows represent upregulation 
or activation of ion channels/transporters, and the downward arrows 
represent downregulation or inhibition of ion channels/transporters)
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ClC-2 is an extensive  Cl− channel. In the GI tract, the 
intestine shows a higher level of ClC-2, whereas the channel 
is relatively less abundant in the stomach [56]. The expres-
sion of ClC-2 protein cannot be detected in isolated rabbit 
gastric glands, and it is believed that ClC-2 may not be the 
 Cl− transporter secreted by gastric acid in parietal cells [57]. 
Nevertheless, some researchers have found that ClC-2 protein 
is expressed on the apical membrane of rabbit gastric pari-
etal cells, with localization similar to that of  H+/K+-ATPase. 
Loss of ClC-2 can cause a decrease in the number of parietal 
cells and  H+/K+-ATPase expression, resulting in reduced acid 
secretion [58, 59]. ClC-2 is highly expressed on the basolateral 
and TJs of intestinal epithelial cells [60, 61], and its expres-
sion level in the early distal colon is higher than that in the 
late distal colon. Colonic electrical neutral absorption of NaCl 
and KCl requires basolateral ClC-2 channels [62]; it is also 
essential for the barrier function of the intestinal epithelium 
[63–65].

ClC-3 is a strongly outwardly rectifying, electrogenic 
 2Cl−/H+ exchanger [66] that is mainly expressed on intracel-
lular vesicles [67, 68]. ClC-3 is also expressed in the ileum and 
colon [69] and plays a role in regulating cell volume, the cell 
cycle, apoptosis, and cell migration [70–73].

CFTR in the GI tract

CFTR mediates the passive transport of  Cl−/HCO3
− [74]; it 

is expressed in the apical cell membrane of epithelial cells 
that secrete chloride [75] and participates in regulating the 
secretion and absorption of various epithelial tissues [76]. The 
expression of CFTR in the stomach is low [77]. Nevertheless, 
it has been shown to participate in the secretion of alkaline 
solid fluid in the “stomach sulcus” [78], and it has a regula-
tory role in gastric acid secretion [79]. CFTR modulates the 
cell cycle in GC cells. One of the relevant mechanisms is that 
CFTR is regulated by AMP-activated protein kinase (AMPK) 
to change the membrane potential [75]. These findings indi-
cate the importance of CFTR in maintaining the integrity of 
the gastric mucosal barrier, gastric acid secretion, and the cell 
cycle. Mutations in CFTR can also lead to impaired mucus 
hydration and clearance [80]. Secreted bicarbonate is essen-
tial to promote mucus regular spreading and hydration [81], 
which helps to maintain the intestinal flora and bicarbonate 
barrier [13, 82]. It is worth noting that bicarbonate contributes 
to relieving GI complications in patients with cystic fibrosis. 
The drug ivacaftor increases the pH of the proximal small 
intestine, which may enhance CFTR-mediated bicarbonate 
secretion [83].

Dysfunction in  Cl− channels results 
in the development of mucosal diseases

ClC family is related to dysfunction of the GI mucosa and GI 
cancer

In line with the effect of ClC-2 on the mucosal barrier, 
researchers have found that the gastric mucosa of ClC-
2-deficient mice display obvious pathological conditions, 
such as gastric gland dilatation, reduced gastric gland height, 
and cell layer disorder [58]. Acid damage is key to gastric 
ulcers. In an acid injury model, the ClC-2 agonist SPI-8811 
enhances the mucosal barrier by increasing the TJ protein 
occludin in the gastric mucosa, and  ZnCl2 acts as an inhibi-
tor to weaken this effect [84].  PGE2 stimulates the recovery 
of ischemic ileum mucosa through  Cl− secretion mediated 
by ClC-2 and decreased paracellular permeability [55]. 
Lubiprostone, a ClC-2 agonist, is used to treat ischemic 
intestinal injury, redistribute occludin from the cytoplasm 
to the outer cell membrane, and restore intestinal mucosal 
barrier function [85]. Regarding the recovery mechanism, 
ClC-2 regulates caveolin-1 and caveolae-mediated occlu-
din transport and enhances TJ barrier function [63]. Nighot 
et al. also proposed that ClC-2 acts as a protective factor in 
colitis [64], but later work showed that ClC-2 reduced the 
barrier function of the normal mucosa [86]. Overall, ClC-2 
has a regulatory effect on the homeostasis and tumorigenic-
ity of adherens junctions (AJs) in the intestinal mucosal epi-
thelium. First, loss of ClC-2 along with disruption of AJs 
upregulates T cell factor/lymphoid enhancer factor (TCF/
LEF1) target genes to promote colitis-associated tumo-
rigenicity. Second, inflammation is promoted in a tumor 
through reduced colonic crypt differentiation [65].

ClC-3 is highly expressed in GI cancers. Indeed, ClC-3 is 
regarded as a sign of poor prognosis in GC, and high expres-
sion of ClC-3 is significantly related to tumor aggressive-
ness, lymph node metastasis, and overall survival of patients 
with GC. ClC-3 is regulated by X-ray repair cross-comple-
menting 5(XRCC5), which binds to its promoter, inducing 
cancer cell proliferation, migration, and invasion through 
the transforming growth factor-β (TGF-β)/Smad signaling 
pathway. Researchers have found that knockdown of ClC-3 
inhibits tumor cell proliferation and migration through the 
phosphatidylinositol 3 kinase (PI3K)/Akt signaling pathway 
[87, 88]; the Wnt/β-catenin signaling pathway also promotes 
the occurrence and metastasis of CRC [89]. ClC-3 is highly 
expressed in neuroendocrine colon cancer [90]. Platelet-
activating factor (PAF), a crucial mediator of the pathogen-
esis of IBD [91], induces activation of ClC-3 in intestinal 
epithelial cells, thereby causing intracellular acidosis and 
apoptosis [92]. However, some researchers have reported 
that expression of ClC-3 is downregulated in IBD patients, 
which promotes intestinal epithelial cell apoptosis through 
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the mitochondrial pathway, reduces the number of Paneth 
cells, and weakens expression of antimicrobial peptides to 
promote bacterial invasion of the mucosa [69]. In addition, 
ClC-3-mediated regulation of intestinal tissue integrity is 
worthy of attention. In a lipopolysaccharide (LPS)-induced 
endotoxemia model, Huang et al. showed that Bax and cas-
pase 3 were significantly increased in the intestinal tissue of 
mice lacking ClC-3, promoting intestinal cell apoptosis and 
impairing intestinal integrity [93]. It has also been reported 
that ClC-3 inhibits the inflammatory response induced by 
LPS by inhibiting the Toll-like receptor 4 (TLR4)/NF-κB 
pathway in vivo and in vitro. These results provide a new 
perspective for inhibiting inflammation based on  Cl− chan-
nels [94].

Dysfunction of CFTR leads to cystic fibrosis (CF)‑related 
mucosal injury and GI cancer

CFTR protein dysfunction directly leads to the clinical 
symptoms and signs of cystic fibrosis (CF). Studies have 
shown that patients with CF have a significantly higher risk 
of GI cancer than the general population [95]. Spasmolytic 
polypeptide-expressing metaplasia (SPEM) and intestinal 
metaplasia (IM) are regarded as crucial factors in the occur-
rence of GC. CFTR was identified as a biomarker of SPEM 
with inflammation in mice and IM in humans [96]. CFTR 
is significantly elevated in the serum of patients with GC. 
Researchers have proposed that serum CFTR be regarded 
as a new biomarker for GC diagnosis. In addition, CFTR 
is significantly related to age in GC, and its expression 
increases with age. Logistic regression analysis confirms 
that serum CFTR can independently predict the occurrence 
of GC [97]. The gastric phenotype of CF animals includes 
submucosal edema and gastric gland mucosal expansion as 
the most common findings, and mucosal ulcers accompanied 
by inflammation and erosion are occasionally observed [98]. 
These results provide a new idea for the future treatment of 
gastric disease caused by CFTR dysfunction.

It has been reported that compared with the general pop-
ulation, the risk of CRC in adults with CF is 5–10 times 
higher [99], and CFTR has been identified as a candidate 
driver gene for CRC. The lack of CFTR promotes tumori-
genesis through long-term chronic inflammation caused by 
an immune response and microbial imbalance [100]. CFTR 
is significantly downregulated in CRC tissues, and its low 
expression is related to poor prognosis in CRC patients 
[101]. Nonfunctional CFTR can lead to bicarbonate defi-
ciency, resulting in decreased and dense intestinal mucus 
secretion in the CF mouse model [98, 102, 103]. Moreover, 
intestinal flora imbalance and bacterial overgrowth occur 
in the development of CF [104–106]. These conditions can 
directly lead to meconium intestinal obstruction and intes-
tinal inflammation.

Aquaporins

Aquaporins (AQPs) are a group of endogenous hydropho-
bic membrane channel proteins on the cell membrane; 13 
isoforms (AQP0–AQP12) are involved in the transport 
and circulation of essential biomolecules. Aquaporins are 
divided into three subfamilies: orthodox/classic aquapor-
ins, which only transport water; aquaporins that transport 
small solutes with water; and unorthodox/superaquaporins, 
which are permeable to charged and uncharged solutes. 
AQP3 and AQP4 are highly distributed in the stomach; 
AQP3 and AQP8 are the main subtypes in the colon [107, 
108].

Expression pattern and functional role of AQPs 
in the GI tract

AQP3 is mainly distributed on the basolateral membrane 
of gastric and intestinal epithelial cells [109] and is regu-
lated by trefoil factor (TFF) peptides and  H2O2 to par-
ticipate in cell proliferation and migration [110–114]. 
AQP3 is also an important contributor to maintaining the 
mucosal barrier. Knockdown of AQP3 leads to a signif-
icant decrease in expression of intestinal epithelial TJ-
related proteins claudin-1 and occludin, promoting para-
cellular permeability and bacterial translocation [18].

Although AQP4 is strongly expressed at the basolat-
eral membrane of gastric parietal cells [115, 116], Wang 
et al. found that AQP4 does not contribute to gastric fluid 
secretion, gastric pH, or fasting serum gastrin levels [115]. 
Nonetheless, AQP4 is essential for the repair of gastric 
mucosal integrity [117] and is closely related to the degree 
of parietal cell regeneration [118]. Omeprazole increases 
parietal cell proliferation and promotes re-epithelialization 
by upregulating expression of AQP4 [119]. In contrast, 
the protective effect of calcitonin-related gene peptide on 
gastric mucosal injury after cerebral ischemia–reperfusion 
in rats is mediated by inhibiting expression of AQP4 and 
degranulation of mast cells [120]. Results to date are con-
tradictory and need to be resolved.

AQP8 is located on the apical membrane of colonic 
epithelial cells [109] and is regarded as a sign of normal 
colonic epithelial cell proliferation [121]. AQP8 plays an 
essential role in absorbing intestinal water and may also 
be involved in intracellular osmotic regulation and mucus 
flux [122].
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Dysfunction in AQPs results in the development 
of mucosal diseases

Gastric fundic gland polyps (FGPs), precancerous lesions 
and GC are associated with AQPs

Expression of AQP3 in GC tissues is much higher than that 
in normal gastric tissues [116]. AQP3 affects the occur-
rence and development of GC. Helicobacter pylori infec-
tion is considered to initiate chronic gastritis and GC. In 
fact, in the presence of H. pylori, expression of AQP3 is 
upregulated through activation of the reactive oxygen spe-
cies (ROS)-HIF-1α-AQP3-ROS loop, which ultimately leads 
to GC [123]. As a critical point in precancerous GC, IM is 
receiving increasing attention. Researchers have proposed 
that AQP3 is closely related to the severity and classification 
of IM, and AQP3 can be used as a biomarker of precan-
cerous lesions [124]. In addition, AQP3 promotes the stem 
cell-like properties of GC by activating the Wnt/glycogen 
synthase kinase-3β (GSK-3β)/β-catenin signaling pathway 
[125]. Owing to its transport properties, AQP3 promotes the 
proliferation of GC cells through the production of energy 
and lipids [126]. AQP3 also contributes to occurrence of the 
epithelial–mesenchymal transition (EMT) in GC, which may 
involve PI3K/Akt/Snail pathway participation [127]. AQP3 
correlates positively with lymph node metastasis, low histo-
logical classification, and lymphatic vascular invasion [116]. 
However, some researchers believe that high levels of AQP3 
expression are associated with better overall survival [128].

AQP4 becomes rearranged or downregulated in a state of 
inflammation caused by histamine [129]. When H2 receptor 
gene knockout mice are infected with H. pylori, the ratio 
of AQP4 to  H+/K+-ATPase expression decreases, and a 
large amount of SPEM appears [130]. We hypothesize that 
upregulation of AQP4 might reverse the damage caused by 
inflammation. Regardless, long-term use of PPIs can lead to 
the development of sporadic FGP. One of the reasons may 
be that PPIs upregulate expression of AQP4 and increase the 
number of parietal cells, resulting in an imbalance of water 
flow [131, 132]. Nevertheless, the expression level of AQP4 
in GC tissues is also significantly lower than that in normal 
gastric tissues [133], and high expression is associated with 
poor overall survival [128].

IBD and CRC are associated with AQPs

In the early stages of IBD, expression of AQP3 mRNA in 
the intestinal mucosa is reduced [108]. Decreased intestinal 
crypt cell proliferation and epithelial cell death and a sig-
nificant decrease in glycerol permeability are all observed in 
the AQP3 deletion model. Glycerol treatment significantly 
increases the survival rate of AQP3-deficient mice and 
reduces the severity of colitis [134, 135]. Overall, AQP3 

can be considered a serum marker of CRC. CRC tissue can 
release AQP3 and cause an increase in AQP3 content in 
serum, which is related to CRC differentiation, staging, 
and survival [136]. Overexpression of AQP3 promotes the 
migration of CRC cells. Thus, AQP3 may be considered a 
potential indicator and therapeutic target for colon tumor 
metastasis and prognosis. AQP3 is highly expressed in CRC 
tissues and is related to tumor differentiation, lymph nodes, 
and distant metastasis [137, 138].

The level of AQP8 is significantly reduced in the inflamed 
colon, with localization changing from an apical to a basolat-
eral position. A reduction in AQP8 has also been confirmed 
in some chemically induced colitis models [139, 140]. Early 
studies showed that upregulation of peroxisome prolifera-
tor-activated receptor-γ (PPAR-γ) significantly reduces the 
inflammatory response in IBD mice [141]. For example, the 
ligand rosiglitazone delayed IBD in interleukin-10-deficient 
mice and significantly increased expression of the AQP8 
gene during the differentiation of surface epithelial cells 
[142]. It seems reasonable that an increase in AQP8 may 
benefit IBD repair. However, Zahn et al. found that upregula-
tion of AQP8 mRNA may lead to dehydration of the mucus 
layer and an increase in adhesion viscosity, which in turn 
affects mucus adhesion and ultimately disrupts the mucosal 
barrier of UC patients, especially in the actively inflamed 
colon [11]. Similar to inflammation, AQP8 is downregulated 
in CRC tissue. AQP8 can inhibit the growth of tumor cells, 
and CRC patients with high levels of AQP8 have a better 
survival time [143, 144].

Na+/H+ exchangers

Na+/H+ exchangers are present on the plasma membranes of 
all living cells and exchange intracellular  H+ and extracel-
lular  Na+ at a ratio of 1:1 to adjust the dynamic balance of 
intracellular pH and affect cell movement. The NHE family 
is divided into nine types: NHE1–9 (SLC9A1–9). Except 
for NHE5, all NHE subtypes have been detected in the GI 
tract and exhibit segmental differences and distinct cellular 
localization [145, 146].

Expression pattern and functional role of  Na+/H+ 
exchangers in the GI tract

NHE1 is expressed at the basolateral membrane of GI tract 
epithelial cells [147], and can promote the proliferation of 
gastric fibroblasts under the induction of insulin-like growth 
factor II [148]. It has been reported that activating NHE1 
increases the migration rate of gastric mucosal epithelial 
cells but that activating NHE2 under the same conditions 
leads to the opposite result. A possible explanation is that 
basolateral membrane proteins, including NHE1, translocate 
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to the leading edge during migration and that apical proteins 
may stay diffusely in the membrane [149].

NHE2 is expressed on the basolateral membrane of epi-
thelial cells [147, 150], but some researchers report apical 
membrane expression. NHE2 acts as a downstream effector 
of TFF proteins, which promote repair of the gastric epithe-
lium [151, 152]. NHE2 is also involved in the mucosal heal-
ing of gastric ulcers [153]. PG-induced NHE2 expression 
and activity inhibition stimulate recovery of the ischemic 
intestinal barrier [154]. However, deletion of NHE2 impairs 
barrier recovery, disrupts localization of the TJ proteins 
occludin and claudin-1 and downregulates their phosphoser-
ine levels. TJ protein phosphorylation is a key step in TJ 
assembly and is related to the intestinal barrier [19, 155].

NHE8 is located on the apical membrane of GI epithelial 
cells, especially in the colon, though low levels of mRNA 
are also detected in the fundus of the stomach. A lack of 
NHE8 does not affect primary gastric acid secretion, but 
the pH value of the gastric mucosal surface decreases. It is 
speculated that NHE8 is indirectly involved in the secretion 
of gastric bicarbonate [156], which helps to maintain the 
integrity of the bicarbonate barrier. Similar to what occurs 
in the stomach, NHE8 is essential for the secretion of intes-
tinal bicarbonate, production of antimicrobial peptides, and 
synthesis of Muc2 by Paneth cells [12, 15, 157]. In gen-
eral, Muc2 is a crucial structural component of the mucus 
layer, and its downregulation allows bacteria to contact the 
epithelium, directly triggering an inflammatory response 
[158–160].

Dysfunction of  Na+/H+ exchangers results 
in the development of mucosal diseases

NHEs participate in acid damage disease and GC

Although activating NHE1 can promote wound healing 
[149], recent studies have shown that NHE1 is closely 
related to the occurrence and development of GC. NHE1 
enhances the resistance of GC cells to 5-fluorouracil (5-Fu) 
by regulating the Janus kinase (JAK)/signal transducer 
and activator of transcription (STAT3) pathway [161]. 
The NHE1 antisense gene is significant for inhibiting the 
malignant behavior of human GC cells and growth as well 
as inducing cell apoptosis [162]. NHE2 gene deletion can 
lead to a severe gastric phenotype, including the gradual loss 
of parietal cells and principal cells and the development of 
gastritis. Mice lacking the NHE2 gene develop glandular 
mucosal gastritis as early as the 10th day after birth, with a 
maximum inflammation intensity within 17 to 19 days, fol-
lowed by total atrophy after one year [14, 16]. Nevertheless, 
downregulation of NHE2 is still observed for a long time in 
the regenerating epithelium formed by visual healing ulcers, 
which affects the gradient of  Na+ and  H+ in the cell; this may 

partly explain recurrence of peptic ulcers [153, 163]. The 
absence of NHE8 also dramatically promotes gastric ulcer 
development due to impaired bicarbonate secretion [156].

NHEs are involved in the occurrence of ulcers, intestinal 
inflammation and tumors

Nonsteroidal anti-inflammatory drugs (NSAIDs) are consid-
ered to be one of the fundamental causes of peptic ulcers. 
These drugs may enhance NHE2 proton excretion in colon 
tissues and play a role in acidification of the colon cavity, 
which will promote the development of ulcers [164]. Down-
regulation of NHE2 is closely related to IBD and related 
symptoms [165]. Inflammatory factors such as TNF-α and 
interferon-γ (IFN-γ) may inhibit NHE2 expression and activ-
ity in intestinal epithelial cells by activating NF-κB [166, 
167] though some researchers believe that NHE2 is not 
altered in the inflamed colon [168]. Furthermore, deletion 
of NHE8 both causes ulcerative colitis-like disease [169] 
and promotes the occurrence of colitis-related cancers in 
mice by increasing expression of leucine-rich repeat contain-
ing G protein-coupled receptor 5 (Lgr5) [170]. Somatosta-
tin (SST) can improve the diarrhea symptoms of colitis by 
increasing expression of NHE8 in the intestine [171], which 
may involve the Erk1/2-mitogen-activated protein kinase 
(MAPK) and SSTR2-p38-MAPK pathways [172, 173].

K+ channels

K+ channels are the largest ion channel family in mammals 
and among the transporters first thought to play a role in 
cell migration. There are four subtypes of  K+ channels: cal-
cium-activated  K+  (KCa) channels, internal rectifier  K+  (Kir) 
channels, voltage-gated  K+  (KV) channels, and double-hole 
 K+  (K2P) channels. In the intact polarized epithelium,  K+ 
channels localize to the root tip or basolateral side. GI ulcers 
are closely associated with potassium channels, though the 
opening of different potassium channels can produce differ-
ent results [174].

Expression pattern and functional role of  K+ 
channels in the GI tract

The  KATP channel, which is activated by ATP, is found in 
vascular endothelial cells [175]. There is much evidence 
that activating  KATP channels increases gastric mucosal 
blood flow in the gastric epithelial barrier and promotes 
mucosal repair. For example, in treatment of gastric ulcers, 
endogenous vasodilator calcitonin gene-related peptide 
and irsogladine maleate partially activate  KATP channels, 
increase gastric mucosal blood flow during gastric acid chal-
lenge, and mediate gastric protection [21, 176]. In addition, 
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the CO released by the tricarbonyldichlororuthenium (II) 
dimer can prevent the gastric mucosal oxidative damage 
caused by changes in gastric blood flow due to ischemia/
reperfusion involving the activity of  KATP channels [177].

Recirculation of  K+ on the mucosal side of parietal cells 
is required for gastric acid secretion [178]. KCNQ1, also 
known as  KV7.1, is a voltage-dependent K channel that 
regulates gastric acid secretion [179], and its expression is 
increased by gastrin [180]. KCNQ1 is located in tubulovesi-
cles and the apical membrane of parietal cells [181]. Acid 
secretion by parietal cells requires potassium channels and 
functional  H+–K+-ATPase and potassium channels. Potas-
sium secretion is necessary to maintain continuous  H+–K+-
ATPase activity, and KCNQ1 is the main apical potassium 
channel [182].

KCNN4, a medium-conductivity  Ca2+-dependent  K+ (IK) 
channel localizing to the apical and basolateral membrane 
of intestinal cells, is involved in duodenal bicarbonate and 
colonic Cl- secretion [183–185]. Early research found that 
KCNN4 causes the α-defensin secreted by Paneth cells in 
the small intestine to respond to bacteria and has mucosal 
defense effects that kill bacterial pathogens [186]. In terms 
of immunity, KCNN4 has a regulatory effect on T cell acti-
vation [187, 188] and participates in recruitment of mono-
cytes, macrophages, and possibly natural killer cells to the 
site of inflammation [189].

Dysfunction of  K+ channels result 
in the development of mucosal diseases

Downregulation or absence of different  K+ channels 
promotes the occurrence of gastric ulcers and gastric 
tumors

Early studies have shown that using the  KATP channel opener 
diazoxide can significantly reduce acute gastric injury or 
gastric ulcer in rats caused by indomethacin or ethanol, 
thereby accelerating mucosal repair. Conversely, the  KATP 
channel inhibitor glibenclamide enhances damage and weak-
ens the protective effect of  H2S on gastric mucosal injury 
[190–193]. NSAIDs have been shown to stimulate  K+ efflux 
and increase cell membrane permeability [194], which may 
be related to peptic ulcers caused by NSAIDs. As early as 
the 1960s, potassium ions themselves were shown to be the 
cause of certain types of peptic ulcers [195–197] though it 
remains unclear whether this is the result of  KATP channel 
participation. In general, the role of  KATP channels in repair 
needs to be confirmed.

KCNQ1 gene mutations have long been proposed to be 
related to increased susceptibility to dysplasia and prema-
lignant adenomatous hyperplasia of the stomach [198]. 
KCNQ1 gene polymorphism may also have predictive or 
prognostic value in determining susceptibility, risk, and 

survival in Chinese patients with GC [199]. Studies have 
shown that loss of KCNQ1 is likely to lead to the develop-
ment of pyloric tumors [200] and that KCNQ1 is involved 
in the proliferation of GC cells regulated by atrial natriuretic 
peptide [201]. Such evidence confirms the role of KCNQ1 
in the occurrence and development of GC, and KCNQ1 may 
become a target for the treatment of GC.

KCNN4 is closely related to IBD, CRC and tumor 
resistance

KCNN4 expression and activity in the colon of patients with 
active UC are significantly reduced. This change is consid-
ered a possible cause of diarrhea in these patients [202]. In 
addition, inhibition of KCNN4 causes T cell receptors to 
stimulate  Ca2+ influx and affects T lymphocyte  Ca2+ signal 
transduction, which is conducive to relieving T cell-medi-
ated colitis [203]. A recent study reported that a pharma-
cological KCNN4 channel opener can stabilize intestinal 
epithelial barrier function in vitro [204]. Additionally, data 
from a study in Australia showed that the level of KCNN4 
mRNA in patients with NOD2 gene mutations was signifi-
cantly reduced, leading to Paneth cell defense defects and 
the development of CD [205]. For IBD patients, upregu-
lating expression of KCNN4 may constitute a future treat-
ment strategy. Compared with normal tissues, KCNN4 is 
upregulated in CRC tissues, which may be an essential factor 
in the occurrence and progression of CRC [206]. KCNN4 
is also upregulated by phosphatase of regenerating liver-3 
(PRL-3) and participates in PRL-3-induced EMT via the 
calcium/CaM-kinase II/GSK-3 β pathway [207]; KCNN4 is 
also significantly related to the treatment of CRC resistance. 
Drug-resistant cells express more KCNN4 than cisplatin-
sensitive cells, promoting cisplatin absorption in the former 
and increasing their apoptosis [208].

Discussion

Previous studies have revealed the role of partial ion chan-
nels and transporters in the repair of the GI mucosa and pro-
vided convincing evidence that these channels and transport-
ers promote the proliferation and migration of adjacent cells, 
stabilize the structure of AJs and TJs, protect the mucous 
barrier, and increase mucosal blood flow. These functions 
are likely to make ion channels and transporters therapeu-
tic targets for treating inflammation and even cancer. This 
review provides a basic and systemic summary of the field, 
which will prompt researchers to focus on the functional 
diversity of ion transporters in GI mucosal diseases, provid-
ing a novel perspective not only for therapy but also, more 
importantly, for prevention.
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