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Purpose. To characterize hallmark diabetic retinopathy (DR) lesions utilizing adaptive optics scanning laser ophthalmoscopy
(AOSLO) and to compare AOSLO findings with those on standard imaging techniques. Methods. Cross-sectional study
including 35 eyes of 34 study participants. AOSLO confocal and multiply scattered light (MSL) imaging were performed in eyes
with DR. Color fundus photographs (CF), infrared images of the macula (Spectralis, Heidelberg), and Spectralis spectral domain
optical coherence tomography SDOCT B-scans of each lesion were obtained and registered to corresponding AOSLO images.
Main Outcome Measures. Individual lesion characterization by AOSLO imaging. AOSLO appearance was compared with CF
and SDOCT imaging. Results. Characterized lesions encompassed 52 microaneurysms (MA), 20 intraretinal microvascular
abnormalities (IRMA), 7 neovascularization (NV), 11 hard exudates (HE), 5 dot/blot hemorrhages (HEM), 4 cotton wool spots
(CWS), and 14 intraretinal cysts. AOSLO allowed assessment of perfusion in vascular lesions and enabled the identification of
vascular lesions that could not be visualized on CF or SDOCT. Conclusions. AOSLO imaging provides detailed, noninvasive
in vivo visualization of DR lesions enhancing the assessment of morphological characteristics. These unique AOSLO attributes
may enable new insights into the pathological changes of DR in response to disease onset, development, regression, and
response to therapy.

1. Introduction

Diabetic retinopathy (DR) is characterized by hallmark reti-
nal lesions including microaneurysms (MA), hard exudates
(HE), cotton wool spots (CWS), intraretinal hemorrhages,
and retinal neovascularization (NV) which are present in
over 77–90% of individuals after 15 or more years of diabetes
[1–3]. The distribution and extent of these lesions determine
DR severity and predict the risk of worsening DR [4–8].
Thus, crucial clinical management decisions including

recommendations for follow-up and treatment are depen-
dent on the ability to accurately assess DR lesions over time.

Color fundus photography is the standard method by
which DR severity is assessed for clinical and research pur-
poses [1]. Alternative imaging methods such as spectral
domain optical coherence tomography (SDOCT), scanning
laser ophthalmoscopy (SLO), and fluorescein angiography
(FA) allow evaluation of specific aspects of retinal pathology
such as neural retinal layer thickening, disorganization or
disruption, and vascular leakage, respectively, and have also
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been utilized to assess individual DR lesions in detail [9–14].
However, all these imaging modalities are limited by a lateral
resolution of approximately 10–15μm and are thus unable to
resolve structural details at the cellular level. Although there
are numerous histological studies of DR lesions at the cellular
level in human postmortem tissues, similarly detailed in vivo
evaluation has been limited [15–17].

The adaptive optics (AO) systems allow ultrahigh resolu-
tion assessment of the human retina in vivo [18–23]. AO
technology compensates for ocular wave front errors primar-
ily induced by the cornea and lens and allows correction of
>90% of the optical aberrations within an individual eye, thus
providing a theoretical lateral resolution limit of 1.4μm for
large pupils and short wavelength light [24]. AOSLO can also
capture video output, allowing dynamic visualization of
intravascular blood cell flow in vessels down to the capillary
level [25–28].

In this study, we characterized vascular and nonvascular
hallmark DR lesions using a custom-built AOSLO with a lat-
eral resolution of approximately 2.5μm. Whereas previous
reports have focused on the overall capillary network, MA,
and intraretinal microvascular abnormalities in the diabetic
eye, this manuscript also evaluates confocal and multiply
scattered light imaging findings for the following additional
diabetic lesions that have not been systematically assessed
using AOSLO: retinal neovascularization, hard exudates,
hemorrhages, cotton wool spots, and intraretinal cysts
[28–32]. We document the longitudinal history of selected
individual lesions as well as the response of particular lesions
to antivascular endothelial growth factor (VEGF) therapy. In
addition, we systematically describe the AOSLO characteris-
tics in static and dynamic (video) assessments for each lesion
type recorded with two AOSLO acquisition modes: confocal
imaging and aperture offset imaging. Advantages and disad-
vantages of the AOSLO technique in relation to traditional
color fundus photography and SDOCT are also presented.

2. Methods

The study was approved by the Institutional Review Board of
the Joslin Diabetes Center, and all study procedures adhered
to the tenets of the Declaration of Helsinki. Prior to study
inclusion, informed consent was obtained from all subjects.

Subjects were eligible for the study if they met the follow-
ing inclusion criteria: age 18 years or older, diagnosis of type
1 or type 2 diabetes mellitus as defined by the American Dia-
betes Association, optical media clear enough to obtain good
quality images, and stable central fixation [33]. Participants
with substantial macular pathology attributable to nondia-
betic eye disease, such as age-related macular degeneration,
retinal vein occlusion, uveitis, and Irvine Gass syndrome
were excluded from participation.

All participants received a comprehensive dilated oph-
thalmologic examination followed by retinal imaging includ-
ing SDOCT (Spectralis Heidelberg Engineering, Germany),
ETDRS 7 standard field color stereoscopic fundus photogra-
phy (Carl Zeiss Meditec Inc., Dublin, CA) or ultrawide field
retinal imaging (Optos PLC, Scotland, United Kingdom),
and AOSLO (Boston Micromachines Corp., Cambridge,

MA). AOSLO imaging and SDOCT imaging were performed
at each visit on the same day. For SDOCT imaging, cubic
(20° × 20° field, 49 B-scans, 16 frames ART mean, and high
resolution setting) and detailed (15°× 5° field, 24 B-scans, 25
frames ART mean, and high resolution setting) macular vol-
ume scan patterns centered on the fovea were performed.
Details of the AOSLO imaging are provided below. The axial
length of each study eye was determined using an IOLMaster
(Carl Zeiss Meditec, Dublin, CA) in order to subsequently
convert angular to metric coordinates on the AOSLO images.

The AOSLO used in this study was a double pass, sin-
gle deformable mirror version of the Indiana system that
has been previously described [34, 35]. AOSLO images
were acquired confocally, using a standardized protocol
that obtained images focused at the following planes: the
lesion of interest, posteriorly at the photoreceptor level
and anteriorly at the nerve fiber layer. In addition, a multiply
scattered light (MSL) or pinhole aperture offset technique as
recently described was utilized to image each DR lesion
(Figures 1(a) and 1(b)) [36, 37]. With this technique, images
are generated from spatial variations of multiply scattered
light leading to higher contrast, especially of vessel walls
and erythrocytes, as the specular component of the image is
reduced by the offset aperture [38]. Aperture size and dis-
placement (ranging from 25μm to 500μm for size and
0μm to 350μm for displacement) were adjusted for indi-
vidual lesions and eyes to obtain the best quality image
possible and depth of focus ranged between 80μm and
150μm. However, a 500μm aperture which was displaced
by 300μm (~5 Airy disk diameters) perpendicular to the tar-
geted lesion was used to acquire most images. The displace-
ment was adjusted using a computer-controlled, motorized
positioning stage allowing a positioning accuracy of approx-
imately 1μm. AOSLO image acquisition sessions ranged
between 15 and 60 minutes depending on the number of
lesions and size of area scanned.

Image processing was performed using a customized
Matlab platform (MatLab, The MathWorks, Natick, MA)
and took approximately 30min per image. Sinusoidal dis-
tortion artifacts were corrected utilizing a polynomial
dewarping algorithm [35]. After manual selection of 5–50
frames from each video block, automated image alignment
and averaging were performed. Individual diabetic retinal
lesions were characterized by size, shape, and appearance
from the averaged images, and perfusion status was
assessed on AOSLO videos viewed in ImageJ (NIH, Bethesda,
Maryland). Individual lesions were registered to widefield
SDOCT IR images or color fundus photographs by manually
or semi automatically montaging 3–20 adjacent AOSLO
images and then identifying comparable vessel landmarks
on each image set with guidance from recorded AOSLO
navigation coordinates. Once registration was completed,
corresponding SDOCT B-scans were assessed in order to
determine key features of each lesion’s appearance on
SDOCT such as visibility, presence of associated hyperreflec-
tivity, and location within or anterior to the neural retinal
layers. Figure 2 contains examples of 6 lesions obtained using
the different imaging modalities in this study: color and IR
photographs, SDOCT B-scans, and AOSLO images.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 1: (a) Example of an arteriole in confocal and multiply scattered light (MSL) and (b) AOSLO imaging. Finer details of the vessel walls
are visualized with MSL AOSLO imaging, which increases the sensitivity to scattered light reflected from vasculature and erythrocytes. (c–f)
Intraretinal microvascular abnormalities (IRMA). (g, h) Neovascular proliferations (NVE) growing anteriorly to the RNFL. Arrowheads
indicate feeder/draining vessels. In (d), the AOSLO image is focused at the photoreceptor level and displays a regular photoreceptor
mosaic surrounding the blurred shadow of an IRMA. In (g) and (h), the 3-dimensional structure of the NVE results in clear focus on
some vascular loops and blurry vessel formations in other areas of the NVE.
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Figure 2: Multimodal imaging (color fundus photo, OCT, IR image, and AOSLO) of six hallmark lesions: a microaneurysm, MA (A–D), a
blot hemorrhage (E–H), a cotton wool spot, CWS (I–K), intraretinal cysts (L–N), hard exudate, HE (O–R), and neovascular proliferation, NV
(S–V). (A) Microaneurysm visible as small red dot in 30° color fundus photo (CF) centered on the macula. (B) In the corresponding B-scan
the inner plexiform layer, MA is visible primarily by its shadowing effect on the outer retinal layers. (C) In the AOSLO image focused at the
vascular level, the MA is visible as a well-defined saccular bulge within the capillary network. Feeding and draining vessels (arrowheads) are
discernable. (D) When focused at the photoreceptor plane, shadowing from the MA is present surrounded by a clearly imaged photoreceptor
mosaic. (E) Small blot hemorrhage easily visible in 30° color fundus photo and Spectralis IR image (F) but not clearly identifiable in the
corresponding cross-sectional SDOCT B-scan. G Outlines of the hemorrhage are blurred even in the AOSLO image focused at the
hemorrhage plane. (H) When focused on the photoreceptor plane, there is shadowing of the photoreceptor mosaic by the anteriorly
located blot hemorrhage. (I) CWS clearly visible in 30° Optos color fundus image and Spectralis IR image (J). In the corresponding
SDOCT B-scan, the CWS appears as a nodular thickening of the retinal nerve fiber layer (RNFL) compressing the inner plexiform and
inner nuclear layer. Notice the faint shadowing effect on the outer retinal layers. (K) Montage of 17 AOSLO images focused at the RNFL
level to cover an area of 3° × 4.5°. The CWS appears hyperreflective with a less clearly delineated nerve fiber striation pattern compared to
adjacent areas. Nerve fiber bundles adjacent to the CWS are pushed aside at the lower right border of the lesion. (L) DME is not evident
on the 30° color fundus and Heidelberg Spectralis IR (M) photographs, but is clearly visible on the montaged MSL AOSLO images (N)
and corresponding SDOCT B-scan. The white boxes in (L) and (M) correspond to the area imaged on AOSLO (N). An asterisk marks a
microaneurysm and [1, 2] indicates corresponding cysts in the AOSLO (N) and SDOCT (M) images. (O) The HE is clearly visible on
color fundus photography (O) OCT and IR image (P). In confocal AOSLO images (Q), the HE appears as a hyperreflective granular
structure with an internal honeycomb-like pattern. Two months after intravitreal ranibizumab injections for center involved diabetic
macular edema, the HE decreased in size to reveal an intact photoreceptor pattern. (S) Fundus photograph of neovascularization elsewhere
(NVE) that is clearly visible on OCT and IR image (T). (U) Corresponding NVE imaged with AOSLO before treatment (U) and 3 months
after administration of intravitreal ranibizumab (V). AOSLO imaging reveals the persistence of an involuted neovascular formation.
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3. Results

DR lesions were imaged in 35 eyes of 34 participants (16
females, mean age 41± 12.5 years). The mean duration of
DM was 24± 8 years (28 type 1 DM), and mean HbA1c
was 8± 2%. DR severity grading of the 35 eyes that were
included was as follows: 2 mild, 9 moderate, 8 severe nonpro-
liferative DR, and 16 proliferative DR.

The lesions that were evaluated included microaneur-
ysms (MA, N = 52), intraretinal microvascular abnormalities
(IRMA, N=20), retinal neovascularization (NV, N = 7),
hemorrhages (HEM N = 5), hard exudates (HE, N = 11), cot-
ton wool spots (CWS, N = 4), and intraretinal cysts (N = 14)
(Table 1). In the following sections, the main AOSLO charac-
teristics are systematically described. A more detailed
description observed for each lesion type using static confo-
cal imaging, MSL imaging, and dynamic (video) assessment
as well as a thorough comparison to other imaging modalities
is available at the journal’s website.

3.1. Vascular Lesions. Small vascular lesions like MA, IRMA,
and NV that were sometimes hard to detect or distinguish in
IR images or fundus photos could be clearly identified in
AOSLO images. In confocal images, vessel walls of these vas-
cular lesions were markedly thickened and appeared darker
compared to vessel walls of normal intraretinal capillaries.
In some MA, focal areas of granular hyperreflectivity were
present along their wall in 35% (n = 18) or within their lumen
(46% n = 24) (Figures 3(c)–3(f)). Wall hyperreflectivity pres-
ent on AOSLO imaging was not always present in SDOCT
images (31%) and vice versa (59%). SDOCT intraluminal
hyperreflectivity was observed in 17 MA (57%). Only 9 of
these 17 MA (53%) showed intraluminal hyperreflectivity
in corresponding AOSLO images.

MSL imaging technique revealed more sharply defined
vessel walls than confocal imaging, so perfused and nonper-
fused vascular channels could be clearly identified
(Figures 1(a) and 1(b)). This distinction was particularly
evident in imaging areas of fibrosis within patches of NV
(Figure 4). These structural findings were complemented
by dynamic assessment, as blood cell flow was clearly visible
in all perfused vascular lesions. Though blood flow could not
be quantified, it appeared qualitatively slower (often mark-
edly so) in some MA or regressing neovascular tissue, partic-
ularly in the eyes that had undergone treatment with
antivascular endothelial growth factor (VEGF) therapy or
panretinal photocoagulation (Videos 5 and 6).

3.2. Nonvascular Lesions. Hemorrhages presented with dis-
tinct border and homogenously hyporeflective internal
appearance. Although HEM could not be differentiated
from MA in color fundus photos or IR images, they could
be easily distinguished from perfused MAs on AOSLO due
to the hemorrhage’s lack of blood flow, hyperreflective
foci, and/or adjacent feeder vessels. Hemorrhages were
not visible in SDOCT.

Hard exudates were visible in SDOCT, IR images, and
color fundus photography. In confocal AOSLO images,
HE appeared as irregularly shaped, grainy-appearing

hyperreflective patches with dark borders (Figure 2, Q)
casting a shadow on the photoreceptor mosaic. With high
resolution AOSLO imaging, changes in HE size after anti-
VEGF treatment could be measured more accurately than
on standard color fundus photography or on SDOCT B-
scans (Figure 5). In addition, AOSLO imaging showed that
the underlying photoreceptor mosaic remained intact and
was gradually revealed as the HE were resolved (Figure 2, R).

Cotton wool spots were visible in all imaging modali-
ties applied whereas confocal AOSLO images revealed more
details than MSL images. In confocal AOSLO, CWS
appeared hyperreflective in comparison to the surrounding
retinal tissue (Figure 2, K). Within each CWS, the RNFL
striation pattern was less distinct and boundaries between
the RNFL bundles could not always be clearly identified.
Individual RNFL bundles within each CWS were wider in
diameter than the nerve fiber bundles outside but immedi-
ately adjacent to the CWS, which appeared compressed and
displaced at the border of the lesions.

Intraretinal cysts were difficult to visualize on fundus
photographs or IR images but were clearly visualized on
SDOCT images. Though intraretinal cysts could not be
identified in confocal AOSLO images, the MSL imaging
technique allowed clear delineation of cyst boundaries
(Figure 2, N) and wall structures. Lateral cyst dimen-
sions and proximity to different retinal structures could
be well defined due to the ability to precisely discern
cyst wall boundaries.

4. Discussion

This study provides the first detailed, systematic description
of multiple vascular and nonvascular retinal lesions of dia-
betic retinopathy as imaged using noninvasive confocal and
multiply scattered light AOSLO technology. In comparison
to the previous studies of AOSLO which have evaluated
either more global features of the diabetic capillary network
or limited their focus to specific vascular lesions such as
MAs, this investigation provides a broad survey that directly
compares the appearance of a diverse set of diabetic patholo-
gies on AOSLO imaging to that on standard fundus photog-
raphy and SDOCT scans [30–32, 37].

Small lesions of clinical importance, including neovascu-
larization and microaneurysms, were readily detectable on
AOSLO even when they were not visualized using SDOCT
or standard color fundus photographs. AOSLO also allowed
longitudinal monitoring of structural changes at the cellular
level over time, including retinal anatomic response follow-
ing therapeutic intervention. Vascular perfusion was often
detectable with AOSLO even when the lesion itself was unde-
tectable by other imaging modalities or when a vascular
lesion appeared entirely fibrotic and nonperfused on stan-
dard retinal photographs. Thus, AOSLO promises earlier
detection and more precise determination of structural
changes in the diabetic eye both over time and in response
to treatment than that currently available with other standard
imaging modalities. The high sensitivity of AOSLO to detect
intraretinal lesions such as MAs and hemorrhages could be a
reason for altered photoreceptor counts in diabetic patients
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due to shadowing artifacts from early diabetic lesions in sub-
clinical DR [26].

A major advantage of AOSLO imaging is the ability to
visualize intraluminal red blood cell flow in a detailed and
dynamic fashion in combination with ultra-high resolution

details of blood vessel walls. AOSLO videos can readily dis-
tinguish perfused MAs and NV from nonperfused lesions
and can even distinguish areas of perfusion and nonperfu-
sion within a single lesion. Although SDOCT and OCT angi-
ography (OCTA) can localize NV location relative to the

(a) (b) (c)

(d) (e) (f)

Figure 3: Six examples of microaneurysms (MA) on AOSLO. The rectangles indicate the MA location in the corresponding SDOCT B-scans.
Some MAs have hyperreflective vessel walls (arrowhead) or intraluminal hyperreflective structures (arrow) in AOSLO images (c–f). Using
MSL AOSLO imaging (a, b), MA vessel walls are more clearly visible compared to confocal AOSLO imaging (c–f).
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posterior hyaloid and retinal surface, blood flow assessment
in OCTA is currently limited to certain blood flow velocities
[14, 39, 40]. Areas of slow blood flow such as in MA or
fibrotic NV may be missed. In contrary, red blood cell flow
can be visualized independently of its velocity in AOSLO
videos. A comparison of both imaging techniques was not
within the scope of our study because OCTA images were
not acquired in our patients. However, the ability to longitu-
dinally evaluate perfusion changes of vascular DR lesions in
the human eye may prove valuable in predicting the func-
tional impact of antiangiogenic therapies on MAs, NV, and
capillary occlusion [32].

The technique of multiply scattered light through
decentration of the pinhole aperture, a recently introduced
AOSLO imaging method, further enhances image quality
of vessel walls and erythrocytes [36, 37]. Imaging of retinal
vascular lesions including MAs, IRMA, and neovasculari-
zation is substantively improved by the use of this MSL

technique due to improved visualization of vascular walls
and individual blood cell flow. The MSL method also dra-
matically improves the ability to identify intraretinal cyst
boundaries in the eyes with diabetic macular edema as
compared with standard AOSLO confocal imaging. How-
ever, the MSL technique does not appear to offer substan-
tial advantages over standard AOSLO confocal imaging in
the evaluation of intraretinal hemorrhages, hard exudates,
or cotton wool spots.

Hyperreflectivity on AOSLO images was observed in
diverse lesion types and may have multiple etiologies. Hard
exudates were brightly hyperreflective on AOSLO images,
likely demonstrating high reflectance from lipid deposits.
Cotton wool spots were also hyperreflective in comparison
to the surrounding tissue, possibly resulting from edema of
the nerve fiber layer and the accumulation of mitochondria,
neurofilaments, and endoplasmic reticulum in enlarged
axons [41, 42]. In addition, AOSLO hyperreflectivity was

(a) (b)

(c) (d)

Figure 4: Response of proliferative diabetic retinopathy to anti-VEGF therapy on AOSLO. (a) Fundus photograph of neovascularization at
the optic disc (NVD). (b) MSL AOSLO image of the area highlighted by the white box in (a). (c, d) Same NVD 4 weeks after administration of
intravitreal ranibizumab. The NVD can no longer be identified in the infrared image; however, AOSLO imaging reveals the persistence of an
involuted neovascular formation.
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variably present within vascular walls and lumens of some
MAs. Dubow et al. previously described intraluminal
hypofluorescent areas imaged with AOSLO FA that might
correspond to the static hyperreflectivity we observed in
AOSLO images [30]. In both imaging methods, these
intraluminal areas of different reflectivity indicate missing
red blood cell flow which is consistent with intraluminal
clotting. The histopathologic correlate of this AOSLO
hyperreflectivity remains uncertain. Stitt et al. found
degenerate lipid containing macrophages in some trypsin
digest histologic preparations of MAs [43]. Clotting within
MA lumens with basement membrane-like matrix and
lipid-containing macrophages has also been described
[43]. It is possible that AOSLO hyperreflectivity within

MAs and along their walls might represent the presence
of these lipid-containing macrophages.

Interestingly, hyperreflectivity of the MA wall on AOSLO
images was not consistently correlated with the hyperreflec-
tive “ring sign” described by Horii et al. on SDOCT [44].
Similarly, AOSLO hyperreflectivity within MAs was not
related to hyperreflectivity of the MA lumen on correspond-
ing SDOCT images. These differences might arise from the
different wavelengths used in these two imaging techniques
or the use of a transverse cross-sectional scanning plane of
SDOCT as opposed to the en-face scanning of AOSLO. Since
individual SDOCT B-scans are discontinuous, there are gaps
between each line scan that are not evaluated and individual
lesions may not always be scanned perpendicularly. In

Figure 5: Multimodal imaging of a resolving hard exudate (HE) over a 2-month period. Intravitreal ranibizumab injections for center-
involved diabetic macular edema were performed at the baseline and 1-month visits. The HE is clearly visible on color fundus
photography (A, D, G) and IR images (B, E, H). Its location within the outer nuclear layer can be determined in cross-sectional SDOCT
B-scans (B, E, H). Confocal AOSLO images (C, F, I) of the HE.
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contrast, with AOSLO en-face scanning, the axial scanning
position is continuously variable in order to acquire a high
level of detail covering the entire extent of the MA.

Hard exudates appear as irregularly shaped hyperreflec-
tive lesions independent of blood vessels on AOSLO imaging.
Bolz et al. postulated that hyperreflective foci in SDOCT
images of the eyes with DR are precursors of HE that accu-
mulate in the OPL before becoming visible as HE in color
fundus photographs [45]. The irregular granular structure
of HEs in AOSLO is consistent with the hypothesis that HE
consist of many small elements. However, small hyperreflec-
tive lesions consistent with HE precursors were not routinely
identified on AOSLO images, perhaps due to interference
from background reflectivity of the photoreceptors.

A general limitation of AOSLO imaging is that it can be
difficult to determine the precise anteroposterior location of
the image focal plane when this plane is located between
the nerve fiber layer and photoreceptor layer. Thus, the ante-
roposterior extent of pathologies such as intraretinal cysts is
better detected in cross-sectional SDOCT scans. Limitations
specific to this study are the variable number of different
intraretinal lesions imaged per eye which were selected in
order to provide a broad range of pathology. We also did
not compare AOSLO imaging to fluorescein angiography
(FA) since AOSLO allows much higher resolution imaging
in comparison to standard FA, and it is already well docu-
mented that AOSLO MSL imaging is similarly sensitive to
AOSLO FA for the detection of perfused vasculature without
the need for invasive use of contrast dyes. AOSLOMSL imag-
ing also provides additional information about nonperfused
vascular lesions and vascular wall structures that may not
be evident on FA [27].

In summary, the ability to noninvasively visualize the
hallmark retinal lesions of diabetic retinopathy in the human
eye at a lateral resolution of 2.5μm using AOSLO has pro-
vided a level of characterization previously impossible.
Longitudinal evaluation of individual lesions over time is
now feasible, and with variable axial scanning, the three-
dimensional characteristics of individual lesions become
readily evident. Furthermore, utilizing high-resolution video
sequences, AOSLO imaging enables assessment of individual
blood cell flow within the retinal vasculature. These AOSLO
attributes allow unprecedented evaluation of the retina and
the pathologic changes induced by diabetes, potentially facil-
itating novel insights into the development, regression, and
response to therapy of diabetic eye disease.
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Supplementary Materials

Supplementary 1. Video 1: example of an MA with perfusion
visible throughout all portions of the lesion on confocal
AOSLO imaging. Blood flow through the surrounding capil-
lary network is also visible.

Supplementary 2. Video 2: a nonperfused MA imaged with
the MSL technique. No blood flow is visible within the cen-
trally located vascular lesion despite clearly visible flow
through the surrounding vessels.

Supplementary 3. Video 3: the central, bean-shaped MA in
this video demonstrates apparent deformability of the supe-
rior lesion wall with movement of blood cells adjacent to
the wall. In contrast, the inferior wall of the MA is fixed
and does not appear to be flexible in response to the passage
of blood cells through the inferior portion of the MA.

Supplementary 4. Video 4: an example of a perfused IRMA on
MSL imaging.

Supplementary 5. Video 5: video of retinal NV demonstrating
adjacent vascular channels within the same area of NV that
are perfused (located superiorly) and nonperfused (located
inferiorly).

Supplementary 6. Video 6: area of retinal NV before (left
panel) and after (right panel) treatment with intravitreal
anti-VEGF therapy. After anti-VEGF treatment, many neo-
vascular channels appear to have resolved entirely and others
are substantially decreased in caliber. In contrast, the larger,
nonneovascular vessels present along the left and bottom
right edges of the videos do not appear to have changed
noticeably in caliber or appearance.
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