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Abstract

Background: The amount of signal decreases when the acquisition duration is
shortened. However, it is not clear how this affects the quantitative values. This study
aims to clarify the effect of acquisition time shortening in brain tumor PET/CT using
11C-methionine on the quantitative values.

Method: This study was a retrospective analysis of 30 patients who underwent
clinical 11C-methionine PET/CT examination. PET images were acquired in list mode
for 10 min. PET images of acquisition duration from 1 to 10 min with 1-min step
were reconstructed. We examined the effect on the quantitative values of acquisition
duration. We placed a volume of interest to include the entire tumor and regions of
interest in the shape of a large crescent in the contralateral hemisphere in 5
contiguous axial slices as normal tissue. Quantitative values examined were
maximum, peak, and mean standardized uptake values (SUVmax, SUVpeak,
SUVmean), metabolic tumor volume (MTV), and maximum tumor to normal tissue
ratio (TNRmax), with each duration compared to that with 10 min.

Results: SUVmax, MTV, and TNRmax showed the highest values due to the effects of
statistical noise when the acquisition time was 1 min. These values were stable when
the acquisition duration was > 6 min. SUVpeak and SUVmean showed mostly
consistent values regardless of duration.

Conclusions: SUVmax, MTV, and TNRmax are affected by acquisition time. If the
acquisition duration was > 6 min, the fluctuation could be suppressed within 5% in
these quantitative values. However, SUVpeak was suggested to be a robust index
regardless of the acquisition duration.
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Introduction
Positron emission tomography/computed tomography (PET/CT) with administration

of 11C-methionine can be used for purposes such as discriminating between radiation

necrosis and recurrence after radiation therapy, between tumor and non-tumor lesions,

and for determination of the extent of brain tumor invasion. 11C-methionine PET/CT

has been reported to be more useful than CT, magnetic resonance imaging (MRI), or
18F-fluoro-2-deoxy-D-glucose ([18F]FDG)-PET/CT [1–3].

Currently, some clinical indexes such as standardized uptake value (SUV), maximum

SUV within a region of interest (SUVmax) [4–6], peak SUV (SUVpeak) [7, 8], metabolic

tumor volume (MTV) [9], and maximum tumor to normal tissue ratio (TNRmax) [10,

11] are widely used for diagnostic purposes in 11C-methionine PET/CT.

To obtain these indexes with 11C-methionine PET/CT, an appropriate acquisition

time has been reported to be 10 min, according to the standard protocol established by

the Japanese Society of Nuclear Medicine (JSNM) [12]. But even with a short duration

of 10 min, some patients with conditions such as brain tumor cannot always remain

motionless in the gantry. Some methods are available for correcting positional deviation

such as respiratory synchronization in the trunk [13, 14] or setting the CT scanning

time at a low speed so as to match it with that of PET [15]. However, these methods

are limited for correcting body movements caused by breathing and do not compensate

for sudden body movements. One possible solution would be to fix the patient tightly

on the gantry, but, if the fixation is too tight, it would be uncomfortable or even painful

for most patients, thereby possibly inducing further movements. An alternative solution

would be reexamination, but the half-life of 11C is as short as 20.4 min, and a sufficient

statistical amount of signal cannot be obtained due to reduced radioactivity. In

addition, the burden to the patient would be appreciably increased. Furthermore, in the

practical clinical setting, multiple patients are often examined in 1 day, and an add-

itional inclusion of an examination for such a patient would induce delay of the follow-

ing examination start times for waiting patients and therefore reduction of the

radioactivity to be administered. Thus, in general, reexamination is not practical.

Recent PET scannings are performed in list mode, and images can be obtained by

extracting an arbitrary part of the acquisition sinogram data. In other words, it is pos-

sible to use the data up to just before any movement. However, since the acquisition

time becomes less than 10 min, drawbacks such as decreases in the amount of signal

and changes in the quantitative values in the reconstructed image are induced. Ensur-

ing accuracy of the above clinical indexes is important for the diagnosis. However, there

are, so far, no reports on the effect on the image, namely, to what extent the quantita-

tive accuracy is adversely affected in 11C-methionine examination. In this study, we

tested the effects on quantitative values of those clinical indexes on 11C-methionine

PET/CT when the acquisition duration is shortened.

Materials and methods
Data acquisition and image reconstruction

A Biograph mCT64-4R scanner (Siemens Healthcare) was used for all PET acquisitions

in this study. The PET data were acquired in 3-dimensional mode for 10 min in list

mode. They were reconstructed using the ordered subsets expectation maximization
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(OSEM) algorithm with the point spread function (PSF) correction and time-of-flight

(TOF) technique. The image matrix was 256 × 256, with 1.27-mm pixels. The recon-

struction parameters for OSEM + PSF + TOF were 5 iterations and 21 subsets. The

PET image slice thickness was 3 mm. A Gaussian filter with a full width at half max-

imum (FWHM) of 3 mm was used as a post-smoothing filter. Scanning parameters for

CT were as follows: 120 kV, 28 mA, 3-mm slice thickness, and 1.0-s rotation. The CT

data were used for the attenuation correction.

Clinical study

We retrospectively collected clinical data of 11C-methionine PET/CT for examining

brain tumors. A total of 30 patients (14 males and 16 females) who underwent 11C-me-

thionine PET/CT between September 6, 2017, and March 31, 2019, were analyzed

(Supplementary material, Table S1). The mean age was 61.0 ± 15.4 years (range 34–85

years). The patients had an average weight of 58.9 ± 10.8 kg (range 44.3–76.9 kg). No

pretreatment such as fasting was done. This clinical study was approved by the ethics

committee of our institution (Heisei 30-021).

Patients were injected intravenously with 346.3 ± 54.9 MBq (range, 254.3–451.4

MBq) of 11C-methionine. The injection dose per kilogram averaged 5.95 ± 0.73 MBq/

kg (range, 4.97–6.95 MBq/kg). Acquisition of PET images began at 18.45 ± 3.22 min

(range, 14.50–27.35 min) after injection.

Data analysis

PET image reconstruction was performed extracting the list mode data from 1 to 10

min duration in 1-min steps to determine the effect of shortening the acquisition dur-

ation. We placed the volume of interest (VOI) to include the entire tumor and a region

of interest (ROI) in the shape of a large crescent in the contralateral hemisphere to the

tumor as normal tissue (Fig. 1). The ROI of normal tissue was placed in 5 contiguous

axial slices, and the mean SUV (SUVmean) was calculated. For data analysis, Syngo.via

client 3.0 (Siemens Healthcare) was used. Evaluation of quantitative values in the clin-

ical images was performed by analyzing the relationship between acquisition duration

and SUVmax, SUVpeak, SUVmean, MTV, and TNRmax. SUVmax, SUVpeak, SUV-

mean, and MTV were calculated for the VOI placed. It was an automatic search of the

SUVpeak within the tumor VOI, meaning that the positions of the pixels for the

Fig. 1 VOI and ROI setting in clinical image
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SUVpeak were not always identical among the images with different acquisition dura-

tions. The MTV was defined as the sum of voxel volumes in the placed VOI that mea-

sured the SUV of > 1.3-fold to the SUVmean in normal tissue [3, 9, 16, 17].

The TNRmax was calculated as shown below, by dividing the SUVmax of the tumor

by the SUVmean of the normal tissue. Mean ratio of %difference in the SUVmax, SUV-

peak, MTV, and TNRmax were calculated as the difference between the quantitative

value for each duration and the quantitative value for the acquisition time of 10 min di-

vided by the quantitative value for the acquisition time of 10 min, multiplied by 100.

TNRmax ¼ SUVmax tumorð Þ
SUVmean normal tissueð Þ

Results
Figure 2 shows the relationships between acquisition time and each clinical index.

Figure 2a and Table 1 show the relationship between acquisition duration and SUV-

max as well as the mean ratio of change. As the duration shortened, SUVmax values

became gradually higher and at 1-min duration were the highest, namely 5.87 for 10

min and 6.89 for 1min (Fig. 2a). When the duration was > 5 min, SUVmax values were

acceptably small with a < 5% increase (Table 1).

Figure 2b and Table 1 show the relationship between acquisition duration and SUV-

peak and the mean ratio of change. SUVpeak values were mostly consistent independ-

ent of the duration.

Figure 2c and Table 1 show the relationship between acquisition duration and SUV-

mean and the mean ratio of change. SUVmean values were also mostly consistent inde-

pendent of the duration.

Figure 2d and Table 1 show the relationship between acquisition duration and MTV

and the mean ratio of change. As the duration shortened, MTV values became grad-

ually higher and at 1-min duration were the highest, namely 32.1 cm3 for 10 min and

Fig. 2 Change of SUVmax (a), SUVpeak (b), SUVmean (c), MTV (d), and TNRmax (e) (n = 30). Error bars
indicate SD
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37.1 cm3 for 1 min (Fig. 2d). When the duration was > 4 min, the MTV values were ac-

ceptably small with a < 5% increase (Table 1).

Figure 2e and Table 1 show the relationship between acquisition duration and

TNRmax and the mean ratio of change. As the duration shortened, TNRmax values be-

came gradually higher and at 1-min duration were the highest, namely 4.94 for 10 min

and 5.82 for 1 min (Fig. 2e). When the duration was > 6 min, TNRmax values were ac-

ceptably small with a < 5% increase (Table 1).

Figure 3 illustrates the representative images with acquisition duration from 1 to 10

min.

Discussion
In this study, we tested the influence of shortening the acquisition duration on the

quantitative values in 11C-methionine PET study. We found that the quantitative values

changed with the change of the acquisition duration. In a conventional procedure lim-

ited to viewing images on a display, it is not clear how the quantitative values change

when the acquisition duration is shortened. The present results revealed that the quan-

titative values changed as the acquisition duration was shortened.

Table 1 Mean ratio of %difference in SUVmax, SUVpeak, SUVmean, MTV, and TNRmax for each
duration against a 10-min acquisition time

Duration
(min)

1 2 3 4 5 6 7 8 9

ΔSUVmax + 19.6 ±
12.1

+ 10.8 ±
8.7

+ 8.0 ±
7.9

+ 6.0 ±
5.9

+ 4.2 ±
4.0

+ 3.6 ±
3.2

+ 2.8 ±
2.4

+ 1.7 ±
1.8

+ 1.1 ±
1.1

ΔSUVpeak + 3.1 ±
3.6

+ 1.9 ±
3.3

+ 1.5 ±
2.6

+ 1.3 ±
2.3

− 1.0 ±
1.9

+ 0.8 ±
1.6

+ 0.6 ±
1.1

+ 0.3 ±
0.9

+ 0.1 ±
0.5

ΔSUVmean + 3.6 ±
6.2

+ 3.2 ±
5.4

+ 2.2 ±
3.8

+ 3.0 ±
7.4

− 1.5 ±
3.5

+ 1.6 ±
3.5

+ 1.4 ±
3.4

+ 1.1 ±
3.2

+ 0.9 ±
3.1

ΔMTV (cm3) + 19.8 ±
16.7

+ 11.5 ±
10.8

+ 6.8 ±
10.1

+ 4.1 ±
8.1

+ 3.4 ±
6.1

+ 1.4 ±
4.1

+ 0.7 ±
3.1

− 1.1 ±
7.6

+ 0.4 ±
2.4

ΔTNRmax + 21.3 ±
16.5

+ 12.6 ±
10.1

+ 9.9 ±
8.9

+ 7.4 ±
7.2

+ 5.4 ±
5.1

+ 4.3 ±
4.5

+ 2.8 ±
3.3

+ 1.5 ±
1.9

+ 0.9 ±
1.2

Fig. 3 The images with acquisition duration from 1 to 10 min
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SUVmax increased when the acquisition time was shortened. The noise increases as

the acquisition time shortens in clinical images. As the noise increases, the SUVmax in

the high integrated region increases by fluctuation [18]. Therefore, we considered that

the quantitative values changed due to the influence of noise when the acquisition time

shortened.

SUVpeak was mostly consistent regardless of the acquisition duration. Akamatsu

et al. demonstrated that SUVpeak is a highly reproducible index not easily affected by

statistical fluctuation [19], because SUVpeak is obtained by the average value within 1

cm3 area with metabolic accumulation being most active. Therefore, the influence of

statistical noise was suppressed, and the index value did not change so much.

The quantitative value of MTV was stable when the duration was > 4 min. Uptake of
11C-methionine was less in the normal tissue, and there was less fluctuation independ-

ent of acquisition duration. Since the threshold was set as 1.3-fold of the SUVmean of

normal tissue, that did not change so much independent of the acquisition duration.

On the other hand, in tumors, the degree of uptake was high and the concentration

and therefore SUV were also high, and so the fluctuation became large, and conse-

quently, the area exceeding the threshold increased. Thus, the MTV increased when

duration was < 4 min. In studies using FDG, the threshold is set at an SUV value of 2.5

or 40% of SUVmax [20, 21], and Lim et al. reported that MTV may vary depending on

the threshold [22]. Their finding suggests that MTV in 11C-methionine also varies de-

pending on the threshold setting, and different trends could be found other than those

recognized in this study.

TNRmax is obtained by SUVmax divided by SUVmean. SUVmean was less

dependent on the acquisition duration and mostly consistent as noted above. There-

fore, TNRmax showed similar dependency on scan time to SUVmax.
11C-methionine PET is often evaluated using SUVmax as an index [18, 23]. How-

ever, as has been shown, SUVmax varied greatly depending on the acquisition

time. Lodge et al. reported that, for images with larger noise degree, SUVpeak is a

more robust index than SUVmax in [18F]FDG study [6]. Akamatsu et al. [19] also

reported that it is desirable to use SUVpeak, which is less affected by image noise,

when accurate quantification is required. The present study with 11C-methionine

also showed that SUVpeak with less dependency on acquisition time would be a

robust index for diagnosis. Therefore, if shortening the acquisition time is unavoid-

able, SUVpeak would be more practical for evaluation than SUVmax. It should be

noted that SUVpeak requires a VOI size of 12 mm or more in diameter and can-

not be used for smaller lesions.

According to the European Association of Nuclear Medicine (EANM), the Society of

Nuclear Medicine and Molecular Imaging (SNMMI), the European Association of Neu-

rooncology (EANO), and the working group for Response Assessment in Neurooncol-

ogy with PET (PET-RANO), it is recommended to start acquisition 10 min after

injection and scan for 20 min [24]. The standards differ between EANM/EANO/

RANO/SNMMI and our JSNM, and our procedure with 10 min duration and around

20 min after injection is different. The amount of signal in our procedure is expected

to be smaller compared to that in the EANM/EANO/RANO/SNMMI guidelines. How-

ever, when as the present study showed the acquisition duration was more than 6 min,

the change in the quantitative values for all indexes was acceptably small in this study.
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This would suggest that our findings can be applied to the indexes from images ac-

quired with the EANM/EANO/RANO/SNMMI guidelines.

Our salient finding in the present study was the change of clinical indexes when the

duration was shortened due to noise, and consequently more than 6 min duration was

required. Currently, dynamic and texture analyses are proposed as the evaluation for

brain tumor images with amino acid tracers [25, 26]. Dynamic analysis would predict

the molecular features of the tumor but requires around 30-min acquisition time [25].

Textural analysis would be applied for predicting the isocitrate dehydrogenase geno-

type, but image quality has the biggest influence on the results of textural feature ana-

lysis [26]. Therefore, shortening the acquisition time is not acceptable for these

methods. An alternative is to apply denoise or increase the number of counts technique

with artificial intelligence [27–29]. This requires huge amount of cases but is not prac-

tical for our data set with only 30 cases.

This study had some limitations. First, we did not evaluate the detectability of lesions,

which from a diagnostic aspect is important. Further studies are required to evaluate

the detectability of lesions. Second, we used OSEM + PSF + TOF for the reconstruction

algorithm. No other reconstruction algorithm was used in this study. PSF correction

causes a Gibbs artifact and increases the risk of noise [30]. Quantitative values are ex-

pected to vary when other reconstruction algorithms without PSF correction are used.

Third, the PET/CT we used is a photomultiplier tube (PMT)-based detector. Recently,

silicon photomultiplier tube (SiPM)-based detectors have emerged and have higher sen-

sitivity and timing resolution than PMT. Quantitative values are expected to be differ-

ent when using PET/CT with SiPM-based detectors.

Conclusion
In this study, we tested the influence of shortening the acquisition duration on the

quantitative value in 11C-methionine PET study. We revealed the degree of change in

clinical indexes with shortening of the acquisition duration. These changes cannot be

quantitatively estimated only by viewing images.

The SUVmax, MTV, and TNRmax were not stable due to the influence of statistical

noise when the acquisition duration was shortened. Acquisition duration required 6

min within 5% error in these quantitative values. It should be noted that the quantita-

tive values have an error of > 5% when using the images of < 6 min for unavoidable

reasons such as body movements. SUVpeak is a highly reproducible index not easily af-

fected by acquisition duration.
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