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Abstract: Pardosa pseudoannulata is one of the most common wandering spiders in agricultural
fields and a potentially good bioindicator for heavy metal contamination. However, little is known
about the mechanisms by which spiders respond to heavy metals at the molecular level. In the
present study, high-throughput transcriptome sequencing was employed to characterize the de novo
transcriptome of the spiders and to identify differentially expressed genes (DEGs) after cadmium
exposure. We obtained 60,489 assembled unigenes, 18,773 of which were annotated in the public
databases. A total of 2939 and 2491 DEGs were detected between the libraries of two Cd-treated
groups and the control. Functional enrichment analysis revealed that metabolism processes and
digestive system function were predominately enriched in response to Cd stress. At the cellular and
molecular levels, significantly enriched pathways in lysosomes and phagosomes as well as replication,
recombination and repair demonstrated that oxidative damage resulted from Cd exposure. Based on
the selected DEGs, certain critical genes involved in defence and detoxification were analysed. These
results may elucidate the molecular mechanisms underlying spiders’ responses to heavy metal stress.
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1. Introduction

Cadmium (Cd) is one of the most abundant, ubiquitous, toxic heavy metal elements in the
environment [1]. In particular, many agricultural soils are significantly influenced by Cd derived from
anthropogenic activities in many developing countries, such as China [2,3]. Cd can be absorbed by
plant, and via food web accumulated in phytophagous insects and their predators [4,5], thus presenting
a serious threat to ecosystem and human health. However, the diseases resulted from the long-term
exposure to the sub-lethal concentration of heavy metals are difficult to be diagnosed in a timely
manner, such as Itai-itai and Minamata diseases in Japan [6]. Therefore, how to monitor Cd pollution
and assess its toxicological effects on organisms and environment are important environmental issues.

Many studies have indicated that spiders have the ability to accumulate and withstand high
concentrations of Cd [6,7]. Accumulated Cd can affect spiders’ biological traits, such as development
and reproduction, biochemical and physiological processes [8–10]. Additionally, Cd can cause oxidative
damage by stimulating the formation of free radicals and reactive oxygen species (ROS), resulting in
oxidative stress [11], and can even display strong genotoxic effects and may cause DNA damage to
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spiders at low concentrations [12]. There is growing interest to use spiders as heavy metal indicators in
ecotoxicological studies [6,13,14]. However, little is known about the mechanism of spider responses
to Cd at the molecular level [9,11,15].

In recent years, the increasing use of high-throughput sequencing has provided us with an
efficient and powerful platform to further study arachnids at molecular level [16–18]. Though the
genes related to Cd response have been widely studied in many vertebrate and invertebrate [19–21],
only a few genes of spider responding to heavy metals have been reported previously. The wolf
spider Pardosa pseudoannulata (P. pseudoannulata) is one of the most common species of wandering
spiders in agricultural fields in China, and acts as one of the most important natural enemies to
reduce pest populations, such as rice plant hoppers and leafhoppers [22]. Our previous study
indicated Cd can significantly affect the fitness-related traits and activities of antioxidative enzymes of
P. pseudoannulata [10]. To further understand the biological basis of P. pseudoannulata response to Cd,
there is a need to explore the transcriptomic biology of this spider species following Cd exposure.

The present study aimed to elucidate the molecular mechanisms and the critical genes involved
in regulating spider responses to Cd stress. Accordingly, female adult spiders were exposed to 0,
0.2 and 2 mM CdCl2 solutions for seven days and their respective transcriptomes were compared
for the first time, an abundance of differentially expressed Cd responsive genes were analysed. The
molecular basis of the response to Cd stress was first comprehensively characterized in spider, and the
resulting information would help in furthering our understanding of the toxicological mechanism of
Cd, and using spiders as potential bioindicators of heavy metal contamination.

2. Results and Discussion

2.1. Sequence Analysis and De Novo Assembly

To study the mRNA expression dynamics of P. pseudoannulata exposed to different concentrations
of CdCl2 solution, we constructed and sequenced mRNA-seq libraries from adult female spiders treated
with lower (0.2 mM, TL), or higher (2 mM, TH) concentration of Cd, and distilled water as control
(TC), respectively. After removing the low quality reads and trimming off the adapter sequences,
25,731,973 (TC), 25,542,476 (TL) and 28,212,795 (TH) high-quality, clean paired end sequencing reads
with a total of 6,483,564,025, 6,435,605,510, and 7,108,718,203 bases were obtained, respectively. These
high-quality reads were de novo assembled using the Trinity method. Reads that contain a certain
length of overlap were first combined to form contigs, and then assembled contigs into transcripts,
the longest transcript of each group was chosen as the unigene using TIGR gene indices clustering
tool. A total of 60,489 unigenes were obtained with average length of 951 bp. The N50 values of
these transcripts and unigenes were 1637 and 1433 bp, respectively. The unigenes with a length of
300 to 500 bp sequences represent the highest proportion, followed by 500–1000 bp sequences. A total
of 16,257 (26.87%) unigenes were longer than 1000 bp, and 6390 (10.56%) were longer than 2000 bp
(Table 1). This large dataset will contribute to the biochemistry analysis of this species as well as
identification of important functional genes.

2.2. Annotation of Unigenes

A total of 18,773 of all (31.04%) unigenes were annotated by a BLAST search and alignment against
the sequences in the nonredundant database, SwissProt database, Pfam database, COG database, GO
database, KOG database and KEGG database, with an E-value threshold of le-5 (Table 2). Additionally,
41,716 (68.96%) were not annotated and may represent genes without detectable homologies. The
number of annotated unigenes is lower than the results reported by other research groups for other
invertebrate species [23,24], indicating that our knowledge of P. pseudoannulata genes is limited. Further
research is needed to characterize these genes and explore their functions.
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Table 1. The length distribution of transcripts and unigenes.

Length Range (bp) Transcript Unigene

0–300 11,907 (10.02%) 0 (0%)
300–500 40,345 (33.95%) 27,245 (45.04%)
500–1000 31,410 (26.43%) 16,985 (28.08%)

1000–2000 20,515 (17.26%) 9867 (16.31%)
2000+ 14,674 (12.35%) 6390 (10.56% )

Total number 118,853 60,489
Total length 119,999,996 57,521,612
N50 length 1637 1433

Mean length 1009.65 950.94

Table 2. Functional annotation of the P. pseudoannulata transcriptome.

Databases Used
for Annotation Annotated Number 300 ≤ Length < 1000 Length ≥ 1000

COG 5131 (8.48%) 1312 3819
GO 6876 (11.37%) 2310 4566

KEGG 8297 (13.72%) 2484 5813
KOG 11,804 (19.51%) 3694 8110
Pfam 13,550 (22.40%) 4204 9346

Swissprot 10,216 (16.89%) 3164 7052
nr 18,477 (30.55%) 7477 11,000
All 18,773 (31.04%) 7709 11,064

The E-value distribution of the top hits in the nr database showed that 55.81% of the sequences
had strong homology (smaller than 1 × 10−60); 31.31% of the homology sequences ranged from
1 × 10−60 to 1 × 10−15; 20.99% had hits with similarity higher than 80% against the nr database;
and 52.02% of the sequences with similarity higher than 60%. The species distribution showed that
76.63% of unigenes matched to four species, the unigenes had the highest homology to genes from
Stegodyphus mimosarum (68.64%), followed by Ixodes scapularis (4.36%), Zootermopsis nevadensis (2.15%),
and Metaseiulus occidentalis (1.49%) (Figure S1).

The unigenes of P. pseudoannulata were mapped to 26,522 GO terms and categorized into
54 subcategories, among which 5921 (22.32%) terms were assigned to 17 subcategories in cellular
components, 8268 (31.17%) terms were assigned to 18 subcategories in molecular function, and 12,333
(46.5%) terms were assigned to 19 subcategories in biological processes (Figure S2). In addition,
6878 unigenes had significant matches in COG database. Among the 25 COG categories, the cluster
for general function prediction only (27.74%) was the largest category, followed by replication,
recombination and repair (11.02%); transcription (7.93%); signal transduction mechanisms (7.78%);
posttranslational modification, protein turnover and chaperones (5.64%); amino acid transport and
metabolism (5.41%); and translation, ribosomal structure and biogenesis (5.18%) (Figure S3).

A total of 11,737 unigenes participated in 254 KEGG pathways (Table S1), which were assigned to
five categories, metabolism, genetic information processing, environmental information processing,
cellular processes and organismal systems. Among them, the largest numbers of unigenes were
assigned to signal transduction (2134 unigenes), endocrine system (1012 unigenes), nervous system
(732 unigenes), immune system (616 unigenes), carbohydrate metabolism (494 unigenes) and transport
and catabolism (492 unigenes). These results provided a valuable clue for investigating functional
genes and specific biological processes in spider research.

2.3. Differential Expression Analysis

To screen responsive genes, we calculated and compared expression levels among TL vs. TC and
TH vs. TC groups, respectively, and thereby identified differentially expressed genes (DEGs) with an
FDR < 0.01 and the absolute value of log2FC ≥ 1 taken as the selection criteria. As shown in Figure 1A,
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there were a total of 2939 DEGs between the TL and TC groups, in which 2176 and 763 unigenes were
up-regulated and down-regulated, respectively. Between the TH and TC groups, there existed a total
of 2491 DEGs, in which 1887 and 604 unigenes were up-regulated and down-regulated, respectively.
These results clearly indicate that Cd treatment had a more relevant impact on gene up-regulation
than on down-regulation. Furthermore, the number of DEGs observed after the 0.2 mM Cd treatment
was slightly higher than that observed in 2 mM Cd-treated spiders. This is consistent with previous
observations [25,26], which indicated that genes associated with Cd stress may have been caused by
the lowering of the metabolic capacity of the living body by the strong toxicity of Cd content beyond a
specific tolerance [27,28].

Through functional annotation, we separately obtained 1160 and 883 DEGs in TL vs. TC and TH
vs. TC, respectively. Notably, 724 genes were commonly regulated by the two concentrations of Cd
stress (Figure 1B). Significantly, these DEGs could be used to discover genes responsive to Cd stress in
the spider, and thereby to identify some biomarkers for monitoring heavy metal pollution [29].
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Figure 1. The differentially expressed genes (DEGs) numbers associated with 0.2 and 2 mM Cd
exposure. TL: 0.2 mM CdCl2, TH: 2 mM CdCl2, TC: control. (A) The numbers of up- and
down-regulated genes; (B) The numbers of DEGs in TL vs. TC and TH vs. TC.

2.4. Functional Enrichment Analysis of DEGs

To explore the pattern of transcriptome regulation of P. pseudoannulata following Cd exposure,
all of the DEGs were performed on GO, COG functional annotation and pathway enrichment analysis.
The DEGs between the groups (TL vs. TC and TH vs. TC) for the GO enrichment analysis were divided
into three main clusters biological process (BP), cellular component (CC) and molecular function (MF),
and thirty-eight, thirty-six and thirty-four subcategories under the three main GO categories were
obtained, respectively. The predominant enriched subcategories were similar with 0.2 and 2 mM Cd
exposure, “metabolic process” (GO: 0008152, part of BP), “cellular process” (GO: 0009987, part of BP),
“catalytic activity” (GO: 0003824, part of MF) and “transporter activity” (GO: 0005215, part of MF) were
both predominantly enriched in TL vs. TC and TH vs. TC (Figure 2). The enriched GO terms between
the control and two Cd-treated groups in the three primary clusters were further analysed using
the topGO software (enrichment significance KS < 0.05). The subcategories that topGO significantly
enriched were consistent with GO predominantly enriched ones (Figure 2, Table S2). Moreover, signal
transducer activity (GO:0004871, part of MF), molecular transducer activity (GO:0060089, part of MF)
and cell surface receptor signaling pathway (GO:0007166, part of BP) were also significantly enriched
GO terms in TL vs. TC and TH vs. TC, suggesting signal transduction systems of the spider were
disturbed with Cd stress.
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Figure 2. Gene ontology (GO) classification of differentially expressed genes (DEGs) in: TL vs. TC
(A); and TH vs. TC (B). TL: 0.2 mM CdCl2, TH: 2 mM CdCl2, TC: control. The light histogram
indicates all the annotated unigenes in each subcategory, the dark histogram indicates all the annotated
DEGs in each subcategory. The left y-axis indicates the percentage of annotated unigenes or DEGs
in that main category. The right y-axis indicates the number of annotated genes in each subcategory,
the upper numbers correspond to the annotated DEGs, and the lower numbers correspond to the
annotated unigenes.

The DEG annotation results in 26 COG classifications of TL vs. TC and TH vs. TC were shown in
Figure 3. In TL vs. TC, the DEGs were mainly localized into the following four classifications: E (45,
18.44%), L (19, 7.79%), Q (19, 7.79%), and G (17, 6.97%). In TH vs. TC, E (27, 15.61%), L (22, 12.72%),
Q (18, 10.4%), and G (11, 6.36%) were the four primary classifications. Moreover, more DEGs were
located into “replication, recombination and repair” (L) in TH vs. TC than TL vs. TC, indicates that
more serious DNA damage may be caused by higher concentration of Cd.

The KEGG Orthology-Based Annotation System was employed to search most statistically
significantly enriched pathways for all the DEGs in TL vs. TC and TH vs. TC, and 194 and 120
differentially expressed pathways were identified, respectively. The predominantly enriched pathways
were shown in Table 3. We then analysed the significance of the pathways using an enrichment factor
and the Q-value, the results of the first 20 minimum Q-value pathways were displayed in Figure S4.
Glycine, serine and threonine metabolism, fat digestion and absorption, drug metabolism-cytochrome
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P450 and Notch signalling pathway were both significantly enriched in TL vs. TC and TH vs. TC. It is
worth noting that lysosome was significantly enriched pathway in TH vs. TC but not in TL vs. TC
(Figure S4). One function of lysosome is known to degrade apoptotic cells, so the significantly enriched
pathway of lysosome in TH vs. TC is probably due to more serious apoptosis resulting from higher
concentration of Cd. Meanwhile, phagosome was predominantly enriched both in the groups TL vs.
TC (8 DEGs) and TH vs. TC (5 DEGs), which indicated autophagy was probably induced by Cd [30].
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Table 3. The predominantly enriched pathways in the groups TL vs. TC and TH vs. TC.

TL vs. TC TH vs. TC

Glycine, serine and threonine metabolism (11 DEGs) Lysosome (7 DEGs)
Lysosome (10 DEGs) Fat digestion and absorption (7 DEGs)
Fat digestion and absorption (10 DEGs) Fatty acid elongation (5 DEGs)
Protein processing in endoplasmic reticulum (9 DEGs) Protein processing in endoplasmic reticulum (5 DEGs)
Phagosome (8 DEGs) Phagosome (5 DEGs)
Carbon metabolism (8 DEGs) Notch signalling pathway (4 DEGs)
Pyruvate metabolism (7 DEGs) Peroxisome (4 DEGs)
Drug metabolism-cytochrome P450 (7 DEGs) Glycine, serine and threonine metabolism (4 DEGs)
Oxidative phosphorylation (6 DEGs) Valine, leucine and isoleucine degradation (4 DEGs)
Notch signalling pathway (6 DEGs) Glutathione metabolism (3 DEGs)
Valine, leucine and isoleucine degradation (6 DEGs) Drug metabolism-cytochrome P450 (3 DEGs)

When spiders are subjected to Cd stress, more energy is expended for defence (i.e., detoxifying
the poisonous substance) [31–33]. Compared to the control groups, amino acid metabolism (COG, E),
carbohydrate metabolism (COG, G), lipid metabolism (COG, I), energy metabolism (COG, C) and
digestive system in COG and/or KEGG database were all shown to be significantly enriched, and
most of the DEGs were significantly up-regulated, indicating the digestion and metabolism activities
were actively induced to maintain the stability of their bodies when subjected to Cd stress.

The effects of heavy metal appear first at the molecular level and involve changes in polypeptide
synthesis, the oxidation and denaturation of protein structures, DNA damage, intracellular respiration
disorders and energy generation processes [11,12]. In extreme cases, high level of such damage
suppresses metabolic processes and/or disintegrates cell organelles, leading to apoptosis [34–36].
When P. pseudoannulata were subjected to Cd stress, GO terms related to “metabolic process”
(GO: 0008152), “catalytic activity” (GO: 0003824), “cell part” (GO: 0044464) and “organelle” (GO:
0044422), as well as DEGs involved in replication, recombination and repair (COG, L) and KEGG
pathways in lysosomes and phagosomes were significantly enriched. These findings may indicate that
oxidative damage in spiders at the cellular and molecular levels results from Cd exposure.

2.5. Analysis of Genes Related to Cd Detoxification

Transmembrane metal transporters are assumed to play key roles in heavy metal transport and
detoxification [37–39]. Numerous studies focused on metal transporters in both plants and animals
have been reported [19,23,39,40]. ATP-binding cassette (ABC) family transporters are important heavy
metal transporters and interact with a wide range of chemicals including metals by pumping them
across the cell membrane to maintain of cellular metal homeostasis [41,42]. In our study, the expression
levels of ABC transporters were inhibited or induced. The expression of four of these genes was
induced by Cd, one gene was suppressed in TL vs. TC groups and one gene in TH vs. TC groups was
induced (Table S3). A relationship between ABC transporter expression and cadmium exposure has
also been observed in other species [39,43,44].

Signal transduction is the main way for cells responding to heavy metal stress, when encounter an
extra-cellular stimuli, the cell could activate a variety of specific stress-responsive signalling proteins
to protect the cell [39,40]. Comparing the enriched DEGs of P. pseudoannulata in association with
varying concentrations of Cd exposure, the “cell surface receptor signalling pathway” (part of BP,
GO: 0007166) and “signal transducer activity” (part of MF, GO: 0004871) were significantly enriched.
Various signalling pathways have been demonstrated to be associated with Cd exposure [19,45]. MAPK
pathway is usually known to be activated by Cd via ROS generation, which is associated with signal
transduction in response to oxidative stress, thus, also plays an essential role in eliminating oxidative
damaged cells [46,47]. KEGG annotation indicated involvement of the following signalling pathways
in all three libraries: Notch, MAPK, AMPK, Hedgehog, Ras and TNF. Many DEGs involved in the
pathways were significantly up- or down-regulated with Cd exposure, confirming that the signal
transduction of the spiders was disturbed by Cd contamination.
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Heat shock proteins (Hsps) are critical factors during the process of environmental stress [19,48].
Genes encoding for Hsps, which play a vital role in the transport, folding, and assembly of proteins,
are induced by various causal agents such as heavy metals [49–51]. In the present study, several forms
of Hsps, including Hsp90, Hsp70, Hsp67, and Hsp60, and hsp20 and hsp70 genes were annotated in the
unigene database. However, only the expression of Hsp70 and Hsp20 were significantly regulated
(Table S3). This is consistent with the finding that hsp20 and hsp70 genes were substantially modulated
in Tigriopus japonicus by heavy metals [50], and Hsp70 was significantly induced in Cyprinus carpio by
Cd, indicating that both genes may be a good potential molecular biomarker for monitoring of heavy
metal pollution [52].

Many studies have documented that Cd is often involved in oxidative stress resulting from
the production of ROS [53,54]. Genes encoding detoxification enzymes played important role in
preventing oxidative stresses and protecting organisms by the scavenging of ROS [55–57]. Glutathione
metabolism played a pivotal role in protecting the organisms from heavy metal stress by quenching
induced ROS, and GST is the most important enzyme of phase II detoxification and has a central role
in defence against various environmental pollutants [58–60]. In the present study, several glutathione
metabolism related enzymes were found based on the assembled transcriptome background, two
transcripts encoding GST were detected over-expressed compared with the control in pathway of
glutathione metabolism, indicating their important roles in the defence against Cd stress. Same results
were recorded in digestive gland of Mizuhopecten yessoensis following Cd exposure [19]. Two other
genes in glutathione metabolism pathways, including 5-oxoprolinase, gamma-glutamyltransferase
were detected and all up-regulated in TL vs. TC or TH vs. TC. CYP450 is another critical detoxification
enzyme considered to be a biomarker in many animals [19,29]. A total of 35 DEGs of CYP450
families were found in TL vs. TC and TH vs. TC groups and most of them presented up-regulate
(Table S3), and these molecules may be used as biomarkers to assess the toxic effects of heavy metals
on terrestrial invertebrates.

2.6. Validation of mRNA-Seq Data by RT-qPCR

To further evaluate the DEG library, nine transcripts with clear annotation were randomly selected
for analysis by RT-qPCR. The RT-qPCR results displayed the same expression tendency as the DEG
libraries (Table 4). The expression profiles of these nine genes were shown in Table 4, including
cytochrome P450 4C1, Hsp 70, myb-related transcription factor, glutathione S-transferase, cytochrome
P450 4c3, γ-Glutamyltransferase ywrD, ABC transporter and dimethylaniline monooxygenase.

Table 4. Validation of the RNA-Seq expression profiles of selected DEGs by RT-qPCR.

Transcript ID Brief Description DEG Library Fold by RNA-Seq Fold by qPCR

c59601.graph_c0 Cytochrome P450 4C1 TL vs. TC 7.78 21.55
c82407.graph_c1 Heat shock protein 70 TL vs. TC −2.53 0.26
c91015.graph_c0 Myb-related transcription factor TH vs. TC 7.39 4.65
c92582.graph_c0 Glutathione S-transferase TL vs. TC 2.80 4.41

c98395.graph_c0 Cytochrome P450 4c3 TL vs. TC 9.06 42.27
TH vs. TC 8.47 15.51

c98430.graph_c0 gamma-Glutamyltransferase TL vs. TC 2.56 2.93
TH vs. TC 2.27 2.24

c101656.graph_c1 ABC transporter TL vs. TC 2.24 4.96

c91520.graph_c0 Glutathione S-transferase
TL vs. TC 2.62 10.44
TH vs. TC 3.24 21.13

c87886.graph_c0 Dimethylaniline monooxygenase TL vs. TC 7.60 315.25
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3. Materials and Methods

3.1. Animal Materials and RNA Extraction

Subadult P. pseudoannulata specimens were collected from farm fields in Ma’anshan Forest Park,
Wuhan (30◦52′ N, 114◦31′ E), Hubei Province, China, in April 2014. Spiders were kept individually in
cylindrical glass tubes (diameter 2 cm, height 12 cm) with a layer of sponge (1.5 cm thick) moistened
with distilled water on the bottom and fed in a chamber at 26 ◦C, relative humidity of 60%–80% under
a light:dark cycle of 14:10 h (lights turned on at 08:00). Two days post-maturation, female adult spiders
were exposed to 0.2 and 2 mM CdCl2 solution as their drinking water according to our previous
study, and water for the control group [10]. We fed the spiders with Drosophila melanogaster and
Tendipes sp., and replaced the moistened sponges every other day. Three biological replications were
performed with each treatment containing at least six spiders. Seven days later, the treated spiders
were immediately frozen in liquid nitrogen and stored at −70 ◦C refrigerator for RNA extraction.

The entire body (containing the carapace and abdomen) of each spider was used for RNA
extraction, and then equal quality RNA of the three replicates of each group were mixed for
mRNA-sequencing. Total RNAs were extracted using TRIzol Reagent (Huayueyang Biotech Co.,
Ltd., Beijing, China) following the manufacturer’s protocol and then treated with RNase-free DNase
I (TaKaRa Biotech Co., Ltd., Dalian, China) to remove genomic DNA. RNA concentration, purity
and integrity were determined through agarose gel electrophoresis and Agilent 2100 Bioanalyzer
(Agilent Technologies, Inc., Santa Clara, CA, USA).

3.2. cDNA Library Construction, Sequencing and De Novo Assembly

The mRNA-seq libraries (TC, TL and TH) were constructed using the NEB Next Ultra RNA Library
Prep Kit for Illumina (New England Biolabs, Inc., Ipswich, MA, USA), according to manufacturer’s
protocol. In brief, magnetic beads with Oligo (dT) were used to isolate poly (A) mRNA from the
high-quality total RNA samples. RNA fragmentation buffer was used to cut the mRNA into short
fragments. Random hexamer primers and reverse transcriptase were used to synthesize the first-strand
cDNA, and then the second-strand cDNA was synthesized by using buffer, dNTPs, RNaseH and
DNA polymerase I. The cDNA was purified using a QiaQuick PCR extraction kit. The desired size
of adaptor-ligated fragment with average inserts of 200 bp (150–250 bp) was selected by agarose gel
electrophoresis. Polymerase chain reaction (PCR) was performed to selectively enrich and amplify
the selected cDNA fragments to construct cDNA libraries. The resultant libraries were tested for
quality conformance and sequenced using the Illumina HiSeq™ 2500 (Biomarker Technologies Co.,
Ltd., Beijing, China) to generate 125 bp paired-end read lengths.

Subsequently, the obtained raw reads were processed to get clean reads by removing adaptor
sequences and low quality bases. Clean reads obtained were randomly clipped into short fragments
(K-mers) by applying Trinity software (v2.0.2) [61]. The K-mers with a certain length of overlap were
combined to form longer fragments, contigs, and the overlap between these contigs was utilized to
build graph components. Then, the clean reads were mapped back to obtain transcripts using the
method of the De Bruijn graph. Finally, the unique assembled transcripts were further subjected to the
process of sequences-splicing redundancy removal using TIGR gene indices clustering tools [62] to
acquire non-redundant transcripts called unigenes.

3.3. Unigene Functional Annotation

All the unigenes were searched against NCBI non-redundant nucleotide collection (Nr/nt),
Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COG), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) protein information databases using BLASTx to obtain annotation
information. The parameter E-value ≤ 1 × 10−5 of BLASTx was taken as a threshold of
significant similarity.
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3.4. Differential Dene Expression and Functional Annotation Analyses

For gene expression analysis, all clean reads were aligned to the unigene library using Bowtie
software [63], and the obtained results were further used to estimate expression level using RSEM
software [64]. Fragments Per Kilobase of transcript per Million (FPKM) for each unigene from
the three separate libraries was calculated to show the expression quantity of the gene in the
sample [65]. Differentially expressed genes (DEGs) between the groups (TL vs. TC and TH vs. TC)
were analysed using EBSeq software respectively [66]. Benjamini–Hochberg method was used to
correct the significance of the p-value [67]. In this study, we used corrected p-values that called false
discovery rate (FDR) <0.01 and the absolute value of log2 fold change (FC) ≥1 as the threshold to
judge the significant difference in gene expression.

All DEGs between the groups (TL vs. TC and TH vs. TC) were carried on GO, COG functional
annotation and KEGG pathway enrichment analysis. The topGO software [68] was used for GO
enrichment analysis by the “elim” method with a minimum node size of 6. DEGs in the KEGG
pathway enrichment degree were statistically analysed by the enrichment factor and corrected p-value
(q-value) using the following formula: enrichment factor = (the number of DEGs in pathway/the
number of DEGs)/(the number of all unigenes in pathway/the number of all unigenes in KEGG). The
larger the enrichment factor is, the more significant of the enrichment level for DEGs, and the smaller
the log value of q-value is, the more reliable of the enrichment significant for DEGs.

3.5. Validation of mRNA-Seq Data

Total RNA of the spiders was extracted by using TRIzol method (Taraka, Japan) from
the previous samples. One microgram of total RNA was used in reverse transcription in total
volume of 20 µL in the presence of 6-mer random primer and oligo primer according to the
protocol of Taraka. Quantitative real-time PCR was performed on a Viia™ 7 Real-Time PCR
System (ABI, Waltham, MA, USA) platform using the SYBR Premix Ex Taq™ II (Tli RNaseH
Plus, ROX plus), (TaKaRa, Japan) following the manufacturer’s instructions. We selected nine
DEGs (c59601.graph_c0, c82407.graph_c1, c91015.graph_c0, c92582.graph_c0, c98395.graph_c0,
c98430.graph_c0, c101656.graph_c1, c91520.graph_c0 and c87886.graph_c0) for RT-qPCR validation
(Table S4). The primer sets were designed using Premier 5.0 software. The amplification was achieved
by the following PCR program of first denaturation 95 ◦C for 30 s, followed by 40 cycles of 5 s
at 95 ◦C, 30 s at 55 ◦C and 30 s at 72 ◦C, then a melting curve analysis was conducted from 60 to
95 ◦C. All samples were tested in triplicate, and the experiments were performed on three biological
replicates. The relative expression levels of the selected transcripts normalized to the internal control
gene (β-actin) were calculated using the 2−∆∆Ct method.

4. Conclusions

In summary, the present study firstly represents a comprehensive transcriptome characterization
of P. pseudoannulata following Cd exposure through high depth sequencing. A total of 60,489 assembled
unigenes were obtained, 18,773 of which were annotated in the public databases. A total of 2939 and
2491 DEGs were detected between the two Cd-treated and control libraries in the spider. Metabolism
processes and digestive system were predominately enriched with Cd exposure. Significantly enriched
pathways in lysosome, phagosome, and replication, recombination and repair demonstrated the
oxidative damage resulted from Cd at cellular and molecular levels. Based on the DEGs analysis,
multiple candidate genes involved in defence and detoxification were successfully identified in
response to Cd stress. These data provide potential molecular targets in P. pseudoannulata for functional
studies of genes responding to Cd stress and may serve as a valuable reference for identifying
biomarkers in Cd pollution monitoring.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/12/2033/s1.
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