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Abstract

Since the outbreak of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2)
in December 2019 in China, there has been an upsurge in the number of deaths and

infected individuals throughout the world, thereby leading to the World Health

Organization declaration of a pandemic. Since no specific therapy is currently avail-

able for the same, the present study was aimed to explore the SARS‐CoV‐2 genome

for the identification of immunogenic regions using immunoinformatics approach.

A series of computational tools were applied in a systematic way to identify the

epitopes that could be utilized in vaccine development. The screened‐out epitopes

were passed through several immune filters, such as promiscuousity, conservancy,

antigenicity, nonallergenicity, population coverage, nonhomologous to human pro-

teins, and affinity with human leukocyte antigen alleles, to screen out the best possible

ones. Further, a construct comprising 11 CD4, 12 CD8, 3 B cell, and 3 interferon‐γ
epitopes, along with an adjuvant β‐defensin, was designed in silico, resulting in the

formation of a multiepitope vaccine. The in silico immune simulation and population

coverage analysis of the vaccine sequence showed its capacity to elicit cellular,

humoral, and innate immune cells and to cover up a worldwide population of more

than 97%. Further, the interaction analysis of the vaccine construct with Toll‐like
receptor 3 (immune receptor) was carried out by docking and dynamics simulations,

revealing high affinity, constancy, and pliability between the two. The overall findings

suggest that the vaccine may be highly effective, and is therefore required to be

tested in the lab settings to evaluate its efficacy.
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1 | INTRODUCTION

Coronaviruses (CoVs), belonging family—Coronaviridae, subfamily—

Orthocoronavirinae, and order Nidovirales, are responsible for causing

enzootic infections in mammals and birds. However, since the last

decade, they have shown their capability of infecting humans as well.

The lethality of coronaviruses can be demonstrated by the outbreaks

caused by severe acute respiratory syndrome‐coronavirus (SARS‐CoV)
and Middle East respiratory syndrome‐coronavirus (MERS‐CoV) in

2002 and 2012, respectively (Schoeman & Fielding, 2019). The novel
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flu‐like coronavirus which caused the recent outbreak in December

2019 in China was initially named as 2019 novel‐coronavirus
(2019 n‐CoV), and later as SARS‐CoV‐2 by the International Commit-

tee on Taxonomy of Viruses (Zhu et al., 2020). Since then, several cases

of SARS‐CoV‐2 have been reported from different countries due

to rapid and easy transmission through droplet route and from humans

to humans and fomites (Li et al., 2020). As per a World Health

Organization report published on June 23, 2020, about 8,993,659

confirmed SARS‐CoV‐2 cases with 469,587 deaths (Situation Report

155) have been reported worldwide so far (https://www.who.int/

emergencies/diseases/novel-coronavirus-2019/situation-reports). It is

a single‐stranded, positive‐sense RNA virus belonging to β‐coronavirus
genera, sharing varied genomic identity with SARS‐ and MERS‐CoV
(Chan et al., 2020). The genome of SARS‐CoV‐2 is about 30 kb (29,891

nucleotides), consisting of 16 nonstructural proteins (NSPs) consisting of

two viral cysteine proteases, that is, NSP3 and NSP5 (which codes for

papain‐like protease and main protease, respectively), NSP12 (RNA‐
dependent RNA polymerase), NSP13 (helicase), and some others playing

roles in replication and transcription of the virus. In addition, the

genome consists of four structural proteins, that is, Envelope (E),

Membrane (M), Spike (S), and Nucleocapsid (N; Chan et al., 2020).

Currently, there is no established therapy available for the same in the

form of vaccine or drug. Thus, it is important to find an alternative

solution so that the replication and circulation of the virus can be

controlled and prevented. Efforts are being made to develop the vac-

cines on a fast‐track mode but still it is not known about the duration

required to pass through various phases of clinical trials (Chen WH,

Hotez, & Bottazzi, 2020). Moreover, multiple approaches of vaccine

development are needed to start simultaneously as it is is difficult to

predict the failure of any vaccine candidate at any stage. The conven-

tional vaccinology is a technique classically used by various scientists to

develop a successful vaccine where pathogen is cultured and is used

either in a killed form or in an attenuated form. However, these vaccines

may be associated with various side effects due to high titer of antigen

load present in vaccine formulations. Also, the chances of reversion from

live attenuated strain to wild strain cannot be predicted (Heinson,

Woelk, & Newell, 2015). In such a scenario, the vaccines prepared using

immunoinformatics approach holds several promises over classical

vaccinology approaches as it reduces the unnecessary genomic load,

saves time, cost, and is comparatively less labor intensive. However, it is

associated with some limitations, for example, the vaccine candidates

developed in some studies have been found to be weakly immunogenic.

The latter issue can be overcome by using a suitable adjuvant. The T cell

lymphocytes–based immunotherapies are important in providing pro-

tective and long‐lasting immunity against a number of infectious dis-

eases and their exhaustion is often correlated with disease progression

(Zhang et al., 2019). An exhaustion in CD4 and CD8 cells was reported

in the peripheral blood mononuclear cells of SARS‐CoV‐2‐infected pa-

tients (Zheng et al., 2020). Similarly, in another study, an exhaustion in

CD4+, CD8+, B cells, and natural killer cells was reported in patients with

SARS‐CoV‐2 (F. Wang et al., 2020). The following studies indicate the

immunomodulation by SARS‐CoV‐2, causing depletion of different im-

mune cells types in infected patients, suggesting the role of these cells in

development of protective immunity against SARS‐CoV‐2. Further, the
interferon‐γ (IFN‐γ) cells are well known for their immunoregulatory and

antiviral properties, and thus are important for vaccine designing

(Chauhan, Rungta, Goyal, & Singh, 2019). Recently, several researchers

have proposed the immunotherapeutic potential of epitope‐based
therapeutics (consisting of T‐cell, B‐cell, and IFN‐γ epitopes) against

the number of viral, bacterial, and parasitic infections, such as hepatitis

C virus, Nipah virus, herpes simplex virus, Acinetobacter, Vibrio, malaria,

Echinococcus, and Leishmania (Abbas, Zafar, Ahmad, & Azam, 2020;

Chauhan & Farooq, 2016; Chauhan, Goyal, & Singh, 2018; Chauhan,

Singh, & Ratho, 2018; Damfo, Reche, Gatherer, & Flower, 2017; He

et al., 2019; Ravichandran, Venkatesan, & Febin Prabhu Dass, 2018;

Solanki & Tiwari, 2018). Even the recently proposed RTS,S/AS01 vaccine

for malaria consists of T‐cell epitopes (Pance, 2019). Such epitope‐based
vaccines are composed of peptides that could elicit the activation of

different subset of T cells and B cells specific to target protein, and thus

have immense potential in vaccine designing. Thus, considering the

above‐mentioned points and the nonavailability of any established

therapy for SARS‐CoV‐2, the present study was proposed to identify the

immunogenic markers in its genome in the form of T cell‐, B cell‐, and
IFN‐γ‐stimulating epitopes. The results of the present study can be va-

lidated by wet laboratory experiments and can be tested in clinical trials

at a faster pace so as to curtail the threat of SARS‐CoV‐2.

2 | MATERIALS AND METHODS

2.1 | SARS‐CoV‐2 genome and structural analysis

The amino acid sequences of SARS‐CoV‐2 genome–associated proteins,

that is, ORF1ab (which is a complex of the following proteins:

5′‐untranslated region, nsp‐2, nsp‐3, nsp‐4, 3C‐like protease, nsp‐6,
nsp‐7, nsp‐8, nsp‐9, nsp‐10, RNA‐dependent RNA polymerase [nsp‐12],
helicase [nsp13], 3′‐5′ exonuclease [nsp‐14], endoRNase [nsp‐15], and
o‐ribose methyltransferase [nsp‐16]), surface glycoprotein “S,” ORF‐3a,
Envelope protein “E,” Membrane glycoprotein “M,” ORF‐6, ORF‐7,
ORF‐8, Nucleocapsid phosphoprotein “N” and ORF‐10, were retrieved

from the National Center for Biotechnology Information database. The

aim of carrying out phylogenetic analysis was to determine the relat-

edness of SARS‐CoV‐2 proteins with the proteins of SARS and MERS

coronaviruses. The antigenicity, allergenicity, and other physicochemical

properties of the proteins were determined by VaxiJen (Doytchinova &

Flower, 2007; http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.

html), AlgPred (Saha & Raghava, 2006; http://webs.iiitd.edu.in/raghava/

algpred/submission.html), and Protparam servers (https://web.expasy.

org/protparam/), respectively. The proteins were also checked for

having any homology at the sequence level with the human proteome

using Blastp analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=

Proteins). The secondary and tertiary structural analysis of the SARS‐
CoV‐2 proteins were determined by SOPMA (Geourjon & Deleage,

1995; http://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/

npsa_sopma.html) and RaptorX tools (http://raptorx.uchicago.edu/

StructPredV2/predict/; Kallberg et al., 2012), respectively.
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2.2 | Identification of epitopes

NetCTL1.2 server (http://www.cbs.dtu.dk/services/NetCTL/) was utilized

for the identification of cytotoxic T‐cell (CTL) epitope prediction (Larsen

et al., 2007). The commonly found human leukocyte antigen (HLA) Class

I alleles in human population worldwide (more than 90%), were targeted

for epitope prediction (Chauhan & Singh, 2020). The server predicts the

peptide based on the following three parameters: (a) proteasomal

mediated cleavage at C terminal, (b) major histocompatibility complex

(MHC) Class I binding, and (c) efficiency of transporter associated with

antigen processing. All the parameters were taken into consideration

during prediction without altering any parameter, at a prediction

threshold of 0.75.

NetMHCIIpan 3.2 (http://www.cbs.dtu.dk/services/NetMHCIIpan;

Jensen et al., 2018) and the Immune Epitope Database (IEDB) con-

sensus methods (http://tools.iedb.org/mhcii/; P. Wang et al., 2010)

were employed for Helper T‐cell (HTL) epitope prediction. Both the

servers are recently updated versions over previously used CD4

epitope prediction servers with improved accuracy, trained on ex-

tended datasets. The alleles targeted for epitopes prediction were

supposed to cover >95% of the worldwide population (Chauhan &

Singh, 2020). The epitopes predicted were divided into three dif-

ferent categories based on the percentile ranks. Based on percentile

ranks of 2%, 2–10%, and >10%, the epitopes were designated as

strong, intermediate, and weak binders, respectively. The prediction

of IFN‐γ cells was carried out using the IFNepitope server (Dhanda,

Vir, & Raghava, 2013) by scanning module using motif and

support vector machine (SVM) hybrid approach and the model for

prediction was IFN‐γ versus Non‐IFN‐γ. The BCPred 2.0 server

(http://crdd.osdd.net/raghava/bcepred/; El‐Manzalawy, Dobbs, &

Honavar, 2008) and ElliPro server (http://tools.iedb.org/ellipro/;

Ponomarenko et al., 2008) were utilized for linear/continuous B‐cell
epitopes and conformational/discontinuous epitopes prediction,

respectively. The parameters, such as antigenicity, hydrophilicity,

surface accessibility, β‐turn, and flexibility of the predicted linear

B‐cell epitopes, were also taken into consideration during predic-

tion. The predicted B‐cell epitopes from different proteins were

mapped on their respective three‐dimensional (3D) models, to de-

termine their surface localization. Both BCPred 2.0 and ElliPro

servers were run at default without altering any prediction

parameter.

2.3 | Filtering out the predicted epitopes based on
following immune filters

2.3.1 | Promiscuous epitope prediction

The promiscuous epitopes are important in vaccine designing as they

have affinity toward multiple HLA alleles (Chauhan et al., 2019).

Moreover, such epitopes have a large population coverage due to

their promiscuous nature. Thus, the screened‐out epitopes (with high

binding affinity scores for HLAs) were further subjected to pro-

miscuousity analysis.

2.3.2 | Overlapping epitope prediction

The overlapping epitopes have an integral sequence containing both HLT

and CTL epitopes, and thus can activate both HLTs and CTLs (Chauhan

et al., 2019). Thus, the HTL epitopes which were found to be overlapping

with CTL epitopes, were also screened out for further analysis.

2.3.3 | Antigenicity, allergenicity, and population
coverage analysis of the epitopes

The VaxiJen v2.0 tool and AlgPred tools were used for antigenicity and

allergenicity prediction of the epitopes. The amino acid composition–

based SVM module was utilized for allergenicity prediction of epitopes,

the threshold for which is −0.4. At this value, the sensitivity of the

predictive value was reported to be 88.87% and specificity was 81.86%,

respectively, at fivefold cross‐validation. Among the allergenicity pre-

diction methods of AlgPred, this method has the highest sensitivity and

was thus selected for the analysis. The population size covered by the

epitopes was analyzed by IEDB population coverage analysis. The Blastp

search engine was used against the human proteome to identify any

similarity of the predicted epitopes with any human proteins. If found

any, was eliminated for further analysis.

2.3.4 | Posttranslational modification sites

The epitopes predicted were also checked for their location within

any posttranslational modification sites. For this, the amino acid se-

quences of each protein were subjected to NetOGlyc 4.0 server

(http://www.cbs.dtu.dk/services/NetOGlyc/) for glycosylation sites

prediction (Steentoft et al., 2013). The epitopes which were observed

to be within posttranslational modification sites were excluded.

2.3.5 | Interaction analysis of peptides and human
leukocyte antigens

Molecular docking

ClusPro (http://cluspro.bu.edu/), a protein–protein docking server by

Schrodinger, was utilized for determining the interaction patterns of

the CD4 and CD8 epitopes with Class II and I HLA alleles, respec-

tively (Kozakov et al., 2017).

2.4 | Vaccine and the immune receptor
construction and analyzing their different properties

2.4.1 | Multiepitope chain construction

The best possible epitopes were screened out based on the above‐
mentioned immune filters and merged to form a single peptide chain. The

T‐ and B‐cell epitopes were linked by GPGPG linkers, HEYGAEALERA

motifs, and GGGS linkers. β‐Defensin was used as an adjuvant and linked
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to the vaccine chain, via EAAAK linker. The physicochemical properties

and immunogenicity of the vaccine were confirmed using ProtParam and

VaxiJen tools, respectively. The allergenicity of the vaccine sequence was

determined by two different servers, AlgPred and AllerTOP v2.0 tools

(http://www.ddg-pharmfac.net/AllerTOP/contact.html).

2.4.2 | Modeling and validation of vaccine and
Toll‐like receptor 3

The secondary structural confirmations, such as α‐helix, β‐sheets, and
β‐loops were determined using the SOPMA tool. The multiepitope

vaccine sequence was shuffled randomly into six different sequences

and each sequence was modeled using homology modeling tools,

such as RaptorX (http://raptorx.uchicago.edu/StructPredV2/predict/:

Kallberg et al., 2012), Phyre2 (http://www.sbg.bio.ic.ac.uk/~phyre2;

Kelley, Mezulis, Yates, Wass, & Sternberg, 2015), Swiss Model

workspace (http://swissmodel.expasy.org/interactive; Waterhouse

et al., 2018), I‐Tasser (http://zhanglab.ccmb.med.umich.edu/I-TASSER/;

Yang et al., 2015), and Modweb (http://modbase.compbio.ucsf.edu/

modweb/; Pieper et al., 2006). Among the models generated by different

homology modeling tolls, the one with the best structural configuration

was selected for further analysis. The model was further refined using

GalaxyRefine server and the reliability of the finalized model was ana-

lyzed by Ramachandran Plot ProSA web analysis (http://prosa.services.

came.sbg.ac.at/prosa.php). Finally, the disulfide engineering of the vaccine

was performed to enhance its thermostability, using Design 2 server

(http://cptweb.cpt.wayne.edu/DbD2/: Craig & Dombkowski, 2013). The

tertiary structure of Toll‐like receptor 3 (TLR‐3) was retrieved from the

Protein Data Bank with ID: 2A0Z.

2.4.3 | Immune simulation by vaccine sequence

An in silico immune simulation was carried out using C‐ImmSim 10.1

server (http://www.cbs.dtu.dk/services/C-ImmSim-10.1/), which is based

on position‐specific scoring matrix, to analyze the activation of different

immune markers by the vaccine construct against SARS‐CoV‐2 (Rapin,

Lund, Bernaschi, & Castiglione, 2010). The server is based on stimulating

three major compartments, that is, lymph node, thymus, and bone mar-

row, found in mammals. The simulation was run to analyze the activation

of different cellular, humoral, and innate immune components like B cells,

T‐helper cells (CD4), T‐cytotoxic cells (CD8), immunoglobulins, cytokines,

dendritic cells, macrophages, and epithelial cells. The random seed,

simulation steps, and time set of injections were set as described

previously (Chauhan & Singh, 2020).

2.5 | Vaccine model and immune receptor
interaction analysis

The molecular interaction pattern between the candidate vaccine

and immune receptor was determined using ClusPro, a protein–

protein docking tool. Among the 29 docked models generated by

F IGURE 1 Schematic representation of the methodology employed for epitope identification and multiepitope vaccine construction against

severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2)
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ClusPro, the one with best docked configuration was selected for

further analysis. Further, the Desmond tool (Schrodinger) was em-

ployed to perform the molecular dynamics (MD) simulations for

analyzing the interaction pattern of the docked complex at the mi-

croscopic level. The TLR‐3 and individual coordinates were optimized

in the protein preparation wizard of Schrodinger's Maestro suite

(2019‐3), where hydrogens were added; hetero molecules were re-

moved, and the complex structure was minimized using the

OPLS2005 force field. The complete docked protein complex system

was solvated in a cuboid box with TIP3P water molecules and

0.15mM NaCl (physiological conditions), with a minimum 10°A

buffering distance minimized volume in all three orthogonal dimen-

sions using System Builder Wizard within the Desmond module of

Schrodinger (2019‐3). The protein charges were neutralized by ex-

cess “8” chloride ions. The system was then relaxed before actual

simulation. The MD simulation steps involved the built setup system

heated from 50 to 300K, followed by maintaining the system's

temperature of 300K for 20 ns. Once the desired temperature of the

system was achieved in all subsequent simulation steps, a pressure of

1.02 bar at isobaric (NPT) ensemble was maintained. The trajectory

concatenation and interaction site residue visualization were per-

formed using Maestro interface of Schrodinger (2019‐3).

F IGURE 2 Phylogenetic trees showing genetic relatedness of SARS‐CoV‐2 proteins with SARS and Middle East respiratory syndrome‐
coronavirus (MERS‐CoVS). The blue, red, and green branches belong to SARS‐COV‐2, MERS, and SARS proteins. The phylogenetic represented

are in the order: (a) membrane, (b) Nucleocapsid, (c) surface, (d) Envelope, (e) ORF1ab, (f) ORF3, (g) ORF6, (h) ORF7, (i) ORF8. SARS‐CoV‐2,
severe acute respiratory syndrome‐coronavirus 2
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In addition, iMODs server (http://imods.chaconlab.org/) was also

used to determine the stability of the docked complex (Lopez‐Blanco,
Aliaga, Quintana‐Orti, & Chacon, 2014). The iMODs server utilizes

the normal mode analysis for determining the collective motions in

internal coordinates. The simulation analysis was expressed in terms

of covariance map, elastic network, eigenvalues, B‐factor/mobility,

and variance.

The protocol employed for screening out the epitopes and mul-

tiepitope construction is represented in Figure 1.

2.6 | Cloning of polyepitope vaccine by in silico
approach

The amino acid sequence of the vaccine was reverse‐transcribed and its

various properties, such as codon adaptation index (CAI) and guanine–

cytosine (GC) content for efficient cloning was analyzed using the Java

Codon Adaptation Tool (JCAT; http://www.jcat.de/Start.jsp). The Escher-

ichia coli K12 strain was used for expressing the protein of interest by

optimizing its codon. As per the tool recommendation, the ideal CAI and

TABLE 1 SARS‐CoV‐2 proteins: antigenicity, allergenicity, and secondary structural properties

Proteins Antigenicity score Allergenicity score Molecular weight (Dalton [Da]) Secondary structural properties

ORF1ab 0.46 0.14 794,057.79 α Helix – 38.75%

Extended strand – 22.14%

β Turn – 9.94%

Random coil – 29.17%

Surface glycoprotein 0.46 0.54 141,178.47 α Helix – 28.59%

Extended strand – 23.25%

β Turn – 3.38%

Random coil – 44.78%

ORF3a 0.49 −0.89 31,122.94 α Helix – 26.18%

Extended strand – 29.82%

β Turn – 10.18%

Random coil – 33.82%

Envelope 0.60 −0.87 8,365.04 α Helix – 44.0%

Extended strand – 26.67%

β Turn – 9.33%

Random coil – 20.0%

Membrane glycoprotein 0.51 −1.62 25,146.62 α Helix – 34.68%

Extended strand – 21.17%

β Turn – 6.76%

Random coil – 37.39%

ORF6 0.61 −0.17 7,272.54 α Helix – 70.49%

Extended strand – 9.84%

β Turn – 8.20%

Random coil – 11.48%

ORF7 0.64 −0.45 13,744.17 α Helix – 42.98%

Extended strand – 19.01%

β Turn – 9.92%

Random coil – 28.10%

ORF8 0.65 −0.183 13,831.01 α Helix – 19.83%

Extended strand – 35.54%

β Turn – 4.96%

Random coil – 36.67%

Nucleocapsid 0.50 −0.95 45,625.70 α Helix – 21.24%

Extended strand – 16.71%

β Turn – 6.92%

Random coil – 55.13%

ORF10 0.54 0.0014 4,449.23 α Helix – 28.95%

Extended strand – 36.84%

β Turn – 5.26%

Random coil – 28.95%

Abbreviation: SARS‐CoV‐2, severe acute respiratory syndrome‐coronavirus 2.
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GC content should range between 0.8 and 1.0 and 30% and 70%, respec-

tively, for efficient cloning. Finally, the optimized sequence was cloned in

pET28a(+) expression vector, using SnapGene, an in silico cloning tool.

3 | RESULTS AND DISCUSSION

3.1 | Genomic and structural analysis

The Blastn analysis revealed that the genome of SARS‐CoV‐2 had

around 88% similarity with SARS‐CoV and only 12–15% similarity

with the MERS‐CoV genome. The individual proteins of SARS‐CoV‐2
were also subjected to Blast analysis for analyzing their similarity with

other CoV strains. The ORF1ab polyprotein of SARS‐CoV‐2 showed

the highest similarity of about 98.5% with ORF1ab of SARS‐CoV and

around 50.8% similarity with that of MERS‐CoV. Similarly, the surface

glycoprotein “S” showed 97.4% similarity to the S protein of SARS‐CoV
and around 36% similarity with the S protein of MERS‐CoV. ORF3a

showed around 92% similarity to SARS, but did not find any similarity

with that of MERS‐CoV. Envelope “E” protein showed 95% similarity

to that of SARS and about 38% to that of MERS‐CoV. Membrane

glycoproteins showed 99% similarity to that of SARS and 50% to

F IGURE 3 Epitopes showing varying affinities (strong, intermediate, and weak) to different human leukocyte antigen (HLA) Class II alleles,
represented in the form of heat map. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 are HLA alleles HLADRB1* 01:01, HLA‐DRB1*03:01,
HLA‐DRB1*04:01, HLA‐DRB1*07:01, HLA‐DRB1*08:01, HLA‐DRB1*09:01, HLA‐DRB1*10:01, HLA‐DRB1*11:01, HLA‐DRB1*12:01, HLA‐DRB1*13:02,
HLA‐DRB1*14:01, HLADRB1* 15:01, HLA‐DRB3*02:02, HLA‐DRB5*01:01, HLA‐DPA1*02:01‐DPB1*01:01, HLA‐DQA1*01:02‐ DQB1*06:02,
and HLA‐DPA1*02:01‐DPB1*11:401. a–j are n‐CoV proteins in the following order: (a) ORF1ab, (b) surface glycoprotein, (c) ORF 3a, (d) Envelope,
(e) membrane glycoprotein, (f) N, (g) ORF‐6a, (h) ORF‐ 7a, (i) ORF‐8a, and (j) ORF‐10a
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MERS‐CoV. The nucleocapsid phosphoprotein showed around 96%

similarity with SARS‐CoV and around 53% similarity with MERS‐CoV.
ORF 6 and ORF 7 of SARS‐CoV‐2 had 93%, 97%, and 95% similarity

respectively, with the ORF‐6, ORF‐7, and ORF‐8 proteins of SARS‐
CoV and did not show any similarity with that of MERS‐CoV. ORF‐10
did not show any similarity with SARS‐ and MERS‐CoVs. Further, the
sequences were subjected to phylogenetic analysis. The analysis

was carried out at 1,000 bootstraps replication using the maximum

likelihood method (Kumar, Stecher & Tamura, 2017; Figure 2).

The phylogenetic analysis of SARS‐CoV‐2 proteins was carried out to

investigate the relatedness of the individual proteins of SARS‐CoV‐2
with other CoV strains.

The proteins were also checked for having any homology at the

sequence level with the human proteome using Blastp analysis; none of

the SARS‐CoV‐2 proteins showed any homology with that of human

proteins. The secondary structural configurations and other physico-

chemical properties of the proteins are shown in Table 1. The tertiary

structures of the proteins were also generated to explore and map the

F IGURE 4 Screened‐out HLA Class‐II epitopes. The epitopes represented are highly promiscuous, conserved, and antigenic. Red, orange, and
black colors represent strong, intermediate, and weak binding affinities with HLAs. HLA, human leukocyte antigen
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location of the screened‐out T‐ and B‐cell epitopes. The details of the

template used for modeling the 3D models of the proteins and their

Ramachandran plot analysis are represented in Table S1.

3.2 | T‐cell, IFN‐γ, and B‐cell epitope recognition

CTLs are specialized immune cells capable of recognizing virus‐
infected cells and release cytotoxic factors, such as perforin and

granzymes in response, thereby averting the survival of invading virus.

CTLs further release certain cytokines, IFN‐γ, and tumor necrosis

factor‐α, thus enhancing the antiviral response. The T‐helper cells

(CD4) help in recognizing foreign antigens and secrete certain cyto-

kines that further aid in activating T and B cells through different

signaling cascades. In addition, T‐helper cells aid B cells to differentiate

into memory B cells (Rosendahl Huber, van Beek, de Jonge, Luytjes, &

van Baarle, 2014). Therefore, the identification of epitopes capable of

stimulating CD4 and CD8 cells is important in vaccine designing. Thus,

the CD8 T‐cell epitopes were identified by NETCTL1.2 server, at a

threshold of 0.75 without altering any parameters (Table S2) and the

CD4 T cells were identified by IEDB consensus and NetMHCIIpan 3.2

servers, respectively (Table S3). Based on thresholds of 2%, 10%, and

>10%, the CD4 epitopes were considered as strong, intermediate, and

unbinding epitopes (Figure 3). The worldwide population coverage of

>90% was likely to be covered by the HLA Class I alleles, targeted for

epitope prediction. The epitopes predicted (both CD4 and CD8 T‐cell

epitopes) were progressed through numerous immune filters to screen

out the most promising ones. For example, they should be antigenic,

nonallergenic, promiscuous, should have 100% conservancy, should

not be located within posttranslation modification sites, should have

high affinity with HLA alleles, and should target larger population

(Figure 4). Further, the screened‐out T‐cell epitopes were docked with

HLA Class I and II alleles that are commonly present in human

population, to analyze their binding patterns and affinities. The

affinities of the docked complexes were analyzed in the form of Van

der Waals, hydrophobic, and electrostatic interactions. The epitopes

with better binding affinities with HLA alleles (as revealed by docking

scores and the number of H‐bonds formed) were finally selected for

further analysis (Figure 5). The similar kind of strategy has been fol-

lowed earlier by Chauhan et al. (2019), to screen out epitopes with

better affinities. IFN‐γ cells are components of innate immune re-

sponse and are well known for its antiviral properties. Thus, the IFN‐γ
cells were predicted using IFNepitope server (Table S4). Only those

IFN‐γ epitopes were screened out which were conserved, antigenic,

and nonallergenic. The B cells on activation differentiate into plasma

and memory cells and are thus important for providing long‐lasting
immunity (Chauhan & Singh, 2020). Thus, the linear and conforma-

tional B‐cell epitopes were predicted by BCPred 2.0 and ElliPro ser-

vers (Figure S1), respectively. The mapping of B‐cell epitopes on their

respective proteins 3D models was also carried out to affirm their

surface location (Figure 6). The antigenicity and conservancy of the

predicted B‐cell and IFN‐γ epitopes were also determined (Table S5).

F IGURE 5 Results of docking analysis. (a–c) Docked complex of finally selected epitopes with HLA Class II alleles: HLA‐DRB1*01:01 (Protein
Data Bank ID‐ 2g9hr) and HLA‐DRB1*15:01 (1BX2) and with HLA Class I allele: HLA‐A*02:01 (1QEW), respectively. (d) Docking scores of
different epitopes. HLA, human leukocyte antigen
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3.3 | Multiepitope vaccine construction and
analysis of its different properties

The multiepitope vaccine is a vaccine containing a chain of several

epitopes (CD8 and/or CD4 and/or B cell and/or IFN‐γ epitopes). The

vaccines designed using such strategies holds several advantages

over classical methods employed for vaccine designing. For example,

autoimmune generation by such vaccines are low, could cover large

population, could stimulate both cellular and humoral immune re-

sponses due to presence of both T‐cell and B‐cell epitopes, could be

effective even if the pathogen is prone to have mutations since it

consists of several conserved epitopes belonging to different pro-

teins, and it saves time and cost over classical methods (Chauhan &

Singh, 2020). Thus, we aimed to design a vaccine containing T‐cell,
B‐cell, and IFN‐γ cell epitopes. The epitopes (11 CD4, 12 CD8, and

3 IFN‐γ and B‐cell epitopes each) finally selected for inclusion in the

F IGURE 6 Mapping of epitopes on the three‐dimensional (3D) modeled proteins (represented in white surface view). The red, blue, and
green colors represent HLA Class I, II, and B cell epitopes. a–l are proteins in order ORF1ab (a) nsp3, (b) RNA‐dependent RNA polymerase,
(c) helicase, (d) guanine‐N7‐methyltransferase), (e) surface glycoprotein, (f) ORF3a, (g) envelope protein, (h) membrane glycoprotein,
(i) nucleocapsid, (j) ORF6a, (k) ORF7a, and (l) ORF8a. HLA, human leukocyte antigen
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multiepitope vaccine were strictly as per the criteria designed, such

as promiscuousity, antigenicity, nonallergenicity, affinity and docking

scores, conserved, nonhomologous to human proteins, and large

population coverage (Table S6). Most of the T‐ and B‐cell epitopes
selected had overlapping conformational B‐cell epitopes. The finally

selected epitopes were attached via GPGPG, GGGS, and AAY linkers,

respectively. In addition, a 12 residue peptide—HEYGAEALERA mo-

tifs were also used as linkers in between CD8 T‐cell epitopes, which

aids in enhancing the epitope presentation by providing the specific

sites for both proteasomal and lysosomal mediated cleavages, that is,

A5‐E6, Y3‐G4, A7‐L8, L8‐E9, and R10‐A11 (Nezafat, Ghasemi, Javadi,

Khoshnoud, & Omidinia, 2014). Further, the PADRE sequence,

composed of 13 amino acid residues—AKFVAAWTLKAAA—was also

considered in the vaccine sequence. The PADRE sequence has affi-

nity toward number of human and mouse HLA Class II alleles and

induce the T‐helper responses (Athanasiou et al., 2017). An adjuvant

β‐defensin was linked via EAAAK linker to the vaccine sequence to

enhance its immunity. The adjuvant on interacting with certain im-

mune receptors (TLRs and CCR6) is well known for activating

innate and adaptive immune responses, by recruiting immature

dendritic cells and T cells at the site of infection (Ojha, Nandani, &

Prajapati, 2019). Finally, the vaccine sequence was constructed

containing β‐defensin adjuvant, 11 CD4, 12 CD8, 3 IFN‐γ, and

3 B‐cell epitopes and 2 PADRE and HEYGAEALERA motifs (Figure 7a).

F IGURE 7 Vaccine construct. (a) Overall layout of the vaccine construct. (b) Secondary structural configuration. (c) Representation of

vaccine as 3D model (in surface and cartoon view). (d) The ProSa web results of the constructed model. (e) Population coverage of each
HLA‐Class II epitope included in the vaccine. 3D, three‐dimensional; HLA, human leukocyte antigen
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The vaccine sequence was composed of 603 amino acids, had mole-

cular weight of 63,898.95Da, isoelectric point 10.27, and the in-

stability index II was 39.13, classifying it as a stable protein. The grand

average of hydropathicity of the vaccine sequence was predicted to be

−0.224. All these parameters were determined using ExPASy

ProtParam tool. The vaccine sequence was arranged into six different

sequences by random reshuffling of epitopes and were subjected to

different homology modeling tools as stated in Section 2.4.2, to

achieve the best configuration. The model generated by Raptor‐X
server for the first sequence (Supporting Information Material S1)

F IGURE 8 The immune simulation results of the vaccine sequence. The B cell simulation results (a,b); the T‐helper cells simulation (c,d); the

T‐cytotoxic cells simulation (e), epithelial cell activation (f); macrophages levels (g); dendritic cells levels (h); immunoglobulins levels with respect
to antigen concentration (i); and cytokine levels (j)
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revealed better structural configuration as compared to others (Fig-

ure 7b). The model was finalized based on ProSA web and Ra-

machandran Plot results. The amino acid sequence of the finalized

model was observed to be immunogenic and nonallergenic with

scores 0.57 (by VaxiJen server) and −1.406 (by AlgPred server)

respectively. In addition, AllerTOP v2.0 server also predicted the se-

quence to be nonallergenic. Further, the model generated was refined

via GalaxyRefine server. It is considered among the best servers for

improving the global and local structural configuration of a protein.

The ProSA web and Ramachandran plot results revealed an improved

structural properties of the finalized 3D model of the multiepitope

vaccine (Figure S2). The Ramachandran plot analysis revealed that

98.2% region was in favored and allowed region with only 1.8% lying in

outliers (Figure 7c,d). The population coverage analysis of HLA‐Class II
epitopes included in the vaccine showed an overall high coverage of

97.3% (Figure 7e). Further, the modeled vaccine was subjected to

disulfide engineering to further increase its thermo stability utilizing

Design 2 server, which reduces the conformational entropy of the

unfolded state of the protein (Figure S2).

The amino acid sequence of the finalized vaccine model was

further subjected to in silico immune simulations, revealing that it

is competent in generating an effective immune response. Elevated

levels of immunoglobulin M in beginning followed by increased

levels of immunoglobulin G and its subclasses with reduced anti-

gen concentrations were observed. The ability of the vaccine in

generating an effective and long lasting immunity was indicated by

elevated levels of activated and memory B cells. Further, the

elevated levels of T cells (both Th and Tc), macrophages and

dendritic cells, and lowered levels of regulatory T cells were

observed during antigen exposure. An effective antiviral response

by the vaccine was also indicated by increased levels of IFN‐γ and

interleukin‐2 (Figure 8).

F IGURE 9 Docking analysis results. (a) The interaction pattern of the vaccine (golden color) and Toll‐like receptor 3 (TLR‐3; dark green) in
surface view. (b) The interacting residues of the vaccine and TLR‐3
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The polyepitope‐based vaccines leveraging such mechanisms of

activating different immune cell types have recently been put

forward for consideration by several researchers, against the number

of infective diseases, such as Kaposi sarcoma (Chauhan et al., 2019),

Epstein–Barr virus (Ojha et al., 2019), Zika virus (Kumar Pandey,

Ojha, Mishra, & Kumar Prajapati, 2018), cytomegalovirus (Chauhan &

Singh, 2020), human T‐lymphotropic virus‐1 (Pandey et al., 2019),

Ebola virus (Bazhan et al., 2019), and so forth.

3.4 | Interaction analysis

Initially, all the epitopes that were included in vaccine sequence were

docked with the HLA alleles for determining the affinity of each

epitope (as discussed in Section 3 and Figure 4). A vaccine or drug

could be effective if there is prolonged and stable interaction with

their receptor. Thus, molecular docking analysis was performed using

ClusPro, to analyze the interaction pattern of the finalized modeled

vaccine with the immune receptor, TLR‐3. Among the 29 docked

models generated by ClusPro, the 11th model showed better docking

results, with a score of −1260.3, forming 29 H‐bonds between the

two (Figure 9). Further, the docked complex was subjected to MD

simulations to analyze the physical movements. Overall, from dock-

ing calculations and MD simulations, we can say that the predicted

binding pose is a strong complex forming binding pose. The side

chains of the vaccine were deeply buried into the peptide binding

extreme loops of TLR, and not with lipophilic pocket at the trunk that

binds to lipopolysaccharide, and with polar interactions with the

polar residues. Throughout the MD simulation (20 ns), it is possible to

observe that the receptor is stable and the binding antigen remains

attached without any significant change. During simulation, the root‐
mean‐square fluctuation (RMSF) was used for determining the

flexibility of vaccine, bound to the immune receptor TLR‐3, during
each confirmatory shift (Figure 10a). The RMSF of each residue

within the docked complex showed that there were two very stable

interacting regions in both proteins. The observed initial changes in

RMSF show total system relaxation in MD simulation environment

and not intermolecular interaction changes (Figure 10b). Over the

course of simulation, the complex had a significant decay in global

energy, suggesting positive complexation without loss in binding in-

tegrity of the complex. The stable confirmation of the complex

throughout simulation was further indicated by the secondary

structural elements, indicating the prolonged binding of vaccine with

TLR‐3, which is essential for the generation of an effective immune

response (Figure 10c,d). Further, the docked complex was also sub-

jected to iMODS server, for determining its stability. The deform-

ability analysis was carried out to determine the flexibility of each

residue of the docked complex and was compared to that of TLR‐3 in

monomeric state (Figure 11a,d). The results revealed that there was

significant reduction in the distortions in the docked complex, due to

stabilization, as indicated by lower hinges, as compared to that of

TLR‐3 in monomeric state. The B factor analysis further affirmed the

stability of the complex by showing lower atomic distortions as

compared to TLR‐3 in monomer state (Figure 11b,e). The eigenvalue

of docked complex was observed greater than monomeric TLR‐3,
further indicating the stabilization of the complex formed, as higher

eigenvalue is indicative of higher energy required to destabilize the

protein (Figure 11c,f). Further, the covariance matrix analysis was

carried out to analyze the coupling of docked complex residue pairs,

where blue, white, and red colors represent the anticorrelated, un-

correlated, and correlated motions, respectively (Figure 11h). Fur-

ther, the elastic network analysis and variance analysis were also

performed to determine the stiffness and cumulative and individual

variances of the complex (Figure 11g,i). The results obtained by MD

F IGURE 10 The molecular dynamics simulation results generated by Desmond, carried out at 20 ns. (a) Root‐mean‐square deviation, (b)
root‐mean‐square fluctuation, and (c,d) secondary structural elements of the vaccine and TLR‐3 docked complex, observed during simulations.
TLR‐3, Toll‐like receptor 3
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simulations to determine the stability of the protein complex were in

accordance to our previously published articles (Chauhan &

Singh, 2020; Chauhan et al., 2019).

3.5 | In silico cloning

An in silico cloning was performed to analyze the cloning and

expression efficiency of the reverse‐transcribed sequence of

polyepitope vaccine in vector. The sequence optimized using

JCAT was composed of 1,809 nucleotides and was cloned in E. coli

(strain K12). The GC content of vaccine sequence was observed

to be 56.75 and the CAI was 1.0, indicating the efficient cloning

properties of the vaccine sequence. Finally, the restriction clon-

ing of the vaccine sequence in an expression vector‐ pET28a (+)

was carried out using SnapGene tool (Figure S3). Similar kind of

strategy of in silico cloning analysis of the epitope‐based vaccine

sequence was performed by Chauhan et al. (2019), and the re-

sults obtained are in accordance with the study.

4 | CONCLUSION

The pandemic situation imposed by SARS‐CoV‐2 has attracted

worldwide attention to develop therapeutics for its prevention and

control on urgent basis. Though some studies have shown the effi-

cacy of using drugs, such as chloroquine, ritonavir, and angiotensin

converting enzyme inhibitors against SARS‐CoV‐2, there is a need of

effective vaccine to prevent spread of infection. In the present study,

the rigorous immunoinformatics analysis was performed in a careful

and sequential manner to screen out the most promising epitopes.

The finally screened‐out epitopes strictly followed the criteria de-

signed for filtering out the most promising ones like promiscuousity,

conservancy, nonallergenicity, antigenicity, high population coverage,

and affinity with HLA alleles. Further, an attempt was made to design

a multiepitope vaccine by assembling the finally screened‐out epi-

topes. The finalized construct was composed of 11 CD4, 12 CD8,

3 B‐cell, and 3 IFN‐γ epitopes. As the vaccine is composed of innate,

humoral, and cellular immune markers, generation of an effective

immune response by the vaccine could be achieved, as indicated by

the results of in silico immune simulations. The docking results re-

vealed the high affinity of the vaccine construct with the immune

receptor, TLR‐3. Further, the MD simulations revealed the stability of

the docked complex. The results generated in the present study will

undeniably aid researchers in identifying the immunogenic regions in

the n‐CoV genome, which could be utilized in vaccine development.
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