Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

Sammer Yousuf, ${ }^{\text {a* }}$ Khalid M. Khan, ${ }^{\text {a }}$ Frazana Naz, ${ }^{\text {a }}$ Shahanaz Perveen ${ }^{\text {b }}$ and Ghulam A. Miana ${ }^{\text {c }}$
${ }^{\text {a H.E.J. Research Institute of Chemistry, International Center for Chemical and }}$ Biological Sciences, University of Karachi, Karachi 75270, Pakistan, ${ }^{\text {b }}$ PCSIR Laboratories Complex Karachi, Shahrah-e-Dr Salimuzzaman Siddiqui, Karachi 75280, Pakistan, and ${ }^{\text {c }}$ Ripha Institute of Pharmaceutical Sciences, Ripha International University, 7th Avenue G-7/4 Islamabad, Pakistan
Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 2 March 2013; accepted 7 March 2013
Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.041 ; w R$ factor $=0.122 ;$ data-to-parameter ratio $=13.4$.

In the molecule of the title compound, $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$, the nitro and carbonyl groups are tilted with respect to the imidazole ring by 9.16 (6) and $65.47(7)^{\circ}$, respectively. Neighbouring chains are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming two-dimensional slab-like networks lying parallel to (011).

Related literature

For the antibiotic properties of metronidazole and mecnidazole, see: Lin et al. (2012); Almirall et al. (2011); Zhang et al. (2011). For the crystal structure of related imidazoles, see: Yousuf et al. (2012); Zeb et al. (2012).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3} & a=4.7548(4) \AA \\
M_{r}=183.17 & b=12.3971(9) \AA \\
\text { Monoclinic, } P 2_{1} / n & c=14.8580(11) \AA
\end{array}
$$

$\beta=97.350(2)^{\circ}$
$V=868.62(12) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

$$
\mu=0.11 \mathrm{~mm}^{-1}
$$

$T=273 \mathrm{~K}$
$0.52 \times 0.33 \times 0.24 \mathrm{~mm}$
Mo $K \alpha$ radiation

Data collection
Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\text {min }}=0.944, T_{\text {max }}=0.974$

5030 measured reflections
1614 independent reflections
1328 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 120$ parameters
$w R\left(F^{2}\right)=0.122$
H -atom parameters constrained
$S=1.06$
1614 reflections
$\Delta \rho_{\text {max }}=0.19 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 B \cdots \mathrm{~N} 2^{\text {i }}$	0.93	2.56	3.361 (2)	144
$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.97	2.57	3.527 (2)	167
$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O}^{\text {iii }}$	0.96	2.49	3.340 (2)	147

Symmetry codes: (i) $-x-1,-y+1,-z+1$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x+1, y, z$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors gratefully acknowledge the Pakistan Academy of Sciences for funding project No. 5-9/PAS/8418 entitled 'Biology-oriented Parallel Synthesis on Nitroimidazoles in Search of Better Therapeutic Agents'.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5048).

References

Almirall, P., Escobedo, A. A., Ayala, I., Alfonso, M., Salazar, Y., Cañete, R., Cimerman, S., Galloso, M., Olivero, I., Robaina, M. \& Tornés, K. (2011). J. Parasitol. Res., Article ID 636857, doi:10.1155/2011/636857.
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Lin, Y., Su, Y., Liao, X., Yang, N., Yang, X. \& Choi, M. M. F. (2012). Talanta, 88, 646-652.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yousuf, S., Zeb, A., Batool, F. \& Basha, F. Z. (2012). Acta Cryst. E68, o2781.
Zeb, A., Yousuf, S. \& Basha, F. Z. (2012). Acta Cryst. E68, o1218.
Zhang, H.-J., Zhu, D.-D., Li, Z.-L., Sun, J. \& Zhu, H. L. (2011). Bioorg. Med. Chem. 19, 4513-4519.

supplementary materials

Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569]

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana

Comment

Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall et al., 2011) and protozoal infections (Lin et al., 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang et al., 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug.
The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5-nitro-1H-imidazol-1-yl)-ethyl methanesulfonate (Zeb et al., 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone ($\mathrm{O} 3 / \mathrm{C} 5-\mathrm{C} 7$) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf et al., 2012). In the crystal, molecules are linked by C2$\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 2, \mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2$ and $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 3$ intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2).

Experimental

Periodic acid ($2.8 \mathrm{mmol}, 0.64 \mathrm{~g}$), pyridinium chlorochromate ($\mathrm{PCC}, 4 \mathrm{~mol} \%$) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole ($2.7 \mathrm{mmol}, 0.50 \mathrm{~g}$) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water ($1: 1 \mathrm{v} / \mathrm{v}$), saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The filtrate was evaporated in vacuum to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound ($0.32 \mathrm{~g}, 64 \%$ yield) found suitable for single-crystal X-ray diffraction analysis.

Refinement

H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and constrained to ride on their parent atoms with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2
The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-(2-Methyl-5-nitro-1 H-imidazol-1-yl)acetone

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=183.17$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P $2 y n$
$a=4.7548$ (4) \AA
$b=12.3971$ (9) \AA
$c=14.8580(11) \AA$
$\beta=97.350(2)^{\circ}$
$V=868.62(12) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=384 \\
& D_{\mathrm{x}}=1.401 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1790 \text { reflections } \\
& \theta=2.8-26.7^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.52 \times 0.33 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.944, T_{\text {max }}=0.974$

> 5030 measured reflections
> 1614 independent reflections
> 1328 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-14 \rightarrow 15$
> $l=-14 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.122$
$S=1.06$
1614 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0591 P)^{2}+0.2124 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$-0.1621(4)$	$0.29596(12)$	$0.33611(13)$	$0.0887(5)$
O2	$0.1562(3)$	$0.37418(11)$	$0.26792(12)$	$0.0791(5)$
O3	$-0.2465(3)$	$0.53369(11)$	$0.15962(9)$	$0.0622(4)$
N1	$-0.0008(3)$	$0.57463(11)$	$0.33181(9)$	$0.0424(4)$
N2	$-0.2805(3)$	$0.59824(13)$	$0.43940(10)$	$0.0574(4)$

N3	$-0.0337(3)$	$0.37691(12)$	$0.31638(12)$	$0.0589(4)$
C1	$-0.1098(3)$	$0.47575(13)$	$0.35252(12)$	$0.0464(4)$
C2	$-0.2784(4)$	$0.49243(16)$	$0.41793(12)$	$0.0554(5)$
H2B	-0.3781	0.4389	0.4442	0.067^{*}
C3	$-0.1137(4)$	$0.64611(14)$	$0.38648(11)$	$0.0485(4)$
C4	$-0.0467(5)$	$0.76284(16)$	$0.38973(15)$	$0.0728(6)$
H4A	-0.1214	0.7951	0.4404	0.109^{*}
H4B	-0.1305	0.7965	0.3346	0.109^{*}
H4C	0.1552	0.7725	0.3963	0.109^{*}
C5	$0.1509(3)$	$0.60187(13)$	$0.25566(11)$	$0.0444(4)$
H5A	0.3240	0.5598	0.2597	0.053^{*}
H5B	0.2034	0.6775	0.2595	0.053^{*}
C6	$-0.0235(3)$	$0.58087(13)$	$0.16507(12)$	$0.0451(4)$
C7	$0.1011(4)$	$0.62131(17)$	$0.08469(13)$	$0.0653(5)$
H7A	-0.0270	0.6069	0.0307	0.098^{*}
H7B	0.2783	0.5855	0.0810	0.098^{*}
H7C	0.1326	0.6976	0.0905	0.098^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.1009(12)$	$0.0431(8)$	$0.1246(15)$	$-0.0117(8)$	$0.0248(10)$	$0.0121(8)$
O2	$0.0790(10)$	$0.0538(9)$	$0.1115(13)$	$0.0122(7)$	$0.0387(9)$	$-0.0036(8)$
O3	$0.0539(8)$	$0.0678(9)$	$0.0641(9)$	$-0.0109(6)$	$0.0049(6)$	$-0.0016(6)$
N1	$0.0423(7)$	$0.0430(8)$	$0.0437(8)$	$-0.0021(6)$	$0.0123(6)$	$0.0018(6)$
N2	$0.0622(9)$	$0.0651(10)$	$0.0487(9)$	$-0.0007(7)$	$0.0216(7)$	$0.0031(7)$
N3	$0.0590(9)$	$0.0430(9)$	$0.0751(11)$	$0.0029(7)$	$0.0098(8)$	$0.0065(7)$
C1	$0.0465(9)$	$0.0426(9)$	$0.0509(10)$	$-0.0010(7)$	$0.0098(7)$	$0.0075(7)$
C2	$0.0541(10)$	$0.0610(12)$	$0.0530(11)$	$-0.0045(9)$	$0.0138(8)$	$0.0145(9)$
C3	$0.0529(9)$	$0.0508(10)$	$0.0432(9)$	$-0.0007(8)$	$0.0112(8)$	$-0.0011(7)$
C4	$0.0993(16)$	$0.0555(12)$	$0.0684(14)$	$-0.0068(11)$	$0.0296(12)$	$-0.0125(10)$
C5	$0.0436(8)$	$0.0444(9)$	$0.0479(9)$	$-0.0045(7)$	$0.0159(7)$	$0.0003(7)$
C6	$0.0457(9)$	$0.0395(9)$	$0.0518(10)$	$0.0047(7)$	$0.0124(7)$	$-0.0012(7)$
C7	$0.0693(12)$	$0.0784(14)$	$0.0502(11)$	$-0.0027(10)$	$0.0151(9)$	$0.0038(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 3$	$1.230(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.481(3)$
$\mathrm{O} 2-\mathrm{N} 3$	$1.225(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
$\mathrm{O} 3-\mathrm{C} 6$	$1.205(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 3$	$1.358(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 1$	$1.381(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.510(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.457(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 3$	$1.326(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 2$	$1.350(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.486(3)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.404(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.352(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$104.93(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5

C3-N1-C5
125.87 (14)

C1-N1-C5
C3-N2-C2
O2-N3-O1
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1$
O1-N3-C1
C2- $\mathrm{C} 1-\mathrm{N} 1$
C2-C1-N3
N1-C1—N3
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$
C1-C2-H2B
N2-C3-N1
N2-C3-C4
N1-C3-C4
C3-C4-H4A
C3-C4-H4B
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$

C3-N1-C1-C2
C5-N1-C1-C2
C3-N1-C1-N3
C5—N1-C1—N3
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$
O1—N3-C1—N1
C3-N2-C2-C1
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$
128.02 (14)
105.74 (15)
122.92 (17)
119.63 (15)
117.45 (17)
107.35 (15)
127.87 (16)
124.56 (15)
109.97 (15)
125.0
125.0
112.01 (16)
124.07 (16)
123.86 (16)
109.5
109.5
109.5
-0.39 (18)
-168.41 (15)
-175.31 (16)
16.7 (3)
-168.38 (18)
11.0 (3)
5.5 (3)
-175.14 (16)
0.3 (2)
0.1 (2)
174.76 (17)
$\begin{array}{ll}\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} & 109.5 \\ \mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} & 109.5\end{array}$
N1-C5—C6 112.47 (13)
N1—C5—H5A 109.1
C6-C5-H5A 109.1
N1-C5—H5B 109.1
C6-C5-H5B 109.1
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 107.8$
O3-C6-C7
O3-C6-C5
C7-C6-C5
C6-C7- H 7 A
C6-C7-H7B
H7A-C7-H7B
C6-C7- H 7 C
H7A-C7-H7C
H7B-C7-H7C

C2-N2- $\mathrm{C} 3-\mathrm{N} 1$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$
C1—N1-C3-N2
C5-N1-C3-N2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$
C5—N1-C3-C4
C3-N1-C5-C6
C1-N1-C5-C6
N1-C5-C6-O3
N1-C5-C6-C7
123.21 (16)
121.44 (15)
115.35 (14)
109.5
109.5
109.5
109.5
109.5
109.5
-0.6 (2)
-177.73 (19)
0.60 (18)
168.96 (14)
177.77 (18)
-13.9 (3)
-106.10 (18)
59.6 (2)
-9.0 (2)
171.59 (15)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.56	$3.361(2)$	144
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots 2^{\mathrm{ii}}$	0.97	2.57	$3.527(2)$	167
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots B^{\text {iii }}$	0.96	2.49	$3.340(2)$	147

[^0]
supplementary materials

Acta Cryst. (2013). E69, o552 [doi:10.1107/S1600536813006569]

1-(2-Methyl-5-nitro-1H-imidazol-1-yl)acetone

Sammer Yousuf, Khalid M. Khan, Frazana Naz, Shahanaz Perveen and Ghulam A. Miana

Comment

Imidazole nuclei containing metronidazole and mecnidazole are widely used antibiotics, known to be effective against anaerobic microorganisms. These drugs employed to cure amoebiasis (Almirall et al., 2011) and protozoal infections (Lin et al., 2012). Secnidazoles is also reported to have anti-inflammatory and urease inhibiton activites (Zhang et al., 2011). The title compound is a derivative of secnidazole obtained during our attempts to make more effective structure analogues of this important antibacterial drug.
The structure of the title compound (Fig. 1) is similar to that of our previously published compound 2-(2-methyl-5-nitro-1H-imidazol-1-yl)-ethyl methanesulfonate (Zeb et al., 2012) with the difference that the ethyl methanesulfonate attached to the imidazole ring is replaced by an acetone ($\mathrm{O} 3 / \mathrm{C} 5-\mathrm{C} 7$) group. Bond length and angles were found to be similar to those reported for related structures (Yousuf et al., 2012). In the crystal, molecules are linked by C2$\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~N} 2, \mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \cdots \mathrm{O} 2$ and $\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 3$ intermolecular interactions (Table 1) to form a three-dimensional network (Fig. 2).

Experimental

Periodic acid ($2.8 \mathrm{mmol}, 0.64 \mathrm{~g}$), pyridinium chlorochromate ($\mathrm{PCC}, 4 \mathrm{~mol} \%$) were suspended in acetonitrile (20 ml) and stirred vigorously for five minutes. The mixture was allowed to cool on an ice-salt bath followed by the addition of secnidazole ($2.7 \mathrm{mmol}, 0.50 \mathrm{~g}$) and allowed to stir for 36 h at ambient temperature. After the completion of the reaction [TLC analysis], the reaction mixture was washed with brine/water ($1: 1 \mathrm{v} / \mathrm{v}$), saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The filtrate was evaporated in vacuum to afford off-white crystals which were washed and recrystalized by dissolving in petroleum ether to obtained colorless crystals of the title compound ($0.32 \mathrm{~g}, 64 \%$ yield) found suitable for single-crystal X-ray diffraction analysis.

Refinement

H atoms of methyl, methylene and methine carbon atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and constrained to ride on their parent atoms with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms. A rotating group model was applied to the methyl group.

Computing details

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.

Figure 2
The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

1-(2-Methyl-5-nitro-1 H-imidazol-1-yl)acetone

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=183.17$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P $2 y n$
$a=4.7548$ (4) \AA
$b=12.3971$ (9) \AA
$c=14.8580(11) \AA$
$\beta=97.350(2)^{\circ}$
$V=868.62(12) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& F(000)=384 \\
& D_{\mathrm{x}}=1.401 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1790 \text { reflections } \\
& \theta=2.8-26.7^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.52 \times 0.33 \times 0.24 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.944, T_{\text {max }}=0.974$

> 5030 measured reflections
> 1614 independent reflections
> 1328 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-5 \rightarrow 5$
> $k=-14 \rightarrow 15$
> $l=-14 \rightarrow 17$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.122$
$S=1.06$
1614 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0591 P)^{2}+0.2124 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
O1	$-0.1621(4)$	$0.29596(12)$	$0.33611(13)$	$0.0887(5)$
O2	$0.1562(3)$	$0.37418(11)$	$0.26792(12)$	$0.0791(5)$
O3	$-0.2465(3)$	$0.53369(11)$	$0.15962(9)$	$0.0622(4)$
N1	$-0.0008(3)$	$0.57463(11)$	$0.33181(9)$	$0.0424(4)$
N2	$-0.2805(3)$	$0.59824(13)$	$0.43940(10)$	$0.0574(4)$

N3	$-0.0337(3)$	$0.37691(12)$	$0.31638(12)$	$0.0589(4)$
C1	$-0.1098(3)$	$0.47575(13)$	$0.35252(12)$	$0.0464(4)$
C2	$-0.2784(4)$	$0.49243(16)$	$0.41793(12)$	$0.0554(5)$
H2B	-0.3781	0.4389	0.4442	0.067^{*}
C3	$-0.1137(4)$	$0.64611(14)$	$0.38648(11)$	$0.0485(4)$
C4	$-0.0467(5)$	$0.76284(16)$	$0.38973(15)$	$0.0728(6)$
H4A	-0.1214	0.7951	0.4404	0.109^{*}
H4B	-0.1305	0.7965	0.3346	0.109^{*}
H4C	0.1552	0.7725	0.3963	0.109^{*}
C5	$0.1509(3)$	$0.60187(13)$	$0.25566(11)$	$0.0444(4)$
H5A	0.3240	0.5598	0.2597	0.053^{*}
H5B	0.2034	0.6775	0.2595	0.053^{*}
C6	$-0.0235(3)$	$0.58087(13)$	$0.16507(12)$	$0.0451(4)$
C7	$0.1011(4)$	$0.62131(17)$	$0.08469(13)$	$0.0653(5)$
H7A	-0.0270	0.6069	0.0307	0.098^{*}
H7B	0.2783	0.5855	0.0810	0.098^{*}
H7C	0.1326	0.6976	0.0905	0.098^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.1009(12)$	$0.0431(8)$	$0.1246(15)$	$-0.0117(8)$	$0.0248(10)$	$0.0121(8)$
O2	$0.0790(10)$	$0.0538(9)$	$0.1115(13)$	$0.0122(7)$	$0.0387(9)$	$-0.0036(8)$
O3	$0.0539(8)$	$0.0678(9)$	$0.0641(9)$	$-0.0109(6)$	$0.0049(6)$	$-0.0016(6)$
N1	$0.0423(7)$	$0.0430(8)$	$0.0437(8)$	$-0.0021(6)$	$0.0123(6)$	$0.0018(6)$
N2	$0.0622(9)$	$0.0651(10)$	$0.0487(9)$	$-0.0007(7)$	$0.0216(7)$	$0.0031(7)$
N3	$0.0590(9)$	$0.0430(9)$	$0.0751(11)$	$0.0029(7)$	$0.0098(8)$	$0.0065(7)$
C1	$0.0465(9)$	$0.0426(9)$	$0.0509(10)$	$-0.0010(7)$	$0.0098(7)$	$0.0075(7)$
C2	$0.0541(10)$	$0.0610(12)$	$0.0530(11)$	$-0.0045(9)$	$0.0138(8)$	$0.0145(9)$
C3	$0.0529(9)$	$0.0508(10)$	$0.0432(9)$	$-0.0007(8)$	$0.0112(8)$	$-0.0011(7)$
C4	$0.0993(16)$	$0.0555(12)$	$0.0684(14)$	$-0.0068(11)$	$0.0296(12)$	$-0.0125(10)$
C5	$0.0436(8)$	$0.0444(9)$	$0.0479(9)$	$-0.0045(7)$	$0.0159(7)$	$0.0003(7)$
C6	$0.0457(9)$	$0.0395(9)$	$0.0518(10)$	$0.0047(7)$	$0.0124(7)$	$-0.0012(7)$
C7	$0.0693(12)$	$0.0784(14)$	$0.0502(11)$	$-0.0027(10)$	$0.0151(9)$	$0.0038(10)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{O} 1-\mathrm{N} 3$	$1.230(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.481(3)$
$\mathrm{O} 2-\mathrm{N} 3$	$1.225(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9600
$\mathrm{O} 3-\mathrm{C} 6$	$1.205(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 3$	$1.358(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
$\mathrm{~N} 1-\mathrm{C} 1$	$1.381(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.510(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.457(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 3$	$1.326(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9700
$\mathrm{~N} 2-\mathrm{C} 2$	$1.350(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.486(3)$
$\mathrm{N} 3-\mathrm{C} 1$	$1.404(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	$1.352(2)$	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	0.9600
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300	$\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	0.9600
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1$	$104.93(14)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5

C3-N1-C5
125.87 (14)

C1-N1-C5
C3-N2-C2
O2-N3-O1
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1$
O1-N3-C1
C2- $\mathrm{C} 1-\mathrm{N} 1$
C2-C1-N3
N1-C1—N3
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$
C1-C2-H2B
N2-C3-N1
N2-C3-C4
N1-C3-C4
C3-C4-H4A
C3-C4-H4B
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$

C3-N1-C1-C2
C5-N1-C1-C2
C3-N1-C1-N3
C5—N1-C1—N3
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 1-\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2$
$\mathrm{O} 2-\mathrm{N} 3-\mathrm{C} 1-\mathrm{N} 1$
O1—N3-C1—N1
C3-N2-C2-C1
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$
$\mathrm{N} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 2$
128.02 (14)
105.74 (15)
122.92 (17)
119.63 (15)
117.45 (17)
107.35 (15)
127.87 (16)
124.56 (15)
109.97 (15)
125.0
125.0
112.01 (16)
124.07 (16)
123.86 (16)
109.5
109.5
109.5
-0.39 (18)
-168.41 (15)
-175.31 (16)
16.7 (3)
-168.38 (18)
11.0 (3)
5.5 (3)
-175.14 (16)
0.3 (2)
0.1 (2)
174.76 (17)
$\begin{array}{ll}\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} & 109.5 \\ \mathrm{H} 4 \mathrm{~B}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C} & 109.5\end{array}$
N1-C5—C6 112.47 (13)
N1—C5—H5A 109.1
C6-C5-H5A 109.1
N1-C5—H5B 109.1
C6-C5-H5B 109.1
$\mathrm{H} 5 \mathrm{~A}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B} \quad 107.8$
O3-C6-C7
O3-C6-C5
C7-C6-C5
C6-C7- H 7 A
C6-C7-H7B
H7A-C7-H7B
C6-C7- H 7 C
H7A-C7-H7C
H7B-C7-H7C

C2-N2- $\mathrm{C} 3-\mathrm{N} 1$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$
C1—N1-C3-N2
C5-N1-C3-N2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$
C5—N1-C3-C4
C3-N1-C5-C6
C1-N1-C5-C6
N1-C5-C6-O3
N1-C5-C6-C7
123.21 (16)
121.44 (15)
115.35 (14)
109.5
109.5
109.5
109.5
109.5
109.5
-0.6 (2)
-177.73 (19)
0.60 (18)
168.96 (14)
177.77 (18)
-13.9 (3)
-106.10 (18)
59.6 (2)
-9.0 (2)
171.59 (15)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2 — \mathrm{H} 2 B \cdots \mathrm{~N}^{\mathrm{i}}$	0.93	2.56	$3.361(2)$	144
$\mathrm{C} 5 — \mathrm{H} 5 B \cdots 2^{\mathrm{ii}}$	0.97	2.57	$3.527(2)$	167
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots B^{\text {iii }}$	0.96	2.49	$3.340(2)$	147

[^1]
[^0]: Symmetry codes: (i) $-x-1,-y+1,-z+1$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $x+1, y, z$.

[^1]: Symmetry codes: (i) $-x-1,-y+1,-z+1$; (ii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (iii) $x+1, y, z$.

