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Surviving threats in the environment requires brain circuits for detecting (or anticipating) danger and for coordinating ap-

propriate defensive responses (e.g., increased cardiac output, stress hormone release, and freezing behavior). The bed

nucleus of the stria terminalis (BNST) is a critical interface between the “affective forebrain”—including the amygdala,

ventral hippocampus, and medial prefrontal cortex—and the hypothalamic and brainstem areas that have been implicated

in neuroendocrine, autonomic, and behavioral responses to actual or anticipated threats. However, the precise contribution

of the BNST to defensive behavior is unclear, both in terms of the antecedent stimuli that mobilize BNST activity and the

consequent defensive reactions. For example, it is well known that the BNST is essential for contextual fear conditioning, but

dispensable for fear conditioning to discrete conditioned stimuli (CSs), at least as indexed by freezing behavior. However,

recent evidence suggests that there are circumstances in which contextual freezing may persist independent of the BNST.

Furthermore, the BNST is involved in the reinstatement (or relapse) of conditioned freezing to extinguished discrete

CSs. As such, there are critical gaps in understanding how the BNST contributes to fundamental processes involved in

Pavlovian fear conditioning. Here, we attempt to provide an integrative account of BNST function in fear conditioning.

We discuss distinctions between unconditioned stress and conditioned fear and the role of BNST circuits in organizing be-

haviors associated with these states. We propose that the BNSTmediates conditioned defensive responses—not based on the

modality or duration of the antecedent threat or the duration of the behavioral response to the threat—but rather as con-

sequence the ability of an antecedent stimulus to predict when an aversive outcome will occur (i.e., its temporal predictabil-

ity). We argue that the BNST is not uniquely mobilized by sustained threats or uniquely involved in organizing sustained

fear responses. In contrast, we argue that the BNST is involved in organizing fear responses to stimuli that poorly predict

when danger will occur, no matter the duration, modality, or complexity of those stimuli. The concepts discussed in this

review are critical to understanding the contribution of the human BNST to fear and anxiety disorders.

The bed nucleus of the stria terminalis (BNST) is a diverse cluster of
neuronal nuclei located within the ventral forebrain of humans
and other animals (Dumont 2009). The connectivity of the bilat-
eral BNST (or sometimes BST) is extensive and far-reaching—the
BNST is interconnected with the amygdala, dorsal raphe, hippo-
campus, hypothalamus, medulla, nucleus accumbens, periaque-
ductal gray, prefrontal cortex, thalamus, ventral tegmental area,
among others (for recent reviews, see Avery et al. 2016; Lebow
and Chen 2016). As a result of this connectivity, it is perhaps not
surprising that the BNST has been implicated in a number of func-
tions and behaviors relevant to psychiatric disorders, including the
acquisition and expression of Pavlovian fear conditioning, rein-
statement of drug seeking, negative affect in pain, compulsivity,
the expression of social defeat and learned helplessness, social at-
tachment and reproductive behaviors, and regulation of the stress
axis (Davis et al. 2010; Hammack et al. 2012; Crestani et al. 2013;
Petrulis 2013; Adhikari 2014; Coria-Avila et al. 2014; Stamatakis
et al. 2014; Takahashi 2014; Fox et al. 2015; Kash et al. 2015;
Minami and Ide 2015; Avery et al. 2016; Daniel and Rainnie
2016; Gungor and Paré 2016; Lebow and Chen 2016; Mantsch
et al. 2016; Waraczynski 2016; Laman-Maharg and Trainor 2017;
Vranjkovic et al. 2017). Moreover, a growing body of research
links BNST function (and its dysfunction) to a number of human
pathological disorders such as anxiety and addiction (Fox et al.
2015; Avery et al. 2016; Lebow and Chen 2016)—disorders that

are widespread, extremely costly to the individual, and often co-
morbid (Kessler et al. 2005a,b; Koob 2009; McEwen 2012;
Whiteford et al. 2013; DiLuca and Olesen 2014; Gonzalez and
Martinez 2014). Accordingly, the BNST represents an important
target for therapeutic interventions aimed at treating various
psychopathologies.

Within the realm of aversively motivated behaviors, early
studies suggested a limited role of the BNST in fear conditioning
to only certain stimulus modalities (e.g., LeDoux et al. 1988). It
has been suggested that temporal factors (either in terms of the
duration of the antecedent stimulus or consequent behavioral re-
sponse) explain BNST’s selective function in learned fear (e.g.,
Davis et al. 2010). Further, it is now understood that different pop-
ulations of neurons within the BNST can bidirectionally regulate
various unlearned anxiety-like responses (Jennings et al. 2013;
Kim et al. 2013; Crowley et al. 2016; Marcinkiewcz et al. 2016;
Mazzone et al. 2016). Despite this progress, we still lack an updated
and integrated view of BNST function that accounts for its diverse
contributions to aversive learning and memory. Accordingly, the
purpose of this review is to dissect the current literature in an effort
to provide a cohesive analysis of BNST function in Pavlovian fear
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conditioning and how this might relate to its roles in stress- and
anxiety-like behaviors. While this review focuses primarily on an-
imal studies, we also examine recent and relevant developments in
human BNST research.Wewill begin by addressing the fundamen-
tals of aversive learning, followed by a review of the BNST’s rela-
tionship with other conditioned fear-regulating regions of the
brain. In subsequent sections, we will address the role of the
BNST in the conditioning and expression of fear in detail.
Finally, we will consider how these results may be unified under
an updated model of conditioned fear-related BNST function.
Based on a growing and converging data set, we argue that an over-
arching function of the BNST in humans and other animals is to
generate defensive behaviors to unpredictable threats independent
of their modality or duration.

Learning to fear

Pavlovian conditioning is the process throughwhich animals learn
associations between stimuli (Pavlov 1927). For aversive events,
Pavlovian fear conditioning models how humans and other animals
learn about threats in their environment (Rescorla 1988; LeDoux
2000; Maren 2001; Phelps and LeDoux 2005). Importantly, the
conditioning, extinction, and relapse of fear may contribute to
and interact with trauma-related psychopathologies such as post-
traumatic stress disorder (PTSD) (Jovanovic and Ressler 2010;
Mahan and Ressler 2012; Milad and Quirk 2012; Goswami et al.
2013; Gonzalez and Martinez 2014; VanElzakker et al. 2014;
Careaga et al. 2016; also, see LeDoux 2012, 2014, 2017; LeDoux
and Pine 2016; LeDoux and Brown 2017).

In specific terms, Pavlovian fear conditioning is a process
through which a salient cue (e.g., a tone or light source) is paired
with an unavoidable and noxious outcome (e.g., electric shock).
Exposure to the shock (the unconditioned stimulus, or US) induces
various species-specific “circa-strike” defensive responses (termed
unconditioned responses) (e.g., escape, defensive fighting, etc.;
Bolles 1970; Bolles and Fanselow 1980; Fanselow 1980, 1994).
Through the process of conditioning, the cue comes to predict
the aversive outcome (hence, termed the conditioned stimulus, or
CS), and with one or more pairings with the US, a “post-
encounter” conditioned response (e.g., freezing and autonomic activ-
ity in rodents) to the CS alone emerges. In addition to freezing in
the presence of a shock-paired CS, animals will suppress instru-
mental responses for food (a phenomenon termed conditioned sup-
pression; e.g., Waddell et al. 2006, 2008) and will increase the
magnitude of their startle responses to other loud acoustic stimuli
(termed fear-potentiated startle; e.g., Lee and Davis 1997). In hu-
mans, conditioned fear is often indexed using physiological mea-
sures, including skin conductance, heart rate, and pupil dilation
(Lonsdorf et al. 2017). Fear conditioning can occur in the absence
of a discrete CS (the US is “unsignaled”); in this case, the environ-
ment or “context” serves as the CS (and is referred to as contextual
conditioning; Rudy et al. 2004; Curzon et al. 2009;Maren et al. 2013;
Urcelay and Miller 2014). Standard conditioning procedures to a
discrete CS often result in at least some concurrent contextual con-
ditioning as the discrete CS may not fully acquire all of the associ-
ative strength of the US (Rescorla and Wagner 1972).

In contrast to conditioning, repeated presentations of the CS
in the absence of the US will ultimately lead to a reduction in con-
ditional responding, a process termed extinction (Pavlov 1927;
Myers and Davis 2002; Chang et al. 2009). Numerous studies indi-
cate that extinction results in a new inhibitory memory that sup-
presses conditional fear in a context-dependent manner (Maren
2011). Specifically, fear to an extinguished CS will return when
that CS is presented outside of the extinction context, a fundamen-
tal form of “relapse” termed renewal (Bouton and Bolles 1979a).

Renewal is not the onlyway inwhich fear can relapse: fear reinstates
after reexposure to the US (Rescorla and Heth 1975; Bouton and
Bolles 1979b; Bouton and King 1983; Westbrook et al. 2002;
Morris et al. 2005; Goode et al. 2015a) and fear can spontaneously
recover after a passage of time in the absence of the CS (Pavlov
1927; Rescorla 2004). Distinctmechanisms are thought to underlie
these and other various forms of relapse (and are examined else-
where in detail: Bouton 2002, 2004; Vervliet et al. 2013; Goode
and Maren 2014; Haaker et al. 2014; McConnell and Miller 2014;
Maren and Holmes 2016), but it should be noted that contextual
information is thought to be critical for many of these phenomena
(Bouton et al. 2006).

Neural circuits for aversive learning and memory

Originally considered a subregion of the “extended amygdala”
(Johnson 1923; Alheid and Heimer 1988; Alheid et al. 1998;
Alheid 2003), the BNSThas numerous direct connectionswith oth-
er areas of the brain that are involved in Pavlovian fear condition-
ing, including the amygdala, hippocampus, and prefrontal cortex
(PFC). Brain circuits for the acquisition and expression of condi-
tioned fear as well as for its extinction and relapse have received
considerable attention over the years (Fendt and Fanselow 1999;
LeDoux 2000; Maren 2001; Maren and Quirk 2004; Quirk and
Mueller 2008; Herry et al. 2010; Orsini and Maren 2012; Furini
et al. 2014; Izquierdo et al. 2016). In brief, CS and US signals con-
verge on the lateral nucleus (LA) of the amygdala and plasticity
within this nucleus is vital for the acquisition, consolidation,
and expression of conditioned fear (Rogan et al. 1997; Maren
1999a, 2005; Johansen et al. 2011). Output from the amygdala,
via the central nucleus of the amygdala (CeA), targets downstream
structures such as the periaqueductal gray (PAG) and hypothala-
mus to engage freezing and stress responses (respectively) in the
presence of conditioned cues (LeDoux et al. 1988; Behbehani
1995; McLemore et al. 1999; Keifer et al. 2015; Tovote et al.
2015). Additionally, the hippocampus—by way of its connections
with the PFC and amygdala—fundamentally regulates the acquisi-
tion and expression of contextual fear in a time-dependent
manner (Kim and Fanselow 1992; Phillips and LeDoux 1992;
Maren et al. 1998, 2013; Fanselow 2000; Fanselow and Dong
2010; Xu et al. 2016). Furthermore, PFC has been shown to drive
or impair extinction via its projections to fear-promoting or -inhib-
iting neurons within the amygdala (Vertes 2004; Quirk et al. 2006;
Hoover and Vertes 2007; Herry et al. 2008; Knapska et al. 2012;
Senn et al. 2014; Adhikari et al. 2015; Rozeske et al. 2015;
Giustino and Maren 2015; Gourley and Taylor 2016)—processes
that are regulated by the hippocampus (Ji and Maren 2007,
2015a,b; Goosens 2011; Maren et al. 2013; Orsini et al. 2011; Xu
et al. 2016).

The BNST is well positioned to integrate information from the
amygdala, hippocampus, and PFC (Weller and Smith 1982; Sun
et al. 1991; Canteras and Swanson 1992; McDonald et al. 1999;
Dong et al. 2001a; Reynolds and Zahm 2005; Jalabert et al. 2009;
deCampo and Fudge 2013; Torrisi et al. 2015; Lebow and Chen
2016; Oler et al. 2017; Reichard et al. 2017), and BNST subregions
may have differential roles in this process (for recent reviews, see
Lebow and Chen 2016; Gungor and Paré 2016). Nevertheless,
the functions of these circuits in fear conditioning are not well
characterized. BLA activity appears to be required for BNST-depen-
dent fear behaviors inmost cases, insofar as BLA lesions block both
phasic and long-lasting fear responses even with the BNST intact
(Maren et al. 1996; Maren 1999b; Davis et al. 2010; but, see over-
training studies: Poulos et al. 2010; Zimmerman and Maren
2011). However, it is not yet clear if neurons required for
BNST-dependent or -independent conditioned fears are distinct
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or overlappingwithin the BLA (Davis et al. 2010). Furthermore, it is
unclear if direct projections from the BLA are required for
BNST-dependent aversive learning and memory, particularly
because photostimulation of these afferents produces nonassocia-
tive anxiolytic effects (Kim et al. 2013; Crowley et al. 2016).

The CeA also densely innervates the BNST, but the role of the
CeA in BNST-dependent defensive behaviors has been an area of
debate. There is evidence that these structuresmediate different as-
pects of conditioned fear (Walker and Davis 2008; Walker et al.
2009; Davis et al. 2010), although others have suggested that their
roles in these processes are similar (Fox et al. 2015; Gungor and
Paré 2016; Shackman and Fox 2016, also, see Gorka et al. 2017).
That said, there are some recent and compelling data indicating
that the CeA is required for BNST-dependent conditioned fears.
For example, Asok and colleagues (2017) demonstrated that opto-
genetic silencing of central amygdala CRF-positive afferents in the
BNST during training blunts fear expression to a shock-associated
context, at least in the later portion of the retrieval (note that it
is possible that other circuits may be involved and at different
stages). The anxiogenic functions of the BNST are generally attrib-
uted to its anterior regions, (see Crown et al. 2000; Kocho-
Schellenberg et al. 2014) a region targeted by CeA (and BLA)
neurons (Gungor and Paré 2016).

Beyond the amygdala, the significance of hippocampal inputs
to the BNST in the context of aversive learning is not well under-
stood. The hippocampus exerts inhibitory control over stress
hormone release (via the hypothalamic–pituitary–adrenal [HPA]
axis) through its glutamatergic projections to the BNST (Cullinan
et al. 1993; Forray and Gysling 2004). Thus, projections from the
hippocampus to the BNST may modulate anxiety (and perhaps
BNST-dependent fear) not by driving defensive responses per se
but by reducing stress responses in particular contexts (Glangetas
et al. 2017; also, see Gorka et al. 2017). The PFC, particularly the
infralimbic (IL) region of the PFC, projects strongly to the BNST
—this circuit (along with BNST-projecting cells from the neighbor-
ing orbitofrontal cortex) may be involved in both reward (Jalabert
et al. 2009; Reisiger et al. 2014) and threat processing (Spencer et al.
2005; Fox et al. 2010; Motzkin et al. 2015). Nonetheless, a role for
IL projections to the BNST in conditioned fear has not been ex-
plored. The prelimbic (PL) region of the PFC has been shown to
play important roles in contextual conditioning (e.g., Corcoran
and Quirk 2007; Ye et al. 2017), but its direct projections to the
BNST are sparse. Outside of these circuits, recent work on seroto-
nergic inputs to the BNST has implicated dorsal raphe afferents
in enhanced fear conditioning (Marcinkiewcz et al. 2016).

BNST efferents extensively target the CeA, but moderately to
sparsely terminate in the PFC, BLA, and hippocampus (Dong
et al. 2000, 2001b, Dong and Swanson 2003, 2004a,b, 2006a,b,c;
Gungor et al. 2015; Krüger et al. 2015; Dabrowska et al. 2016;
Kaufling et al. 2017; Oler et al. 2017); little is known regarding
the roles of these circuits in aversive memories. BNST efferents
are largely GABAergic, with a smaller portion consisting of gluta-
matergic neurons (Tovote et al. 2015; Vranjkovic et al. 2017;
also, see McElligott et al. 2013; Avery et al. 2014; Kaufling et al.
2017). BNST subregions are highly interconnected (Turesson
et al. 2013), suggesting that BNST-dependent behavioral responses
reflect an integration of activity within these areas (Kim et al. 2013;
Gungor and Paré 2016). Outside of its connections with the amyg-
dala, PFC, and hippocampus, the BNST is positioned to elicit de-
fensive behavior via direct projections to the hypothalamus and
PAG (Holstege et al. 1985; Gray and Magnuson 1992; Nagy and
Paré 2008). Finally, it is worth noting that in humans (Allen and
Gorski 1990; Chung et al. 2002) and rodents (Hines et al. 1985;
Hines et al. 1992), themale BNST is generally larger than in females
(also, see Avery et al. 2014). It is not yet clear if this sexual dimor-
phism impacts BNST function in aversive learning, but (perhaps re-

latedly) male rodents generally express greater levels of contextual
(but not discretely cued) freezing when compared with females
(Maren et al. 1994; Markus and Zecevic 1997; Pryce et al. 1999;
Gupta et al. 2001; Barker and Galea 2010; Nagaya et al. 2015;
Acca et al. 2017; Bangasser and Wicks 2017; also, see Gruene
et al. 2015; Pellman et al. 2017). With these connections in
mind, we will now explore the various factors that may account
for the roles of the BNST in conditioned fear.

BNST function in response to unconditioned aversive

stimuli

Exposure of animals to aversive events—including both physical
(e.g., unsignaled footshock, restraint) and psychological stressors
(e.g., open or elevated spaces, bright lights, predator odors, alarm
pheromones)—readily engage or influence signaling within the
BNST (Rosen et al. 2015; Daniel and Rainnie 2016; Gungor and
Paré 2016). Currently, it is understood that BNST neurons do not
react uniformly to these various stressful stimuli. For example,
the BNST has been shown to exhibit alterations (albeit, increases
or decreases depending on the study) in immediate early gene
expression in its anterolateral and anteroventral regions after
restraint alone, inescapable tailshock, or predator odor
(Lino-de-Oliveira et al. 2001; Day et al. 2005; Christianson et al.
2011; Butler et al. 2016). Electrophysiological studies have further
shown that aversive footshock exposure can rapidly recruit and
modify activity in BNST neurons (Marcinkiewcz et al. 2016; also,
see Daldrup et al. 2016). In turn, BNST lesions often reduce or elim-
inate the behavioral and physiological changes (termed uncondi-
tioned fear responses) that come with direct exposure to these
aversive stimuli. For example, BNST lesions block freezing respons-
es in the presence of predator odors (Fendt et al. 2003, 2005).
Additionally, stress (in the form of extensive footshock exposure)
can potentiate acoustic startle in a separate context; lesions of
the BNST block this effect (Gewirtz et al. 1998; also, see
Hammack et al. 2004; Meloni et al. 2006). In cases where BNST le-
sions fail to alter unconditioned stress responses (e.g., Treit et al.
1998), it is thought that this may be due to the disruption of
both stress-promoting and -attenuating circuits within the BNST
(Adhikari 2014; Luyck and Luyten 2015). Nevertheless, the BNST
functions, in part, to generate unconditioned stress responses
and to mediate stress-induced sensitization.

Along these lines, BNSTmanipulations can also induce uncon-
ditioned stress and fear- or anxiety-like responses in a subregion-
specific and neurotransmitter system-dependent manner (Levita
et al. 2004; Hammack et al. 2009b; Daniel and Rainnie 2016). For
example, increasing CRF, calcitonin gene-related peptide (CGRP),
or serotonin signaling within the BNST can potentiate acoustic
startle in the absence of any other training, and tends to increase
anxiety in other tasks in the short term (Lee and Davis 1997;
Sahuque et al. 2006; Lee et al. 2008; Sink et al. 2011, 2013b;
Mazzone et al. 2016). Similarly, β-adrenergic agonism in the
BNST or induction of pituitary adenylate cyclase-activating poly-
peptide (PACAP) signaling within the BNST promotes stress and
anxiety-like responses (Deyama et al. 2008; Hammack et al.
2009a, 2010; Naka et al. 2013; Hammack and May 2015).
Increasing nitric oxide production within the BNST has also been
shown to induce unconditioned freezing in a novel arena (Faria
et al. 2016; also, see Deyama et al. 2017). Furthermore, stimulation
or inhibition of select BNST circuits, including BLA→BNST and
BNST→VTA neurons, can increase or decrease avoidance (or mod-
ulate stress responding) without any prior learning (Jennings et al.
2013; Kim et al. 2013; Crowley et al. 2016; Marcinkiewcz et al.
2016; Mazzone et al. 2016).
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Stress may lead to plasticity in the BNST that will ultimately
affect circuit function during future stressors or tasks. For example,
acute restraint stress significantly alters plasticity in the BNST in re-
sponse to PFC-dependent input (Glangetas et al. 2013). Chronic
stress in the form ofmultiday unpredictable shock exposure gener-
ally increases serotonin release in the BNST and alters serotonin re-
ceptor expression in the BNST (Hazra et al. 2012). Additionally, it
has been shown that stress-enhancement of trace eyeblink condi-
tioning in rats (through the use of restraint and tail shock) is medi-
ated by the BNST (Bangasser et al. 2005; Bangasser and Shors 2008).
From a translational perspective, and in light of pathologies in
which patients may have experienced a significant degree of stress,
these data are important to consider when examining uncondi-
tioned anxiety- and (perhaps) conditioned fear-related function
in the BNST. Indeed, circuit-specific manipulations often occur in
animals where stress history is minimal (Belzung et al. 2014). As
such, important questions remain as to whether the effects seen
in the circuit-selective studies (Jennings et al. 2013; Kim et al.
2013; Crowley et al. 2016; Marcinkiewcz et al. 2016; Mazzone
et al. 2016) remain true following a history of stress and whether
plasticity in the BNST shifts the phenotypic function of any of
these circuits (also, see Conrad et al. 2011). In total, the BNST pro-
cesses unconditioned aversive stimuli, but it is important to con-
sider that negative outcomes may occur in a distinct place and in
the presence of particular cues, which may foster associative
learning.

BNST function in fear conditioning: stimulus

modality and duration

BNST lesions (whether permanent or temporary) do not universal-
ly blunt somatic, autonomic, or hormonal responses during fear
conditioning. Rather, several studies have now demonstrated a
necessary role for the BNST in the learning and/or expression of
contextual—but not discretely cued—fear, as indexed by freezing,
conditioned suppression, potentiated startle, and stress hormone
release (LeDoux et al. 1988; Hitchcock and Davis 1991; Lee and
Davis 1997; Gewirtz et al. 1998; Sullivan et al. 2004; Waddell et
al. 2006; Resstel et al. 2008; Duvarci et al. 2009; Poulos et al.
2010; Zimmerman and Maren 2011; Hott et al. 2012, 2017;
Sink et al. 2013a; Davis and Walker 2014; Goode et al. 2015b;
Hammack et al. 2015; Asok et al. 2016). Relatedly, electrical stimu-
lation of the BNST can either increase or decrease conditioned con-
textual fear (as assessed by freezing or startle amplitude), effects
that depend on the location, intensity, and frequency of the stim-
ulation (Luyck et al. 2017; also, see Baas et al. 2014; Luyck and
Luyten 2015). Disrupting BNST signaling does not appear to im-
pair discrimination between two nonaversive contexts per se
(e.g., given the persistence of context-dependent renewal in
BNST-lesioned animals in the study by Goode et al. 2015b), sug-
gesting that contextual representations (e.g., spatial/visual proper-
ties, etc.) are processed upstream of the BNST in the hippocampus.
It has not yet been demonstrated whether unconditional fear-
and stress-attenuating circuits of the BNST (Jennings et al. 2013;
Kim et al. 2013; Crowley et al. 2016; Marcinkiewcz et al. 2016;
Mazzone et al. 2016) (or BNST neurons in general) play any funda-
mental role in the extinction of conditioned fear to cues or con-
texts (also, see Ranjan et al. 2017).

Some of the aforementioned studies involved pretraining per-
manent lesions of the BNST, making it difficult to determine
whether the BNST’s role in context fear is specific to acquisition,
consolidation, expression, or some combination of these processes
(granted, there are few studies published that specifically examine
the role of the BNST in the acquisition or consolidation of fear).
However, there are a handful of studies using temporary or post-

training lesions (or inhibitors of protein synthesis) that implicate
BNST function in the acquisition (Davis and Walker 2014; also,
see Asok et al. 2017), consolidation (Poulos et al. 2010), and expres-
sion of context fear (Sullivan et al. 2004; Zimmerman and Maren
2011; Goode et al. 2015b; but, see Davis and Walker 2014).
Consistent with these ideas, cued or contextual conditioning in-
creases immediate early gene expression (e.g., c-fos) in the BNST
(Passerin et al. 2000; Ranjan et al. 2017), as does the expression
of contextual fear (Beck and Fibiger 1995; also, see Luyten et al.
2012). Furthermore, the BNST has been shown to be important
for consolidation of contextual fear in overtrained animals if the
BLA is lesioned (this consolidation effect is eliminated if the BLA
remains intact; Poulos et al. 2010; Zimmerman and Maren 2011).
These effects on acquisition and consolidation suggest that BNST
afferents (e.g., Asok et al. 2017) or perhaps BNST neurons them-
selves are at least in part a node for BNST-dependent fear memory
in certain cases. However, overtraining studies suggest that the
BNST is not an alternative locus for standard fear conditioning
(Poulos et al. 2010; Zimmerman and Maren 2011). Thus, it is not
yet clear whether plasticity within the BNST serves to store
BNST-dependent conditioned fear memories and/or if the BNST
is simply recruited by learning-dependent plasticity in other
regions in the presence of particular conditioned stimuli.
Collectively, these findings suggest a unique role for the BNST in
contextual fear conditioning, but why the BNST is selective for
contextual fear is unclear.

Conditioned contexts and discrete CSs not only differ in
terms of their modality, but they also often differ in duration. To
determine which factor is more relevant to BNST function,
Hammack et al. (2015) tested whether the duration of context ex-
posure prior to US onset in a context conditioning procedure influ-
enced the role of the BNST in the task. Specifically, Hammack et al.
(2015) placed rats in a context where unsignaled footshock oc-
curred either 1 or 10 min after animals entered the chamber. Rats
were removed from the chambers 30 sec after shock offset (thereby,
the groups differed on both the timing of shock onset as well as to-
tal context exposure). After several training sessions, rats were test-
ed in the absence of shock to the context. The results revealed that
contextual fear was only affected by the BNST lesions in the
context in which shock occurred at a 10-min delay; rats with
BNST lesions conditioned normally to the context in which shock
occurred at a 1-mindelay. Importantly, these data suggest that con-
textual fear can be independent of the BNST under some condi-
tions (which may also have interesting implications for context
fear-induced reinstatement). Consistent with these findings, an
earlier report by Waddell et al. (2006) demonstrated that lesions
of the BNST attenuated conditioned suppression in the presence
of a long-duration (10 min), but not a short-duration (1 min), au-
ditory CS. Based on these results, the authors (Waddell et al.
2006; Hammack et al. 2015) argued that it was stimulus duration,
not modality or response duration, that determined whether the
BNST was recruited during fear conditioning procedures.

However, stimulus duration alone may not fully account for
the recruitment of the BNST during fear conditioning. For exam-
ple, BNST lesions prevent fear reinstatement to short-duration
CSs (Waddell et al. 2006, 2008; Goode et al. 2015b). Likewise,
shock-induced reinstatement of extinguished fear to a discrete
CS is associated with increased activity in the human BNST
(Scharfenort and Lonsdorf 2016). Furthermore, BNST lesions can
enhance discrimination between a CS+ and CS− (Duvarci et al.
2009; Radke 2009) by attenuating fear to the CS− (also, see Botta
et al. 2015; De Bundel et al. 2016; Sanford et al. 2017). Thus, the
BNST may also be involved in the generalization of conditioned
fear to both discrete cues and contexts (also, see Jasnow et al.
2017). Similarly, serotonin in the BNST during training to a phasic
CS has been shown to increase fear responding to that same CS
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when tested off-drug in a familiar but different context (Ravinder
et al. 2013; however, it is unclear if these effects are confounded
by enhanced contextual fear on top of the tone response at test;
also, seeMarcinkiewcz et al. 2016). In total, there aremany circum-
stances in which the BNST regulates fear to unimodal or even dis-
crete stimuli.

BNST function in fear conditioning: response

duration

Early and seminal research on the role of downstream targets of the
BLA in aversive learning demonstrated a double dissociation in the
roles of the BNST and CeA in sustained and phasic fear responses,
respectively (Lee and Davis 1997; Walker and Davis 1997; but, see
Sullivan et al. 2004). In particular, CRF- and unconditioned light-
enhanced startle—paradigms associated with long-duration fear-
like responses—were shown to be mediated by the BNST (and
not the CeA); conversely, fear-potentiated startle, which involves
a phasic CS-evoked fear response, was attenuated by CeA lesions
(and not the BNST) (Lee and Davis 1997). In this framework, the
BNST was argued to be necessary to maintain long-lasting fear re-
sponses, whereas the CeA drives rapid, phasic fear responses
(Davis 1998, 2006; Davis and Shi 1999; Walker et al. 2009; Davis
et al. 2010; Rodríguez-Sierra et al. 2016; also, see Herrmann et al.
2016; Brinkmann et al. 2017a).

Nevertheless, a growing body of evidence indicates that the
BNST mediates both rapid and sustained fear responses at least in
some cases (also, seeNagy andParé 2008). For example,work in hu-
mans has revealed that the BNST can exhibit rapid and short-lived
neural responses to phasic images of an approaching tarantula or
to relatively brief unpredictable threats of shock (Mobbs et al.
2010; Choi et al. 2012; Klumpers et al. 2015; Shackman and Fox
2016; also, see Schlund et al. 2013). At the behavioral level, post-
training lesions or inactivation of the BNST rapidly attenuate freez-
ing responses to an aversive context (e.g., as early as within the first
minute; Zimmerman andMaren 2011; Goode et al. 2015b)—these
effects coincide with rapid prevention of reinstatement to the on-
set of discrete extinguished CSs. Other studies examining the ef-
fects of various neuromodulators or neurosteroids within the
BNST have also shown rapid alterations in behavioral responding
upon return to a conditioned context (Nagaya et al. 2015; Acca
et al. 2017). At the physiological level, Resstel et al. (2008) demon-
strated that blockade of neurotransmitter release within the BNST
(via the infusion of cobalt chloride) prevented the immediate in-
crease in mean arterial pressure and heart rate that coincided
with being placed in a previously conditioned context. Intra-
BNST administration of NMDA antagonists or nNOS inhibitors
also blocks these rapid physiological changes (Hott et al. 2017).
These data suggest that the BNST does not selectively mediate sus-
tained fear responses.

BNST function in fear conditioning: state-dependence

Recently, it has been observed that intra-BNST infusions of the
neurosteroid allopregnanolone (ALLO, a progesterone metabolite
that potentiates GABAA receptors) produce state-dependent reten-
tion deficits of contextual fear (Nagaya et al. 2015; Acca et al. 2017).
In other words, animals trained or tested after ALLO infusions ex-
hibit impaired contextual freezing, however animals trained and
tested after ALLO infusions exhibit robust freezing. This suggests
that the BNST not only processes environmental (i.e., exterocep-
tive) conditioned contexts, but might also be involved in repre-
senting interoceptive contexts (such as hormonal states).
Moreover, state-dependence is not observed when ALLO is infused
into the BLA, suggesting that the effects of ALLO on state-

dependence relates to its actions within the BNST (Acca et al.
2017). However, it is not yet clear if other drugs that are commonly
used to assess BNST function also induce state-dependence via the
BNST, or if other brain areas might mediate these state-dependent
effects. For example, infusions of NBQX (an AMPA receptor antag-
onist) or muscimol (a GABA receptor agonist) into the BNST
did not cause renewal of fear to an extinguished CS as might be
expected if there was a drug-induced shift in the animals intero-
ceptive context (i.e., interoceptive renewal; Goode et al. 2015b).
Nevertheless, when examining the role of the BNST in conditioned
fear, it is important to consider the role of interoceptive contexts
that may be associated with the aversive event; a change in intero-
ceptive context might induce state-dependent generalization
decrements.

Temporal unpredictability in BNST-dependent

aversive learning and memory

Up to this point, we have reviewed studies that suggest that the
BNST (1) is particularly attuned to aversive (US-like) stimuli, (2) is
implicated in acquisition, expression, reinstatement, and at times
consolidation of conditioned fear, (3) does not mediate all forms
of contextual fear, (4) mediates fear to unimodal or multimodal
stimuli, (5) can respond to phasic or sustained cues, (6) can exhibit
phasic or sustained neural responses in the presence of threats, (7)
maybe involved in aversive learning to interoceptive states, and (8)
can rapidly mediate defensive behaviors. What unifies these prop-
erties and what may account for BNST’s selectivity in fear condi-
tioning? We propose that the BNST is specifically recruited to
aversive learning by temporally unpredictable events (Fig. 1).

By this view, the BNST is not involved in aversive contextual
conditioning or expression per se, rather it becomes engaged by
stimuli (whether cues or exteroceptive/interoceptive contexts)
that are associated with temporally unpredictable USs (even if the
probability that the US will occur is 100%). In other words, the
BNST is recruited when the animal cannot reliably predict the on-
set of shock. This account of BNST function explains its diverse
roles in conditioning to stimuli of various modalities or durations.
For example, the BNST mediates fear to long CSs (whether uni-
modal or multimodal) because long CSs are poor predictors of
when the aversive US will occur during presentation of the stimu-
lus (e.g.,Waddell et al. 2006; Hammack et al. 2015; also, see Fig. 1E,
G). Conversely, discrete CSs (whether contexts or cues) that are
trained with near immediate shock (Fig. 1A,B) allow the animal
to reliably predict US onset and thereby do not require the BNST.
However, the BNST is required for conditioning to relatively short,
unimodal CSs if those CSs are trained as poor predictors of when a
US occurs (Fig. 1C; Lange et al. 2016). This interpretation of BNST
function is perhaps specific to its role in aversive learning—that is,
temporal uncertainty of a US may foster BNST-dependence to var-
ious CSs, whereas nonassociative stressors (serving as USs) may en-
gage the BNST for reasons not necessarily related to timing.
Nevertheless, time as a factor in unconditioned stress is plausible
(e.g., bright lights may signal a degree of vulnerability during
which the animal is uncertain of the time in which a direct threat
or predator will appear), but such possibilities are still in need of
exploration.

One possibility is that unpredictable threats operate to pro-
duce sustained fear as the animal has learned that the risk of US on-
set is nearly continuous throughout presentation of the CS—these
sustained fear responses have been argued to require the BNST
(e.g., Walker and Davis 2008; Walker et al. 2009; Davis et al.
2010). However, temporally predictable CSs (albeit, massed) or
contexts (e.g., Hammack et al. 2015) can also produce long-lasting
and sustained fear responses, such as freezing behaviors, that do

BNST in aversive learning

www.learnmem.org 484 Learning & Memory



not require the BNST (e.g., Zimmerman andMaren2011). Hence, it
is possible that neither the duration of the fear response nor the
duration of the CS is the determinant of when or whether the
BNST is recruited to mediate conditioned fear responses.

Of course, there is considerable variability in animals and in-
dividuals in terms of howaccurately they time the onset of aversive
events (also, see Buhusi andMeck 2005). Thus, the role of the BNST
in temporal predictability may need to be addressed by comparing
responses to temporally predictable (Fig. 1A,B) and unpredictable
antecedents of aversive outcomes (Fig. 1C–E). The number of stud-
ies utilizing temporally uncertain discrete CSs are limited (e.g.,
Daldrup et al. 2015; Lange et al. 2016; Seidenbecher et al. 2016),
but they often train the CS with components of both immediate
and delayed US onset (thereby contributing to its temporal uncer-
tainty). Fear to these stimuli is then tested to a continuous presen-
tation of the CS over the course of several minutes. Only the late
phases of CS presentation appear to require the BNST (Davis
et al. 2010; also, see Meloni et al. 2006). Accordingly, we argue
that in these cases these early phases of retrieval are akin to tempo-
rally predictable CSs, whereas the later times of CS exposure are
temporally unpredictable ofUS onset. By training theCSwith early
shock onset (as well as late onset), the animals have learned that CS
onset could possibly predict immediate shock—only after sustain-
ing the CS does the uncertainty arise regarding when the USmight
occur. Along these lines, if the CS is paired with temporally certain

shock (i.e., early shock onset), its retrieval is BNST-independent
and does not elicit sustained responding. Thus, we propose that
temporal uncertainty, whichmay produce sustained fear, accounts
for the BNST’s diverse contributions to aversive learning andmem-
ory. Note that other forms of unpredictability—such as CS–US con-
tingency (e.g., Davies and Craske 2015)—might also interact with
temporal unpredictability (also, see Alvarez et al. 2011; Robinson
et al. 2012; Schmitz and Grillon 2012).

It is not yet clear if the conditioning of temporally uncertain
stimuli relies on plasticitywithin and/or upstreamof the BNST, but
recent studies comparing predictable and unpredictable threats
have implicated the amygdala (e.g., Herry et al. 2007), amygdalar
afferents to the BNST, and activity/endocannabinoid signaling
within the BNST itself in the response to temporally unpredictable
threats (Davis et al. 2010; Lange et al. 2016). Additionally, pharma-
cological or optogenetic inhibition of the dorsal hippocampus has
been shown to attenuate fear to temporally unpredictable (but not
predictable) auditory CSs (e.g., Fig. 1D; Amadi et al. 2017)—manip-
ulations that also disrupt contextual fear.

In total, we propose that the BNSTmediates learned fear when
the timing of an aversive event is uncertain, even in the face of cer-
tainty that the event will happen. Indeed, this interpretation is
consistent with other recent accounts of BNST broader functions.
For example, the BNST has been proposed to be involved in “va-
lence surveillance” (Lebow and Chen 2016), which includes mon-
itoring positive and negative stimuli and initiating appropriate
behavioral and physiological reactions. Unpredictable stressors
(such as temporally unpredictable CSs) may require ongoingmon-
itoring via the BNST—such hypervigilance to threat of shock has
been associated with activity in the BNST in anxious humans
(Somerville et al. 2010). Ultimately, the role of the BNST inmediat-
ing fear responses to temporally unpredictable threats is likely an
important factor in the role of the BNST in human anxiety, given
that ambiguity is thought to be a core component of anxiety (Foa
et al. 1992; Bouton et al. 2001; Grillon 2002a,b, 2008; Perusini
and Fanselow 2015). Notably, there have been several recent ad-
vances in imaging techniques of the human BNST, which will
help to better characterize the role of the BNST in aversive learning
and in clinical psychopathologies (Fox et al. 2015; Torrisi et al.
2015; Avery et al. 2016; Brinkmann et al. 2017a,b; Pedersen et al.
2017; Sladky et al. 2017; Theiss et al. 2017). On a final note, an em-
phasis on temporal uncertaintymighthave implications for BNST’s
additional roles in drug seeking behaviors (Shaham et al. 2003;
Flavin and Winder 2013; Silberman and Winder 2013), given
that footshock exposure can induce both fear and drug reinstate-
ment (e.g., Erb and Stewart 1999; Erb et al. 2001; Shalev et al.
2001). All of this considered, future experiments will hopefully
shed light on the precise circumstances and circuits by which con-
ditioned and unconditioned stimuli engage the BNST.
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