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Abstract: Known genetic variation, in conjunction with post-PCR melting curve analysis, can be
leveraged to provide increased taxonomic detail for pathogen identification in commercial molecular
diagnostic tests. Increased taxonomic detail may be used by clinicians and public health decision-
makers to observe circulation patterns, monitor for outbreaks, and inform testing practices. We
propose a method for expanding the taxonomic resolution of PCR diagnostic systems by incorporating
a priori knowledge of assay design and sequence information into a genotyping classification model.
For multiplexed PCR systems, this framework is generalized to incorporate information from multiple
assays to increase classification accuracy. An illustrative hierarchical classification model for human
adenovirus (HAdV) species was developed and demonstrated ~95% cross-validated accuracy on
a labeled dataset. The model was then applied to a near-real-time surveillance dataset in which
deidentified adenovirus detected patient test data from 2018 through 2021 were classified into one of
six adenovirus species. These results show a marked change in both the predicted prevalence for
HAdV and the species makeup with the onset of the COVID-19 pandemic. HAdV-B decreased from a
pre-pandemic predicted prevalence of up to 40% to less than 5% in 2021, while HAdV-A and HAdV-F
species both increased in predicted prevalence.

Keywords: genotyping; DNA melting curve analysis; adenovirus; epidemiology; surveillance;
Bayesian; BioFire; bioMérieux

1. Introduction

Characterizing genetic variation in pathogen populations and expanding the under-
standing of how they evolve between hosts can have important implications for public
health [1]. Providing increased taxonomic information about a pathogen can inform medi-
cal decision-making. For example, it has been shown that a specific strain of Enterovirus
(D-68) presents an increased risk of severe respiratory infections for some at-risk pop-
ulations (e.g., pediatric and asthmatic patients) compared to other similar Enterovirus
strains [2,3]. When this increased taxonomic resolution of a pathogen is available and
provided in real-time, clinicians and health care professionals can make decisions for local
and regional institutions to mitigate the effects of an outbreak [4].

At the present time, next-generation sequencing (NGS) is the primary method of
genetic characterization and is increasingly being integrated into the clinical microbiology
laboratory, but there still exist many challenges in its routine use, namely cost and time to
results [5]. Alternatively, lab-developed tests (LDTs) to identify specific strains are common
practice in diagnostics for the clinical microbiology laboratory. However, these tests cannot
be distributed directly from lab to lab, and labs are not required to standardize assays used
for the identification and reporting of specific strains. Commercially available diagnostic
tests for common pathogens are widely available due to their low cost, time to result,
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and/or clinical accuracy; however, most do not have the ability to provide speciation of the
identified pathogen.

One commercially available platform that is in wide use is the BioFire® FilmArray®

system, a multiplex, real-time PCR diagnostic system from bioMérieux, Inc. (Salt Lake City,
UT, USA). The BioFire system addresses many of the issues with NGS, LDTs, and many of
the low-plex front-line testing options, in that the assays are standardized across labs using
the BioFire system. The BioFire system is capable of providing a sample-to-answer result in
about an hour, is in routine use in many labs, and is relatively low cost. Here, we propose a
mathematical framework that takes advantage of the design of the molecular assays in the
BioFire system and the known genetic variability within assay target regions to provide
additional taxonomic resolution for a pathogen.

The BioFire system combines multiple assays in a single diagnostic test to report the
presence or absence of multiple pathogens in a single patient sample. For each pathogen,
there is at least one assay in the test that targets a specific region of its genome. However,
there are some pathogens where multiple assays are necessary to capture strain diversity.
The BioFire system uses PCR to amplify the target regions of a pathogen genome for each
assay and an end-point melting curve analysis (MCA) of the amplicon for the detection
and identification of the target [6]. As part of MCA, the BioFire system calculates the
temperature of the maximum rate of disassociation of the double-stranded DNA. This
metric is referred to as the melting temperature or Tm value [7,8]. A theoretical Tm value
for each expected amplicon sequence can be computed with in silico analysis [9,10]. Here,
we propose a mathematical framework to provide predicted speciation based on genotypic
differences using the BioFire test result and the observed Tm values from well-characterized
isolates, their theoretical Tm values, and the associated taxonomic lineage as training inputs.

As a practical application of this framework, we predict human mastadenovirus
(HAdV) species from positive test results on the BioFire® Respiratory 2.1 Panel and BioFire®

Respiratory 2 Panel, referred to herein as BioFire Respiratory Pathogen Panels or RPP.
Adenoviruses are DNA viruses from the family Adenoviridae, typically associated with
respiratory and gastrointestinal infections [11,12]. In some cases, such as in young children
or the immunocompromised, these infections can be serious [13,14]. There are seven
known species of HAdV (A–G) [15,16]. Of these species, HAdV (A–F) are most often
associated with respiratory infections, with C resulting in more mild outcomes compared
to B and E [17]. HAdV-G has only been observed to cause gastrointestinal infections.
Outbreaks of HAdV are prone to occur in crowded community settings such as dormitories
and hospitals [18]. While vaccines are effective at preventing outbreaks of infection caused
by HAdV, they are currently only administered in select settings and are not widely
available to the public [19]. HAdV typing in the United States is primarily motivated by
the need to determine patterns of circulation, detect outbreaks, and inform vaccine and test
design [20,21].

The RPP are designed to detect the six HAdV species known to cause respiratory
infections in humans [22]. To ensure inclusivity, these products contain five assays that
provide complementary coverage of this range of HAdV species. The RPP do not, how-
ever, distinguish between the HAdV species in the diagnostic result, instead returning a
generalized Adenovirus “Detected” or “Not Detected” result.

In order to monitor circulation and detect outbreaks of HAdV, the model developed
here is applied to the BioFire Syndromic Trends (Trends) system [23]. Trends is a network
that collects and stores aggregated, deidentified patient test data from a subset of BioFire
systems. More than 100 sites across the globe have contributed BioFire test data to Trends
since 2015, with the aggregated dataset containing over 2 million RPP test results. By
applying the HAdV speciation method to this dataset, we estimate changes in the circulation
patterns of HAdV species from 2018 through 2021.

In the following sections, we detail the performance of an HAdV classification model.
The model is then applied to RPP tests with Adenovirus “Detected” results in the Trends
dataset to estimate HAdV species prevalence. The use of this method to augment HAdV
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typing efforts and the generalizability of this method to other genotyping applications
are discussed. Finally, we define the formal mathematical framework used for predicting
genotypic variability based on expected Tm values and detail how the model to classify
HAdV species was optimized using a labeled dataset of well-characterized isolates.

2. Results
2.1. Hierarchical Classification Model Performance

A confusion matrix of the predicted HAdV species against known HAdV species using
the optimized classification model is shown in Table 1. Values along the diagonal indicate
that the prediction agreed with the known genotype for the sample, and off-diagonal
elements indicate misclassifications. Table 2 summarizes the performance results of the
model on the labeled dataset with the mean of the precision, recall, and F1-score across
the ten cross-validation folds, along with support by HAdV species. The mean class-wise
precision for HAdV-A of 0.88 indicates that when HAdV-A is predicted, it is correct 88%
of the time. The mean class-wise recall for HAdV-A of 0.96 indicates that when the true
classification for a sample is HAdV-A, the species is correctly predicted 96% of the time. The
mean class-wise F1-score for HAdV-A of 0.92 indicates balanced accuracy as the harmonic
mean of precision and recall. Support indicates the number of samples of each species
included in the analysis (see the Methods section for more details of the training dataset).
The macro average for each metric is the average across all classes with equal class weights
and the weighted average is the average across all classes weighted by the number of
samples in each class [24].

Table 1. Confusion matrix of the predicted HAdV species by the optimized classification model
against the true HAdV species.

HAdV
Species

Predicted Label

A B C D E F

K
no

w
n

La
be

l

A 46 0 0 0 0 2

B 0 81 0 0 2 0

C 0 0 57 0 0 0

D 0 0 0 53 4 3

E 0 0 0 0 43 1

F 6 1 0 0 0 48

Table 2. Detailed performance characteristics for the optimized classification model.

HAdV Species Precision Recall F1-Score Support

A 0.88 0.96 0.92 48
B 0.99 0.98 0.98 83
C 1.00 1.00 1.00 57
D 1.00 0.88 0.94 60
E 0.88 0.98 0.92 44
F 0.89 0.87 0.88 55

Macro average 0.94 0.94 0.94

Weighted average 0.95 0.95 0.95

Accuracy (±s.d.) 0.95 (±0.04)

The logistic regression model finds coefficients for each assay’s posterior probabilities
that optimize the model’s classification performance on the training dataset. In contrast,
the assay design-informed model used for a sensitivity analysis sets the coefficients by
the heuristic of expected assay reactivity and demonstrates 75% overall class accuracy for
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the same training dataset. The detailed performance results and confusion matrix for this
method are shown in Appendix B, Tables A1 and A2, respectively.

2.2. Application of Adenovirus Classification Model to Syndromic Trends

Figure 1A shows the optimized classification model applied to the RPP runs in Trends
with an Adenovirus “Detected” result. The rate of Adenovirus “Detected” results are
displayed as a rate of total RPP runs in the database. Subtypes are displayed in the stacked
area under the total detections, indicating the percentage of RPP runs with an Adenovirus
“Detected” result attributed to each species. Figure 1B shows the normalized percentage of
each HAdV species from Figure 1A.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 15 
 

 

for the same training dataset. The detailed performance results and confusion matrix for 
this method are shown in Appendix B, Tables A1 and A2, respectively. 

2.2. Application of Adenovirus Classification Model to Syndromic Trends 
Figure 1A shows the optimized classification model applied to the RPP runs in 

Trends with an Adenovirus “Detected” result. The rate of Adenovirus “Detected” results 
are displayed as a rate of total RPP runs in the database. Subtypes are displayed in the 
stacked area under the total detections, indicating the percentage of RPP runs with an 
Adenovirus “Detected” result attributed to each species. Figure 1B shows the normalized 
percentage of each HAdV species from Figure 1A. 

 
Figure 1. Estimated HAdV species prevalence from Trends data. HAdV species predicted from the 
optimized classification model applied to RPP Adenovirus “Detected” results in the Trends data-
base from 2018 through 2021. Rates are calculated on a weekly basis and smoothed with a six-week 
centered rolling window. (A) Estimated prevalence of each HAdV species shown as a proportion of 
total runs of RPP. (B) Estimated prevalence of each HAdV species shown as a proportion of total 
Adenovirus “Detected” results. 

3. Discussion 
3.1. Hierarchical Classification Model Performance 

The mathematical framework for predicting genotypic differences applied to HAdV 
species typing showed robust cross-validation performance in assigning correct species 
labels to samples tested with the RPP, with an overall class accuracy of 95% and a standard 
deviation of 4% across the 10-fold cross-validation. However, the optimized classification 
model performance was not equal across all HAdV species with the lowest species class 
accuracy equal to 87% (see Table 2). Higher class precision and recall were observed for 
HAdV species B and C compared to A, D, E, and F. This may be attributed to the assay 
coverage of these species, as A and F and D and E often shared high posterior probabilities 
in similar temperature ranges. The model also demonstrates performance in line with the 
Xu, McDonough, and Erdman HAdV species typing assay that show an overall class ac-
curacy of 96% with the lowest species class accuracy of 83% [25]. 

Compared to the optimized classification model, the assay design-informed classifi-
cation model had two primary deficiencies in performance. The most discrepant results 
were observed with HAdV-A and HAdV-F samples, often mistaking one for the other. It 
also misclassified many HAdV-E samples as HAdV-D. While the optimized classification 
model exhibits the worst performance with HAdV-A and HAdV-F, it avoids most of the 

Figure 1. Estimated HAdV species prevalence from Trends data. HAdV species predicted from the
optimized classification model applied to RPP Adenovirus “Detected” results in the Trends database
from 2018 through 2021. Rates are calculated on a weekly basis and smoothed with a six-week
centered rolling window. (A) Estimated prevalence of each HAdV species shown as a proportion
of total runs of RPP. (B) Estimated prevalence of each HAdV species shown as a proportion of total
Adenovirus “Detected” results.

3. Discussion
3.1. Hierarchical Classification Model Performance

The mathematical framework for predicting genotypic differences applied to HAdV
species typing showed robust cross-validation performance in assigning correct species
labels to samples tested with the RPP, with an overall class accuracy of 95% and a standard
deviation of 4% across the 10-fold cross-validation. However, the optimized classification
model performance was not equal across all HAdV species with the lowest species class
accuracy equal to 87% (see Table 2). Higher class precision and recall were observed for
HAdV species B and C compared to A, D, E, and F. This may be attributed to the assay
coverage of these species, as A and F and D and E often shared high posterior probabilities
in similar temperature ranges. The model also demonstrates performance in line with
the Xu, McDonough, and Erdman HAdV species typing assay that show an overall class
accuracy of 96% with the lowest species class accuracy of 83% [25].

Compared to the optimized classification model, the assay design-informed classifica-
tion model had two primary deficiencies in performance. The most discrepant results were
observed with HAdV-A and HAdV-F samples, often mistaking one for the other. It also
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misclassified many HAdV-E samples as HAdV-D. While the optimized classification model
exhibits the worst performance with HAdV-A and HAdV-F, it avoids most of the specific
biases of the assay design-informed model by using the labeled data to inform the posterior
probability weights. Although the training dataset used for these species classification
models was comprised of a diverse set of serotypes for each HAdV species, we would
expect lower accuracy than what is demonstrated here when applied to unseen serotypes.

3.2. Generalization of the Genotyping Framework

The mathematical framework presented here was well-suited for the RPP HAdV
assays. These assays were designed specifically to capture the diversity of the HAdV
genome across the different species. However, it could be generalized to classify genotypic
diversity using other assays, provided there is variability in Tm values inside the relevant
temperature range due to sequence differences of the amplicon sequences associated with
genotypic diversity. The variation in Tm values associated with genotypic diversity must
be greater than the temperature resolution of the instrumentation and the run-to-run
variability for a reactive sequence. The error of the predicted Tm values for a given set of
reaction conditions and amplicon sequences must also be less than the differences in Tm
values between the genotypic groups. If assays were designed to maximize the variation
of Tm values from different genotypic groups, the performance of this method could be
further improved.

3.3. Adenovirus Surveillance

The relative prevalence of HAdV species in specific subpopulations has been studied
extensively [11,12,18,19,26–29]. The surveillance of HAdV species in the greater population
is currently addressed by the CDC’s National Adenovirus Type Reporting System (NA-
TRS) [30]. This program collects and summarizes typing results from labs and hospitals
and publishes a static prevalence estimation for several time periods. NATRS has published
prevalence data from 2003 to 2016 collected from 11 sites and from 2014 to 2017 collected
from at least 33 sites. We applied the HAdV species classification model to the RPP patient
test data collected by the Trends system from 2018 through 2021. Because HAdV species
prevalence varies from year to year, and the data collection timeframe does not overlap, no
direct comparison of prevalence estimated here is made to that of NATRS [14,29]. However,
the relative species proportions between NATRS (2014–2017) and the model predictions of
the Trends data (2018–2020) are similar with HAdV-B and HAdV-C combined, consisting
of greater than 80% of HAdV relative prevalence in both estimates. The application of the
HAdV species classification model to Trends data supports and augments the surveillance
efforts of NATRS. The Trends database contains a large pool of “Adenovirus Detected” re-
sults (>25,000) reported from over 100 testing sites across the United States. The application
of the model to an active reporting system, such as Trends, confers several benefits over
traditional passive reporting. First, this application requires minimal additional effort be-
yond running the samples on the RPP. Second, because all results are produced by the same
testing platform, they share the same sample preparation protocol, reagents, and assays,
which improves data consistency. Finally, because the data are automatically processed
and categorized by the system and available in near-real-time, they can be used to detect
species-specific outbreaks and monitor seasonality and changes in circulation patterns. The
HAdV species classification model can be continuously applied to Trends data moving
forward, and as more sites are added to the platform, more detailed patterns of circulation
can be discerned.

Trends data were utilized in this study to investigate United States HAdV species preva-
lence. While Trends data has been used to suggest pathogen circulation dynamics [4,31,32], it
should be noted that the testing practices and demographics of the institutions contributing
to Trends are unknown. Biases in sites contributing to the network may exist that could
give Trends a skewed representation of population pathogen prevalence. These limitations
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need to be kept in mind when making inferences about HAdV species prevalence based on
the classification model results applied to Trends data.

Investigating the predicted prevalence data produced by the model shown in Figure 1A
reveals several interesting results. Immediately apparent is the large drop in positivity in
the spring of 2020 due to the COVID-19 pandemic. This pattern was not limited to HAdV,
however, and was observed across all positivity in the Trends network [32]. As social
practices return to normal over the course of 2021, rates of Adenovirus “Detected” results
increase in Trends to levels seen prior to the onset of the pandemic. It is interesting to note
in Figure 1B that the estimated proportion of HAdV-B does not recover to its previous
state of about 30% of Adenovirus “Detected” results after the onset of the pandemic; in
2021 it has consisted of less than 5% of total Adenovirus “Detected” results. In the same
timeframe, HAdV-C increased in relative prevalence to make up approximately 70% of all
Trends Adenovirus “Detected” results. Additionally, two species (HAdV-A and HAdV-F)
appear to be increasing in prevalence in the absence of HAdV-B. HAdV-A has increased
from a low in 2020 of 4.5% relative prevalence to a high in 2021 of 11.6%, and HAdV-F
increased from a low of 1.8% in 2020 to a high in 2021 of 17.9%. As stated above, this
data may not reflect the actual circulating patterns of HAdV in the general population.
Although this is an interesting observation on potential changes in the prevalence of several
HAdV species, further study and monitoring are needed to understand the dynamics of
circulating virus populations after a major disruption in social practices and competition
between similar species.

4. Materials and Methods

In this section, we detail the general mathematical framework for predicting genotypic
differences as applied to predict HAdV species from an unknown sample. To develop
the framework, we first determine the HAdV species reactivity of each RPP HAdV assay
by finding a complementary alignment of the forward and reverse primer sequences for
HAdV entries in the Nucleotide collection nr/nt sequence database [33]. The Tm values
are predicted in silico for each expected resulting amplicon sequence. These estimated Tm
values are used to form a probability density function for the Tm value of each species. We
then employ Bayes’ Theorem to estimate the posterior probabilities of each HAdV species
given a Tm value. The results for all assays, with their associated HAdV species posterior
probabilities, are the training input to a data-driven, hierarchical classification model to
predict the species of an unknown sample. The classification model was optimized and
the performance assessed and validated using 10-fold cross-validation on a labeled dataset.
The validated model was applied to Adenovirus “Detected” results from RPP test data
in the Trends system to predict HAdV species prevalence in the United States from 2018
through 2021.

4.1. Estimating Assay Reactivity

For each RPP HAdV assay, forward and reverse primer sets were used as query inputs
for a BLASTn search against the nr/nt database [33]. The results from these queries were
filtered to HAdV hits. We identified a predicted 2249 amplicons in HAdV genomes, where
an amplicon is bounded by primers in the correct orientation and less than 1000 bp in
length. The amplicons are linked to their respective taxonomic lineage, including the HAdV
species. The set of HAdV species that have at least one predicted amplicon for an assay is
considered to be reactive for an RPP HAdV assay. Table 3 contains the predicted reactivity
of HAdV species for the five HAdV assays on the RPP.

The primer sequences for the RPP HAdV assays are not disclosed and the RPP HAdV
assay names have been obfuscated for the commercial interest of bioMérieux, Inc.
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Table 3. The predicted HAdV species reactivity of the five RPP HAdV assays.

RPP HAdV Assay HAdV Reactive Species

RPP HAdV-1 B, D, E
RPP HAdV-2 A, F
RPP HAdV-3 C
RPP HAdV-4 A, E, F
RPP HAdV-5 B, C, D, E

4.2. Predicting Distributions of Tm Values

For a single HAdV assay on the RPP, let Si represent one of the HAdV species (A–F).
For each species Si, there is a set of associated potential amplicon sequences denoted Ri(j)
for j = 1, 2, 3, . . . ni, with ni being the number of distinct amplicon sequences that are
associated with species Si and amplified by the HAdV assay. Note that if the species is not
expected to react with an assay, then ni = 0.

For each amplicon sequence Ri(j), the predicted Tm value, based on the base-pair
sequence of the amplicon, is denoted µTm,Ri(j). For simplicity, we use the model proposed
by Howley et al. for all Tm value predictions [9]. To account for system variability due to
slight changes in chemistry, instrument conditions, and sample makeup, the Tm value for
each Ri(j) is represented by a normally distributed random variable TRi(j):

TRi(j)
∼ N

(
µTm,Ri(j)

, σ2
sys

)
(1)

In Equation (1), the variance of TRi(j), σ2
sys, represents the measurement error of the

PCR system and is set to 0.5 ◦C standard deviations for all sequences in the application
based on empirical evidence [6]. The distribution of expected Tm values for all expected
reactive sequences of species Si can be represented as a weighted sum of all the individual
sequence distributions TRi(j):

TSi ∼
ni

∑
j=1

wj ∗ TRi(j)
(2)

where 0 ≤ wj ≤ 1 for all wj and ∑jwj = 1. For this application, the weights wj are naively set
to 1/ni for all j. For a given assay and species i, TSi is the random variable that describes
the possible Tm values based on the reactivity of that assay with the individual sequences
included from the species. The associated probability density function for TSi is fTSi.

4.3. Posterior Probabilities of a Genotype Group

To calculate the posterior probability of each species given a Tm value, x, we employ
Bayes’ Theorem for each Si:

P
(
x ∈ TSi

∣∣x) = P
(
x
∣∣x ∈ TSi

)
∗ P(Si)

P(x)
(3)

where P(x|x ∈ TSi) is the likelihood of the Tm value, x, given it is from species Si. For a
Tm value, x, the conditional probability that the Tm value is associated with species Si can
be written:

P
(
x
∣∣x ∈ TSi

)
=
∫ x+ε

x−ε
fTSi

(x)dx (4)

where ε is defined as the minimum resolution of the Tm detection algorithm, set to 0.01 ◦C
for the BioFire system. Note that to account for the possibility of a reactive sequence not
included in Ri, we incorporate a uniform distribution Sunknown~U(Tmlow, Tmhigh), where
Tmlow and Tmhigh are the lower and upper bounds of the melting curve analysis range
for all RPP HAdV assays, set to 75 ◦C and 95 ◦C, respectively. The final set of likelihood
probabilities, Sall, is the union of the conditional probabilities for an observed Tm and the
uniform distribution Sunknown.
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The prior, P(Si), is a discrete distribution indicating the relative prevalence of HAdV
species and for this application is set such that all species are equally likely. P(x) is the
marginal probability calculated using the Law of Total Probability.

As an illustration of the methods, Figure 2 shows the progression from the esti-
mated Tm values of expected reactive sequences (Figure 2A) to the likelihood distributions
(Figure 2B) and subsequent posterior probability distributions (Figure 2C) for the RPP
HAdV-5 assay. For a Tm value, each posterior probability describes the probability that the
sample is of a particular species. Note that for each Tm value in the melting curve analysis
range, the posterior probabilities for all species sum to one. Analogous figures for the other
four HAdV assays (RPP HAdV-1, RPP HAdV-2, RPP HAdV-3, and RPP HAdV-4) can be
found in Appendix A, Figures A1–A4.
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Figure 2. Predicted Tm values of reactive sequences, likelihood distributions, and resulting posterior
probability distributions for reactive species with the RPP HAdV-5 assay. This assay had predicted
reactivity with HAdV serotypes from the HAdV-B, HAdV-C, HAdV-D, and HAdV-E species. The
assay shows the most predicted reactivity in the range of 85–93 ◦C. (A) Predicted Tm values for each
expected reactive species. (B) Estimated likelihood distributions of Tm values. (C) Resulting posterior
probabilities across the temperature range. Species HAdV-B, HAdV-C, HAdV-D, and HAdV-E have
peak posterior probabilities at 85.8, 87.9, 92.1, and 90.5 ◦C, respectively.

4.4. Hierarchical Classification Model

The previous methods are applied to the five HAdV assays in the RPP independently
to compute the posterior probabilities for the entire melting curve analysis range. These
probabilities are combined into a data-driven hierarchical classification model to increase
accuracy in predicting the species for an Adenovirus “Detected” result. Labeled data were
generated by running isolates of known HAdV species using the RPP. A total of 347 RPP
tests with an Adenovirus “Detected” result were sourced from three internal BioFire studies
used to characterize RPP performance: the limit of detection study, the inclusivity study,
and the cross-reactivity study. The results of these studies contribute to the instructions for
use of the RPP [22]. The number of replicates, serotypes, and concentrations of the samples
for each study are summarized in Table 4. This set of varied serotypes for each species,
with multiple replicates of each isolate, provides a diverse training dataset for optimizing a
data-driven classification model.
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Table 4. A description of the labeled data included in the logistic regression classification model opti-
mization. These studies contain different isolates of each HAdV species tested at varying concentrations.

HAdV
Species

Limit of Detection Study Inclusivity Study Cross-Reactivity Study
Species Run

CountIsolate
Serotype Run Count Isolate

Serotype Run Count Isolate
Serotype Run Count

A A18 39
A12 3

A31 3 48A31 3

B B7a 40

B3 3
B3 3

83

B7d/d2 3
B7h 3

7a 3B11 4
B14 3

B14 3B16 3
B21 3

B21 3
B34 3
B35 3
B50 3

C C2 39
C1 3 C2 3

57C5 3 C5 3
C6 3 C6 3

D D37 40
D8 4

D8 3

60
D20 3

D20 3
D26 3
D37 4

E E4a 38 E4 3 E4 3 44

F F41 40
F40 6 F40 3 55
F41 3 F41 3

Total Run Count 347

For each sample in the labeled dataset, the posterior probabilities for each assay
were computed from the Tm value observed from each assay. Note that the Tm values
for all data in this application have been normalized against the internal controls of the
RPP [34]. The posterior probabilities are combined to create a feature matrix X, and the
known species from each isolate form a response vector y. X and y are used to optimize
a multiclass elastic-net regularized logistic regression model to predict HAdV species.
This model was optimized using an L1 ratio of 0.6 with balanced class weights, and all
other parameters set to the default values in the scikit-learn v1.0.1. package with Python
v3.8 [35]. The performance of the optimized classification model was assessed and validated
using 10-fold cross-validation and reported as the mean and standard deviation of the
accuracy across all folds. The mean of the precision, recall, and F1-scoring across the ten
cross-validation folds were also used to assess overall and class-wise performance [24].

In addition to the optimized logistic regression model, we developed another HAdV
species classification model as a sensitivity analysis to ensure that the data-driven model
provided increased performance over a naive approach. This model is referred to as the
assay design-informed classification model and sets predetermined weights for each of the
posterior probabilities based on a priori knowledge of assay reactivity. The weights for the
posterior probabilities are set equally across all species that an assay has expected reactivity
to, as shown in Table 1. For each sample, the prediction is determined by computing the
Argmax of the weighted sum of posterior probabilities [35]. Because this model was not
optimized using the labeled dataset, no cross-validation was performed.
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4.5. Application to Syndromic Trends

The optimized classification model was elected to be used for application to Trends due
to its increased performance over the assay design-informed classification model developed
for the sensitivity analysis. HAdV species prevalence was predicted from Adenovirus
“Detected” results from RPP test data in the Trends system in the United States from 2018
through 2021.

5. Conclusions

Using a priori information and in silico analysis, we developed a mathematical frame-
work for providing additional taxonomic resolution for pathogen targets of the highly
multiplexed BioFire system. This framework is flexible enough to provide increased geno-
typic classification for any PCR-based test with end-point melting analysis, so long as
the genotypic variability being classified results in predicted Tm value variability. We
applied this framework to the problem of predicting HAdV species from RPP Adenovirus
“Detected” results. The HAdV species classification accuracy is enhanced by combining
the results from multiple assays in a data-driven regularized logistic regression model.
The model exhibited high accuracy on the labeled dataset. As a result, the optimized
classification model was applied to unlabeled data from the Trends network. These re-
sults show a marked change in both the predicted prevalence for HAdV and the species
makeup with the onset of the COVID-19 pandemic. In particular, HAdV-B decreased from
a pre-pandemic predicted prevalence of approximately 30% to less than 5% in 2021, which
led to relative increases in predicted prevalence for HAdV-A and HAdV-F during that
same timeframe.

There are two areas where we would like to continue these efforts: the further char-
acterization and validation of the species classification model and integrating the model
into the Trends system for the real-time analysis of RPP HAdV-positive test results. During
development, we trained the model on 347 samples covering 26 unique HAdV serotypes.
Extending the dataset coverage to include more samples with varied serotypes from inde-
pendent sources would provide additional confidence to the model’s predictions. Further
development to integrate this model into the Trends system could augment CDC efforts to
surveil the circulation of HAdV species and facilitate outbreak detection in real-time.
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protect the patient’s privacy and comply with applicable privacy laws and regulations. For this work,
the data are aggregated in such a manner as to make it far less likely that any patient-run data can be
traced to a specific facility and/or individual. The aggregation method employed by BioFire also
serves the purpose of protecting the identity of the facility which, for competitive and privacy reasons,
may not want its use of the BioFire system to be made known publicly. If a dataset not included in
the provided repository is requested, BioFire will review such a request internally to ensure that any
disclosure does not conflict with BioFire’s obligations and restrictions set forth in the DUA.

Appendix A. Expected Assay Reactivity and Estimated Tm Distributions
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Figure A1. Predicted Tm values of reactive sequences, likelihood distributions, and resulting posterior
probability distributions for reactive species with the RPP HAdV-1 assay. This assay had predicted
reactivity with HAdV serotypes from the HAdV-B, HAdV-D, and HAdV-E species. The assay
shows the most predicted reactivity in the range of 78–86 ◦C. (A) Predicted Tm values for the
expected reactive species. (B) Estimated likelihood distributions of Tm values. (C) Resulting posterior
probabilities across the temperature range. Species HAdV-B, HAdV-D, and HAdV-E have peak
posterior probabilities at 78.9, 84.2, and 80.1 ◦C, respectively.
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rior probability distributions for reactive species with the RPP HAdV-3 assay. This assay predicted 
reactivity with HAdV serotypes from the HAdV-C species. RPP HAdV-3 shows the most predicted 
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Figure A2. Predicted Tm values of reactive sequences, likelihood distributions, and resulting posterior
probability distributions for reactive species with the RPP HAdV-2 assay. This assay had predicted
reactivity with HAdV serotypes from the HAdV-A and HAdV-F species. RPP HAdV-2 shows the
most predicted reactivity in the range of 86–88 ◦C. (A) Predicted Tm values for the expected reactive
species of the RPP HAdV-2 assay. (B) Estimated likelihood distributions of Tm values for each
expected reactive species. (C) Resulting posterior probabilities across the temperature range. Species
HAdV-A and HAdV-F have peak posterior probabilities at 87.3 and 88.4 ◦C, respectively.
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Figure A3. Predicted Tm values of reactive sequences, likelihood distributions, and resulting poste-
rior probability distributions for reactive species with the RPP HAdV-3 assay. This assay predicted
reactivity with HAdV serotypes from the HAdV-C species. RPP HAdV-3 shows the most pre-
dicted reactivity in the range of 88–90 ◦C. (A) Predicted Tm values for the expected reactive species.
(B) Estimated likelihood distributions of Tm values for the expected reactive species. (C) Resulting
posterior probabilities across the temperature range. Species HAdV-C has a peak posterior probability
at 89.0 ◦C.
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Figure A4. Predicted Tm values of reactive sequences, likelihood distributions, and resulting posterior
probability distributions for reactive species with the RPP HAdV-4 assay. This assay had predicted
reactivity with HAdV serotypes from the HAdV-A, HAdV-E, and HAdV-F species. RPP HAdV-4
shows the most predicted reactivity in the range of 84–86 ◦C. (A) Predicted Tm values for the expected
reactive species. (B) Estimated likelihood distributions of Tm values for each expected reactive species.
(C) Resulting posterior probabilities across the temperature range. Species HAdV-A, HAdV-E, and
HAdV-F have peak posterior probabilities at 84.9, 84.2, and 85.7 ◦C, respectively.
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Appendix B. Performance of Assay Design-Informed Classification Model

Table A1. Confusion matrix of the predicted HAdV species by the assay design-informed classifica-
tion model.

HAdV
Species

Predicted Label

A B C D E F

K
no

w
n

La
be

l
A 10 0 0 0 0 38

B 2 79 0 0 2 0

C 0 0 57 0 0 0

D 0 0 0 56 1 0

E 0 0 0 17 27 1

F 23 1 0 0 0 31

Table A2. Detailed performance characteristics for the assay design-informed classification model.

HAdV Species Precision Recall F1-Score Support

A 0.26 0.21 0.23 48
B 0.99 0.95 0.97 83
C 1.00 1.00 1.00 57
D 0.77 0.93 0.84 60
E 0.90 0.61 0.73 44
F 0.45 0.56 0.50 55

Macro average 0.73 0.71 0.71

Weighted average 0.75 0.75 0.75

Accuracy (±s.d.) 0.75 (±0.43)
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