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Abstract: The life cycles of retroviruses rely on the limited proteolysis catalyzed by the viral
protease. Numerous eukaryotic organisms also express endogenously such proteases, which originate
from retrotransposons or retroviruses, including DNA damage-inducible 1 and 2 (Ddi1 and Ddi2,
respectively) proteins. In this study, we performed a comparative analysis based on the structural
data currently available in Protein Data Bank (PDB) and Structural summaries of PDB entries
(PDBsum) databases, with a special emphasis on the regions involved in dimerization of retroviral
and retroviral-like Ddi proteases. In addition to Ddi1 and Ddi2, at least one member of all seven
genera of the Retroviridae family was included in this comparison. We found that the studied retroviral
and non-viral proteases show differences in the mode of dimerization and density of intermonomeric
contacts, and distribution of the structural characteristics is in agreement with their evolutionary
relationships. Multiple sequence and structure alignments revealed that the interactions between
the subunits depend mainly on the overall organization of the dimer interface. We think that better
understanding of the general and specific features of proteases may support the characterization of
retroviral-like proteases.

Keywords: retrovirus; retrovirus-like; protease; retroviral protease; dimerization; comparative
analysis; contact map; DNA damage-inducible protein; Ddi1; Ddi2

1. Introduction

Retroviral aspartic proteases, also referred to as retropepsins, belong to family A2 of
aspartic proteases. The most characteristic member of this family is the protease (PR) of human
immunodeficiency virus type 1 (HIV-1). The viral protease plays a significant role in the replication
cycles of retroviruses by processing the viral Gag and Gag-Pol polyproteins. This limited proteolysis is
an essential event of the viral life cycle; thus, the viral proteases have become important targets of
antiviral therapies.

Retropepsins share their main characteristics. First, they use the same catalytic mechanism,
and hydrolysis of the peptide bond is catalyzed by a dyad of highly conserved catalytic Asp residues
located in the consensus D-T/S-G-A active site motif. The structural similarities of retropepsins to
aspartic protease pepsin implied that they are evolutionarily related to each other. However, in contrast
to the bilobal monomeric pepsin, retroviral proteases function as homodimers, and the dimerization is
a prerequisite for their activity [1,2]. In addition to the active site motif, other structurally important
regions, which are involved in dimer formation, are also shared by the PRs as follows: (i) flap region,
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(ii) active site loop residues (‘fireman’s grip’ interactions), (iii) dimer interface platform at the bottom
of the homodimeric protease, and (iv) consensus α-helix near the C-terminus of the enzyme (Figure 1).
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Figure 1. Retroviral and DNA damage-inducible (Ddi) proteins share their main characteristics.
Overall structures of human immunodeficiency virus type 1 (HIV-1, PDBID: 5HVP) and human DNA
damage-inducible protein 1 ((Ddi1-Hs) (PDBID: 3S8I) proteases are shown. Arrows show important
regions, with the exception of the additional α-helical insert, these regions are known to contribute
to dimerization.

Numerous eukaryotic organisms have been found to express homologs of retrovirus and
retroelement PRs, which evolved from their ancestors and which were retained during their
evolution [3,4]. Despite the low sequence identity, retropepsins exhibit high structural similarity,
suggesting that the eukaryotic homologs may also share their overall fold and main features with
retropepsins. Substantial structural information is available for DNA damage-inducible protein 1 and
2 (Ddi1 and Ddi2, respectively), which are eukaryotic proteins containing a retroviral-like aspartic
protease domain [5–8].

Since the report of the first retroviral PR structures in 1989 [9], several protease structures have
been solved, and with the exception of the Epsilonretrovirus genus, the structure of at least one member
of other six retrovirus genera has already been determined (Table 1A). In the Protein Data Bank (PDB)
database, lentivirus PRs are overrepresented, and HIV-1 PR is the most extensively studied member of
the Retroviridae family [10] (Table 1A). Although numerous retroviral PRs have been characterized
in vitro to date, no experimental data are available for some PRs regarding their structure or activity,
e.g., bovine immunodeficiency virus (BIV), caprine arthritis encephalitis virus (CAEV), Maedi visna
virus, jaagsiekte sheep retrovirus (JSRV), or squirrel monkey retrovirus (SMRV) [11].

Compared with the available data for retroviral PRs, the structures of only few retroviral-like
aspartic PRs have been experimentally solved to date. The protease domain of Saccharomyces cerevisiae
Ddi1 protein (Ddi1-Sc) was the first retroviral-like PR for which its structure was determined by
X-ray crystallography [5], and the crystal structures of human Ddi1 (Ddi1-Hs), Leishmania major Ddi1
(Ddi1-Lm) and human Ddi2 proteases (Ddi2-Hs) were later reported (Table 1B).

Despite the low sequence identity between the target and template structures, retroviral and
retroviral-like PRs exhibit high structural similarity [5], which makes the homology modeling of
retroviral-like PRs possible. Before the deposition of the first Ddi1-Lm crystal structure to the PDB in
2017 [8], model structures were previously prepared for Ddi1-like PR of L. major [5,12,13], and the PRs
of Schistosoma mansoni and Hymenolepis microstoma [13].
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Table 1. Retroviral and retroviral-like PRs in Protein Data Bank. Coordinate files available in the
PDB are shown for retroviral (A) and Ddi1/Ddi2 retroviral-like PRs (B). Only some representative
PDB IDs are presented if >10 coordinate files are available. For HIV-1, only an approximate value is
shown, based on a refined search on text-(on ‘HIV-1 protease’) and structure title-search (on ‘HIV-1′

and ‘protease’). Database was accessed in October 2019.

(A)

Retrovirus Genus Representative Virus Name Number of IDs PDB ID Reference

Lentiviruses

Human Immunodeficiency
virus type 1 HIV-1 >600

5HVP [14]
1G6L [15]
3PHV [16]
1ZTZ [17]
4LL3 [18]
7HVP [19]
5YOK [20]
4Z4X [21]
1TW7 [22]

Human Immunodeficiency
virus type 2 HIV-2 19

1HII [23]
5UPJ, 6UPJ [24]

2HPE to be published
3EBZ [25]

Equine infectious anemia
virus

EIAV 2
1FMB [26]
2FMB [27]

Simian Immunodeficiency
virus

SIV 7

1SIV [28]
1TCW [29]

1YTI, 1YTJ, 1YTH, 1YTG [30]
1AZ5 [31]

Feline immunodeficiency
virus

FIV 10

4FIV [27]
1FIV [32]

2FIV, 3FIV [33]
5FIV, 6FIV, 1B11 [34]

2HAH [35]
3OGP, 3OGQ [36]

Spumaretroviruses Simian Foamy virus SFV 1 2JYS [37]

Alpharetroviruses
Avian myeloblastosis virus AMV 1 1MVP [38]

Rous Sarcoma Virus RSV 2
1BAI [39]
2RSP [40]

Deltaretroviruses
Human T-lymphotropic

virus type 1 HTLV-1 10
3LIY, 3LIX, 3LIV, 3LIQ, 3LIN, 3LIT [41]

3WSJ, 4YDF, 4YDG [42]
2B7F [43]

Epsilonretroviruses Walleye epidermal
hyperplasia virus type 1 WEHV-1 0 - -

Gammaretroviruses Xenotropic murine leukemia
virus-related virus

XMRV 5
4EXH [44]

3SLZ, 3SM1, 3SM2 [45]
3NR6 [46]

Betaretroviruses Mason–Pfizer monkey virus MPMV 5
6S1U, 6S1W, 6S1V [47]

3SQF [48]
1NSO [49]

(B)

Protein Organism Name IDs PDB ID Reference

Non-viral
(eukaryotic)

Saccharomyces cerevisiae Ddi1-Sc 2
2I1A [5]
4Z2Z [7]

Homo sapiens Ddi1-Hs 1 3S8I to be published
Ddi2-Hs 1 4RGH [6]

Leishmania major Ddi1-Lm 2 5YS4, 5YQ8 [8]

It is known that dimerization is an obligate requirement for retropepsin activity. Using substrate-
dependent methods, dimer stabilities can be investigated in vitro by determining the urea concentration
leading to a 50% loss in enzymatic activity (UC50), or the apparent dimer dissociation constant (Kdapp)
can be determined by measuring enzyme activity at increasing enzyme concentrations, the consequence
of less-efficient dimerization is a decreased activity at lower enzyme concentrations. Using kinetic
assays, dimer stabilities have already been determined only for some retroviral PRs (Table S1), including
wild-type and mutant HIV-1 PRs [44,50–53], HIV-2 PR [54], xenotropic murine leukemia virus-related
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virus PR (XMRV PR) [44], human foamy virus PR (HFV PR) [55], human T-lymphotropic virus type 1
PR (HTVL-1 PR) [56], avian myeloblastosis virus (AMV) and Mason–Pfizer monkey virus (MPMV)
PRs [53]. Substrate-independent methods are also available for the investigation of dimerization,
including thermal denaturation, analytical ultracentrifugation, or circular dichroism [53,57–59].

Functional studies have already revealed the importance of Ddi-like proteases. Studies on
wild-type and active site mutant Ddi1-Lm proteins revealed changes of the secretion phenotype, and
their sensitivity to HIV PR inhibitors also implied the existence of catalytic activity [60]. Studies
on Ddi1-Sc PR provided evidence for its proteolytic activity, which was found to be required for
sufficient checkpoint regulation [61] and to contribute to protein secretion [62], DNA replication stress
response [63], and DNA-protein crosslink repair [64]. In Caenorhabditis elegans, Ddi1 expression was
found to be induced by proteasome dysfunction; furthermore, results proved that the catalytic activity
of Ddi1 PR is necessary for protein activation [65], and involvement of PR activity in Nrf1 processing
was also demonstrated for human Ddi2 PR [66,67]. Protease domain of Ddi1-Hs protein was found
to undergo post-translational modification, ubiquitination sites were identified in the proximities of
the active site (K192) and the dimer interface (K382) [68], but effect of these modifications of protease
function has not been elucidated. Among the Ddi-like PRs, proteolytic activity of a recombinant protein
was proved in vitro only for Ddi1-Lm [12]. Despite using various methods (e.g., screening an HEK293
cell line-derived peptide library or cleavage reactions by oligopeptide or protein substrates), neither
the autoproteolytic activity (cis-activity) nor cleavage of any target protein (trans-activity) has been
observed for purified Ddi2-Hs [6] and Ddi1-Sc [5,7] proteases. These studies implied that putative
specific factors or determinants may be necessary for PR activation, which remained to be elucidated.

We propose that in addition to putative specific cellular factors, special structural features may
also be important determinants of dimerization. Because of missing experimental data, we investigated
dimerization purely based on the structural information currently available in the PDB and PDBsum
databases and compared the main characteristics of retroviral PRs and the eukaryotic homolog
Ddi1/Ddi2 PRs. To our knowledge, comparative analyses have been conducted only for retroviral
PRs [9,69–71] and Ddi1-like PRs [13], but retroviral and non-viral PRs have not been compared in such
analyses. While comparative analyses of retroviral PRs may support understanding of mutational
capacity of HIV-1 PR and resistance development [70], exploring general and specific features of
retroviral and retroviral-like PRs may support characterization of retroviral-like PRs with unknown
structures and the identification of efficient inhibitors e.g., against Ddi2-Hs PR [67]. Here we describe
a comparison of overall structural structures and contact maps, with a special emphasis on the regions
involved in dimerization and the correlation of the key features with the evolutionary relationships.

2. Results

2.1. Phylogenetic Analysis

Evolutionary relationships were investigated by multiple alignment of PR sequences and
structures. In the comparison, all seven genera of exogenous retroviruses were represented, and a
previously prepared set of retroviral PRs [70,72,73] was complemented with eukaryotic Ddi1 and
Ddi2 retroviral-like PRs with experimentally determined structures. The result of the sequence-based
analysis is shown later in the Discussion.

A structure-based comparison was also performed, at least one member of each retrovirus genus
was represented (Figure 2A). Coordinate files of most retroviral PRs and Ddi eukaryotic homologs
were downloaded from the PDB database, with the exception of epsilonretrovirus PRs (Table 1),
whose structures has not been determined experimentally to date. Therefore, a coordinate file for a
homodimeric Walleye epidermal hyperplasia virus type 1 (WEHV-1) PR was obtained by automated
homology modeling (Figure 2B), using the SWISS-MODEL web server, and the proposed structure
was used for multiple structure alignment. The structure-based phylogenetic tree was generated using
the mTM-align server based on pairwise template modeling scores [74].
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Figure 2. Structure-based phylogenetic analysis of proteases. (A) Phylogenetic tree was prepared
via the multiple alignment of PR structures (PDBIDs are shown) using the mTM-Align web server.
(B) Overall structures of representative PRs are shown, PDBIDs are also indicated. Homology model is
shown for Walleye epidermal hyperplasia virus type 1 (WEHV-1) PR, homodimeric equine infectious
anemia virus (EIAV) and simian foamy virus (SFV) PRs are shown by aligning the monomers to a
homodimeric HIV-2 PR structure (PDBID: 1HII). Other structures are represented based on their crystal
structures. Structures are colored according to their secondary structures: β-strand, yellow; α-helix,
red; 310-helix, green. Arrows indicate additional α-helical inserts. (C) Multiple structure alignment
of proteases is shown according to the results of analysis performed using mTM-Align web server.
Sequences of aligned structures are colored according to the arrangement of secondary structural
elements: β-strands, orange; α-helix, red; and 310-helix, green. Active site motif residues are shown
in bold. Secondary structural elements are shown according to the Dictionary of protein secondary
structure (DSSP) images of PDB, and based on homology model structure for WEHV-1 PR.
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The phylogenetic relationships revealed by the multiple structure alignment closely resembled
those obtained by the sequence-alignment, and they were in good agreement with those determined
using whole viral sequences [75]. Gamma- and epsilonretroviruses were found to be distantly
related to lentiviruses, alpha-, beta- and deltaretroviruses, whereas spumaretroviruses exhibited closer
relationships with the non-viral Ddi proteins (Figure 2A). The structural characteristics of proteases
showed no full correlation with the complexities of retroviral genomes because alpha-, beta-, gamma-
and epsilonretroviruses have simple genomes, whereas lentiviruses, delta- and spumaretroviruses
have complex genomes.

Based on the phylogenetic trees, we assumed that the structural characteristics correlate with the
evolutionary relationships of the proteases. Thus, the results of structure-based alignment (Figure 2C)
were used to explore general similarities and differences in detail by focusing mainly on the regions
that are important determinants of dimerization.

2.2. Dimer Interface Organization

First, we compared the overall organization of the dimer interface, which is a β-sheet platform at
the bottom of most PRs (Figure 1). Based on the known structures, three main types of dimer interfaces
can be differentiated, and we used the following classification of the dimer interfaces.

The type I dimer interface consists of alternating N- and C-terminal strands and corresponds to
the prototypic interface of lentivirus (e.g., HIV-1), betaretrovirus (e.g., MPMV-1), alpharetrovirus (e.g.,
AMV-1) and deltaretrovirus (e.g., HTLV-1) proteases (Figure 3).
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Figure 3. Classification of dimer interfaces. Dimer interfaces are represented according to selected
structures, PDBIDs are shown for each protease. Homology model is shown for WEHV-1 PR. Structure
of homodimeric SFV PR was proposed by aligning the monomers to a homodimeric HIV-2 PR structure
(PDBID: 1HII). Subunits are colored by green and cyan.

The type II interface contains exclusively C-terminal β-strands that are not interdigitated. Based on
the number of strands, this interface type can be subdivided into two subgroups. Four- and six-stranded
dimer interfaces can be differentiated, as described for XMRV and Ddi1 PRs, respectively (Figure 3).

Similarly to type II, the type III interface also exclusively consists of C-terminal regions but
exhibits remarkably different organization. Specifically, the regions forming the interface have a helical
arrangement instead (Figure 3). To date, the simian foamy virus (SFV) is the only retrovirus that was
experimentally proved to have a PR displaying this unusual mode of dimerization [76].

The orientation of the strands in the β-sheet platforms was previously found to depend on the
overall organization of the interface [5,46], and both the four- and six-stranded dimer interfaces showed
rotations of the strands around the dimer axis compared to those of HIV-1 PR (Figure 3). The rotation
of the strands relative to the enzyme’s core is different in Ddi1 compared with that in HIV-1 PR, but it
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is similar to the topology of the β-sheets (approximately 45◦ rotation) of non-viral aspartic protease
pepsin [2].

The gammaretrovirus XMRV PR is the only retroviral PR that was found to contain a four-stranded
dimer interface [46], whereas crystal or solution structures have not revealed such an interface in other
retroviral PRs to date. We have prepared a homology model for the WEHV-1 PR, and the results of
both the secondary structure prediction and template search suggested highest similarity to XMRV
PR, and the same dimer interface organization. Thus, we propose that WEHV-1 PR (and WDSV PR,
as well) shares the same four-stranded dimer interface organization as XMRV PR (Figure 3).

Of the studied proteases, only Ddi PRs were found to have six-stranded dimer interfaces (Figure 3),
and based on the currently available structural data this dimer interface organization is not characteristic
of retroviral PRs. Analysis of additional enzymes may reveal whether this dimer interface organization
is a specific feature of eukaryotic retroviral-like PRs.

Structural and biochemical studies also suggested that SFV PR has a specific mode of dimerization
that is significantly different from that of other retroviral and retroviral-like PRs [76]. Similarly to
epsilonretrovirus, gammaretrovirus and Ddi1/Ddi2 PRs, the N-terminal region of SFV PR is not
involved in dimer formation because the presence of N- and C-terminal proline residues makes the
formation of dimer interface strands unfavorable [37,76]. In the solution structure of SFV PR, a short
α-helix is present instead of a C-terminal β-strand [37], and it does not overlap with the consensus helix
of HIV-1 PR. The helix in SFV PR near the C-terminus is in the same position at which a β-strand of the
dimer interface is found in the HIV-1 PR structure (Figure 2C). In agreement with this, our secondary
structure predictions also implied that foamy virus PRs may have unusual dimer interface (Figure S1).
None of the applied algorithms predicted the presence of N- or C-terminal terminal β-strands that
correspond to the strands of type I or type II dimer interfaces. Interestingly, the helical arrangements
of the C-terminal regions were predicted, but this extension is not visible in the solution structure of
SFV PR (Figure 3).

A putative homodimer is represented for SFV PR in Figure 2B. Similarly to a previously proposed
dimer [76], this model should only be considered hypothetical because the full-length interface is not
visible in the solution structure, and the conformations of the longer helical extensions are hardly
predictable without proper template structures. Interestingly, the involvement of C-terminal regions in
dimer formation also appears to be unique. In vitro activity assays revealed that both the full-length
(1–143) and C-terminally truncated (1–101) forms of the protease possess enzyme activity [37,76].
Based on this finding, the elongated C-terminal regions contribute to dimer stabilization. However,
they can provide lower dimer stability as compared to HIV-1 PR (Table S1), are not prerequisites for
enzyme activity.

Altogether, these results prove the existence of a type III dimer interface that provides dimerization
without N- or C-terminal β-strands. This type of interface platform is significantly different from that
of retroviral and Ddi1/Ddi2 PRs, and to date appears to be a unique feature of foamy virus PRs.

2.3. Intermonomeric Interactions

Contact maps of homodimeric PRs were obtained from the PDBsum database, and the areas of
intersubunit interfaces (Å) and the total numbers of interface residues, H-bonds and non-bonded
contacts were compared (Figure 4). The investigated parameters were found to vary among the
different PRs, exhibiting correlations with the phylogenetic relationships. It is important to note that
the numbers of currently available structural data are different, and for some proteases, only few
structures are available (e.g., AMV, Rous sarcoma virus (RSV), and equine infectious anemia virus
(EIAV) PRs); therefore, differences of sample numbers were considered while choosing algorithm for
statistical analysis. The coordinate files used for the analysis are listed in Table S2.
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Figure 4. Comparison of overall contact maps. Boxplots represent the means of the total interface area
(A), number of interface residues (B), number of H-bonds (C) and number of non-bonded contacts
(D). Data were plotted by using PAST v3.26 software. Error bars represent SD. Statistical analysis was
performed using ANOVA (Mann–Whitney pairwise) algorithm, raw p values are shown in Table S3.

The contact densities of XMRV and Ddi PRs were found to be similar but lower than those
of the other studied PRs. The difference was statistically significant in almost all cases (Table S3).
Although, a larger interface area and higher interface residue number were determined for XMRV
PR, the numbers of H-bonds and non-bonded contacts were more comparable with those of Ddi
proteins. The contribution of the β-sheet platform to dimer formation is not exclusive, but it provides
the main part of the intersubunit interactions. The observed differences of contact densities exhibited
obvious correlations with the organization of the dimer interface. Specifically, the contact numbers
were significantly lower in XMRV and Ddi PRs possessing four- and six-stranded type II interfaces,
respectively, than in other studied PRs containing type I interface (Figure 4). Data for homodimeric
foamy virus PRs are not available currently in PDBsum database, thus, spumaretrovirus PRs were not
included in the comparison.

The values determined for HIV-1, HIV-2, SIV, and FIV PRs were highly similar, indicating that
lentivirus PRs share comparable intermonomeric contacts (Figure 4). Within the Lentivirus genus we
observed statistically significant differences only in some cases (mainly for the number of non-bonded
contacts), but the overall contact densities resembled each other (Table S3).

Values determined for HTLV-1 PR were also similar to those of lentivirus PRs, but a larger interface
area and smaller density of non-bonded interactions were observed compared to HIV-1 PR (Figure 4),
while the numbers of interacting residues and H-bonds were not significantly different (Table S3).
We observed that XMRV PR has significantly lower contact density than HTLV-1 PR, which implied
higher in vitro dimer stability for HTLV-1 PR. Despite this, the relatively higher Kdapp indicated that
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HTLV-1 PR has lower dimer stability than XMRV PR (Table S1). Therefore, the overall contact densities
may not be obviously in agreement with the in vitro dimer dissociation constants, but the available
information is limited.

Interestingly, alpharetrovirus PRs were found to have significantly higher number of intermonomeric
H-bonds than other proteases, whereas other studied parameters were more comparable (Figure 4).
The structure alignment illustrated that AMV and RSV PRs are longer than HIV-1 PR because of a
two-residue-long C-terminal extension (N123 and L124 in each structure). Additionally, they contain
a short insertion between the β-strands corresponding the sixth and seventh strands of HIV-1 PR,
and consequently, the loop connecting the β-strands is closer to the dimer interface, permitting
intersubunit interactions at this site. These interactions are missing from the bottom of HIV-1 PR
(Figure S2) and are responsible in part for the higher number of H-bonds in AMV and RSV PRs.

In addition to the overall differences and similarities of intermonomeric contacts, we analyzed the
regions that are known to contribute to dimer formation in detail, and investigated differences in (i)
‘fireman’s grip’, (ii) the salt bridges formed near that catalytic site, (iii) the consensus α-helix and iv)
the flaps.

2.4. ‘Fireman’s Grip’

It is known that the Thr/Ser residues present in the conserved D-T/S-G-A active site motif of
retroviral PRs are essential for dimer formation and stabilization via intermonomeric interactions
referred to as ‘fireman’s grip’ [57]. The ‘fireman’s grip’ interactions provided by the hydroxyl group of
Thr can be substituted by that of Ser, but higher Kdapp values were determined for HIV-1 and AMV
PRs containing Ser in this position, proving the contribution of the Thr side chain to dimer formation
and stabilization [53,57,77].

We compared the active site motif sequences to investigate the conservation of Thr or Ser residues
in retroviral PRs and in non-viral Ddi proteins.

We found that Thr is highly conserved in the active site motifs of lentiviruses, beta-, delta-,
epsilon- and gammaretrovirus PRs, whereas the residue may be either Thr or Ser in alpharetrovirus,
spumaretrovirus, and Ddi PRs (Figure 5A). It was hypothesized that enzymes having looser ‘fireman’s
grip’ interactions exhibit lower dimer stability and activity [77].

We found that the third residue of the D-T/S-G-A active site motif is highly conserved in both
retroviral and retroviral-like PRs (Figure 5A). This glycine is replaced by glutamine in this position
exclusively in FFV PR among the studied proteases (Figure S1). The Ddi1-like proteins of platyhelminth
parasites were found previously to contain Ser in the active site motif [13], but among the studied Ddi
PRs, Thr was found to be present only in Ddi1-Sc PR.

2.5. Active Site Motif

In HIV-1 PR and in most retroviral PRs, the consensus D-T/S-G-A active site motif is followed
by an Asp residue, which is known to be involved in dimer formation. In HIV-1 PR, a salt bridge is
formed between this Asp and an Arg residue at the N-terminus of the other subunit (D29 and R8′

residues, according to the HIV-1 PR numbering) (Figure 5A). Mutagenesis of this Arg residue revealed
that substitution by Gln causes only a slight decrease in activity compared with that of wild-type HIV-1
PR, indicating that the ion pair contributes to but is not essentially required for dimer formation [78].

The sequence logos of the active site motif were compared, and we found that the PRs of
lentiviruses, alpha-, beta- and deltaretroviruses, which are closely related to each other (Figure 2),
exhibit high conservation of the Asp residue forming the salt bridge (Figure 5A), with the exception
of BLV PR, which contains Glu in this position. Based on the contact maps, the Asp residue in these
enzymes can form a salt bridge with an Arg residue of the other subunit. Interestingly, MPMV PR
contains a Lys instead of Arg in its N-terminal region (R8 in HIV-1 PR) (Figure 2), but an ion pair can
also be formed between this Lys and the Asp residues in the active site (Figure 5A).
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Figure 5. Intermonomeric interactions at the active site and consensus helix. (A) Sequence logos of
active site motifs are shown. The formation of a salt bridge between the active site motif (Glu residue)
and an N-terminal residue of the other subunit is denoted by ‘+’, whereas the absence of a salt bridge
in the corresponding position is denoted by ‘-‘, as represented by structures of HIV-1 and XMRV PRs.
(B) Sequence logos of consensus α-helices are shown. The involvement of consensus helix residues
in H-bond formation is denoted by ‘+’ or ‘-‘. In the consensus helix, positively charged Arg and Lys
residues can form H-bonds (red dotted lines) with the N-terminus of the other subunit, as shown for
HIV-1 and Ddi2-Hs PRs, respectively. Sequence logos were prepared based on the sequences used for
phylogenetic analysis. Residue interactions were determined on the basis of contact maps (PDBsum
database) of the structures used for multiple structure alignment (Figure 2A).

In contrast with this, epsilon-, gamma- and spumaretrovirus, and Ddi PRs contain different
residues in this position, namely Cys or Gln in epsilonretrovirus and Ddi2 PRs, respectively. Glu, Gln,
and Thr are the most prevalent residues in gamma- and spumaretrovirus PRs, whereas Asp is present
only in FFV PR in this position (Figure S1). XMRV and Ddi PRs contain Gln or Glu in this position,
and the contact maps revealed no formation of salt bridges in their crystal structures (Figure 5A).
In accordance with the literature data [46], mainly hydrophobic contacts are formed between the
subunits, which replace the ionic interactions. Based on PDBsum data, H-bonds are not formed by the
fifth residue of the active site in these PRs, but non-bonded interactions are formed instead.

Epsilonretrovirus proteases exclusively contain Cys in this position; thus, it can be expected that a
salt bridge is not formed by this motif residue. All foamy PRs contain Thr after the consensus active
site motif instead of Asp (Figure 5A); thus, based on sequences they also lack the intermonomeric ion
pair. These data are in agreement with the higher dimer stability of HIV-1 PR compared with that of
XMRV PR (Table S1) because of the contribution of salt bridges to dimer stabilization.
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2.6. Consensus α-Helix

The structures of homodimeric retroviral and retroviral-like aspartic PRs share the same protease
fold. Each subunit consists of mainly β-strands, but the presence of a consensus short α-helix near
the C-terminus is also a common feature that encompasses one of the most conserved sequence
motifs of these enzymes. This α-helix contains G-R-N motif in HIV-1, HIV-2, and SIV PRs, whereas
G-R-D motif is present in other lentivirus PRs and in all other retroviral genera members, excepting
spumaretroviruses (Figure 5B).

In HIV-1 PR, the side chain atoms of R87 residue have H-bond interactions with the main chain
atoms of L5′ and W6′ residues [79]. The significance of these interactions was investigated previously
via mutagenesis studies. The G86 residue was found to participate in the coordination of active site
loop’s conformation, which is necessary for efficient substrate binding and proteolysis. In contrast
with this, the neighboring R87, which makes intersubunit contacts, was found to contribute to dimer
stabilization, as the R87K mutant protein had impaired ability for dimerization, and it was mainly
monomeric in solution [79–81].

These interactions of the side chain of Arg with the main chain atoms of one or two residues of
the other subunit’s N-terminus can be observed in the structures of HIV-1, HIV-2, EIAV, SIV, FIV, AMV,
RSV, and HTLV-1 PRs. The side chain of R95 in the G-R-N/D motifs of XMRV PR structures do not
interact with the P14′ residues. Structure of WEHV-1 PR was built up based on that of XMRV PR;
therefore, the model also revealed no R95 side chain-mediated interaction with the other subunit.

It appears that pattern of interactions between the consensus C-terminal helix and N-terminal
residues is different in the case of PRs with type I (e.g., HIV-1 and HTLV-1 PRs) or type II (e.g., Ddi1 PRs)
dimer interfaces. Ddi PRs contain a G-L-D-M-L-K/R sequence in the consensus helix, which lacks the
Arg residue of the G-R-D conserved motif but contains a downstream positively charged residue (Lys
or Arg) that is exposed to the intersubunit surface, such as R87 of HIV-1 PR). This residue can also
form H-bonds with the N-terminus of the other subunit (Figure 5B).

The C-terminal α-helix of SFV PR does not overlap with that of HIV-1 PR, as it is located closer to
the C-terminus almost where a β-strand is found in the HIV-1 PR structure (Figure 2C). Additionally,
the sequence motif of the consensus α-helix is completely different from those of retroviral and Ddi PRs,
and no G-R-N/D motif is present in SFV PR. The difference in the sequence, especially the Arg-to-Pro
substitution, makes the formation of the helix in the same position unfavorable [37]. This also
proves that foamy virus PRs possessing type III interface exhibit significantly different distribution
of intermonomeric interactions, which remain to be explored in detail by studies of homodimeric
spumaretrovirus PRs.

2.7. Flaps

In retroviral PRs, the flaps have mainly β-hairpin conformation. Due to their flexibility they can
adopt opened, semi-opened and closed conformations, which conformational changes contribute to
substrate binding and product release, as well (Figure S3). Whereas the opened conformation permits
ligand binding, in the closed conformation the flaps cover the active site, and in the ligand-bound state
they wrap around the substrate (or inhibitor) [82].

In Ddi PRs, these regions—corresponding to the flaps of HIV-1 PR—adopt less-ordered
conformational loops and exhibit higher flexibility; consequently, only one or none of the loops
is visible in the known structures [5–8]. Contact maps proved that both the residue number and area of
the interface are higher in the closed conformation. The number of H-bonds was almost identical in the
different conformations and the number of non-bonded interactions was slightly lower in the opened
conformation in the investigated HIV-1 PR structures (Figure 6A), due to the missing flap-interactions.
XMRV PR structures either containing or lacking full-length flaps were also compared, and we found
to have remarkably larger interface area and higher contact density if the full-length flaps were present
in the structure (Figure 6B), which further proved the role of flaps in the intermonomeric interactions.
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Figure 6. Comparison of contact maps. (A) Contact maps of HIV-1 PR structures. Structures and
contact numbers are shown for HIV-1 PR in the closed and opened conformations (orange and red,
respectively). (B) Contact maps of XMRV PR structures. Structures and contact numbers are shown for
XMRV PR structures either containing or lacking full-length flaps (light and dark blue, respectively).
(C) Contact maps of HIV-1 and XMRV PR structures. Structures and contact numbers are shown for
the opened conformational HIV-1 PR (orange) and for an XMRV PR lacking full-length flaps in the
crystal structure (blue). (D) Contact maps of Ddi and XMRV PR structures. Structures and contact
numbers are shown for Ddi PRs (green) and for XMRV PR lacking full-length flaps in the crystal
structure (blue). In all cases, the structures are represented based on crystal structures. Graphs shows
intermonomeric contacts for the homodimers based on the PDBsum database. Fold differences between
the values are shown. In figure part (A), ** indicates that p < 0.01, while ns denotes no statistically
significant difference. For figure part (B–D), where a single XMRV PR structure (3NR6) was used for
the comparison, statistical analysis was not performed because the sample number was only 1.
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In order to investigate whether HIV-1 PR has higher contact density than XMRV PR, we compared
the structures of HIV-1 and XMRV PRs in the opened conformation. We found that all studied values
were ≥1.5-fold higher for HIV-1 PR, indicating higher contact density (Figure 6C). Although full-length
flaps are lacking in the studied XMRV PR structure and they do not contribute to intermonomeric
interactions in HIV-1 PR, the observed differences are caused by the characteristics of other regions,
mainly by the dimer interface organizations.

In contrast with retroviral PRs, the flaps of Ddi proteins do not contribute to dimerization.
These dimers are instead stabilized mainly by intermonomeric interactions in the dimer interface
platform [6]. To test this, we compared the contact densities of Ddi proteins with that of XMRV PR
lacking full-length flaps. We expected similar contact numbers for the different PRs, because they
all have the type II dimer interface and no contacts between the flaps, and the overall interactions
were also comparable (Figure 4). Interestingly, we found higher contact densities for Ddi PRs than for
XMRV PR (Figure 6D).

Although other regions may also be responsible for the observed differences, we studied whether
N-terminal regions could contribute to intermonomeric interactions. Therefore, we compared whether
N-terminal regions have different conformations in Ddi and XMRV PRs (Figure 7). In the crystal
structures of XMRV PR, the N-terminus is curved in the direction of the flap elbow, but the N-terminal
regions in Ddi proteins exhibit extended conformations, being oriented towards the other subunit.
Based on the PDBsum data, the N-terminal residues of Ddi proteins also form both H-bonds and
non-bonded interactions with the other subunit. In XMRV PR structures, no H-bonds are formed,
and the number of non-bonded interactions is lower. Importantly, the involvement of these termini in
the dimerization was interpreted in the context of the available crystal structures, but they may have
different conformational states in solution based on small-angle X-ray scattering (SAXS) analysis [7].
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shown based on crystal structures. The side and top views are presented. Ddi and XMRV PR structures
are indicated in green and blue, respectively, whereas N-termini are colored by magenta in all structures.

The interaction of the N-terminus with the other subunit may be relevant in PRs having type II
or type III interface because the N-terminal regions are not involved in the formation of the β-sheet
platform. Consequently, they may have higher flexibility, and they can possibly form intermonomeric
interactions. It is known that N-terminal extensions have unfavorable effects on the activity of HIV-1
PR with a type I dimer interface [83], but the effects of N-terminal regions on the activities of epsilon-,
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gamma-, and spumaretrovirus and non-viral PRs with type II interface have not been investigated to
date. Additionally, autoproteolysis of Ddi proteins has not been reported, and it is possible that the
N-terminal regions remain attached, contain no autoproteolytic site, and form a connection between
the protease domain and the preceding HDD domain, as observed in the structures of Ddi2-Hs [6] and
Ddi1-Sc [7] PRs. Consequently, the possible conformational states of the N-terminal extensions need to
be elucidated in future studies to better understand their putative involvement in dimerization.

2.8. Additional α-Helical Insert

The presence of an additional α-helical insert was first observed in the crystal structure of EIAV
PR [26]. This region, which adopts an α-helical conformation, is located in the flap elbow, near the
conserved active site motif (Figure 1). The structural role of this additional helix has been revealed
by molecular dynamics simulations suggesting its determinant role in the flexibility of the flaps [8].
Despite the relatively higher rigidity of flap movement, the tips of the flaps have high flexibility in Ddi
PRs, and thus, they are not defined fully in most structures by electron density maps.

This additional α-helical region exhibits similarity to the vertebrate counterpart pepsin [26], and it
is not characteristic of most retroviral PRs. Therefore, we investigated whether the helicity of this region
exhibit characteristic distribution. Although MPMV, HTLV-1, FIV and SFV PRs contain a 310-helix in
the corresponding position, this region adopts an α-helical conformation only in EIAV PR among the
retroviral PRs, and is present in the structure of Ddi PRs, as well (Figure 2C).

Based on the currently available structural information, the α-helical insert in the flap elbow is
present in all known Ddi PR structures. Whereas EIAV PR is the only retroviral protease that contains
this additional α-helix, it appears that the presence of this helix is not uniquely characteristic for
Ddi PRs.

3. Discussion

Structural studies of retroviral PRs have been reviewed previously [9,69,71], and comparative
structural analyses of retroviral [70,72,73] and Ddi1-like PRs [13] were also conducted. However, to our
knowledge a detailed comparative analysis of retroviral and non-viral PRs has not been reported
previously. Therefore, in this work we studied general and specific structural features of retroviral and
retroviral-like Ddi1 and Ddi2 PRs, based on structural data currently available in PDB and PDBsum
databases with a special emphasis on the regions involved in dimer formation.

In this study, all seven genera of the Retroviridae family were represented at least by one member,
and eukaryotic Ddi retroviral-like PRs with experimentally determined structures were also included.
For retroviral PRs, preparation of a homology model was necessary only in the case of WEHV-1 PR,
as the structural coordinates were available for others.

Similarly to the specificity patterns of retroviral PRs [70,72,73], we found that overall structural
features also exhibit characteristics distribution in accordance with the evolutionary relationships.
The results of multiple sequence and structure alignments were in good agreement with each other
and reflected the previously established evolutionary relationships of retroviruses [75].

We classified the dimer interface platforms into three main groups, based on their overall
organization. Types I and II dimer interfaces are built up by N- and/or C-terminal β-strands, whereas
type III interface exhibits a completely different structure and helical arrangement of interface-forming
termini. We found that the overall organization of the dimer interface varies among retroviral PRs
(Figure 8). The type I interface is characteristic of lentiviruses, alpha-, beta- and deltaretrovirus PRs,
whereas the type II/A interface is characteristic of epsilon- and gammaretrovirus PRs. Based on the
currently available structures, the six-stranded β-sheet platform (type II/B) is characteristic only for
non-viral Ddi proteins, and the type III helical interface is a unique feature of spumaretrovirus PRs.
We assumed that other eukaryotic retroviral-like aspartic proteases have the type II/B dimer interface,
but this must be elucidated via extensive homology modeling of non-viral PRs, which was beyond the
scope of this study.
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positions, they contain no charged residue pairs (Figure 8). The formation of salt bridges implies 
stronger intermonomeric contacts, but contradictorily, relatively lower dimer stability was measured 
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Figure 8. Correlation of structural characteristics with evolutionary relationships. The phylogenetic
tree was obtained via multiple alignment of the protease sequences. The names of retroviruses are
defined in the list of abbreviations. The features that were characteristic of the different groups are
shown horizontally (separated by dashed lines). For dimer interfaces, N- and C-terminal β-strands
are indicated in red and blue, respectively. Sequence logos were prepared on the basis of protease
sequences of the different groups. The possible occurrence of a salt bridge formed by the fifth residue
of active site motif is also shown. The presence of additional α-helical inserts is shown, the 310-helices
are not presented in the figure. For comparisons of contact maps, the values are shown based on
the PDBsum database for (i) lentivirus, alpha-, beta- and deltaretrovirus PRs, (ii) XMRV PR, and (iii)
Ddi proteases. *** denotes statistically significant difference (p < 0.001) as compared to the group of
lentivirus, alpha-, beta- and deltaretrovirus PRs, determined by using PAST v3.26 software.

Based on literature data, the dimer interface organization may be one of the key determinants of
dimer stability. It was reported previously that the interdigitation of N- and C-terminal strands (as
observed in HIV-1 PR with the type I interface) may provide a much higher number of intermonomeric
contacts than observed in PRs with the type II dimer interface, in which the C-terminal strands exhibit
no alternation (e.g., XMRV PR) [46]. In agreement with this hypothesis, relatively lower UC50 and
higher Kdapp have been reported previously for XMRV PR, implying its lower dimer stability compared
with that of HIV-1 PR (Table S1). Our comparison of contact densities revealed a good correlation with
this observation because XMRV PR had a significantly smaller interface area and lower number of
contacts than other retroviral PRs (excluding spumaretrovirus PRs, which were not included in this
comparison). The contact densities of Ddi PRs were highly similar to that of XMRV PR (Figure 8),
suggesting relatively lower dimer stability for these non-viral proteins.

Comparison of active site motifs revealed the conservation of Thr in the ‘fireman’s grip’ of
retroviral PRs, excluding foamy virus PRs which contain Ser in this position. Ddi PRs were also found
to contain mainly Ser in this position. Given that the fact that the Ser residue in the D-T/S-G-A active
site motif can provide looser ‘fireman’s grip’ interactions than Thr [53,57,77], we assumed that Ddi PRs
containing D-S-G-A active site motifs may possess lower dimer stability. Nonetheless, other regions
also contribute to dimer stabilization; thus, the determinant role of the side chain of Ser or Thr in dimer
stabilization is not exclusive.
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We found that the PRs with the type I dimer interface, i.e., in lentiviruses, alpha-, beta- and
deltaretroviruses, the active site loop contains a highly conserved aspartate residue next to the
D-T/S-G-A motif, the residue of which can form a salt bridge with the other subunit. Interestingly,
this salt bridge was not observed in PRs possessing type II or III dimer interfaces, whereas in the
equivalent positions, they contain no charged residue pairs (Figure 8). The formation of salt bridges
implies stronger intermonomeric contacts, but contradictorily, relatively lower dimer stability was
measured for HTLV-1 PR (Table S1).

The distribution of the G-R-D consensus helix motif was found to resemble that of the Thr
‘fireman’s grip’ residue. We found that the Arg residue providing an important H-bond with the
other subunit [79–81] is conserved in the G-R-D consensus helix motifs of all retroviral PRs, excepting
spumaretrovirus PRs (Figure 8). This important H-bond is missing in Ddi PRs because they exclusively
contain Leu instead of Arg. Interestingly, Ddi PRs contain Arg or Lys residues in their consensus helix,
but not in the equivalent position of the helix but close to its C-terminus. These positively charged
residues can also form H-bond interactions with the other subunit. The interactions of the consensus
helix are also special in foamy virus PRs, because it does not cover the helices of other PRs in its spatial
position, and it contains Pro at the position of Arg in the G-R-D motif, denoting an entirely different
sequence motif.

The helical arrangement of the region in the proximity of the active site was also studied; however,
it does not contribute to dimer formation. We found that the presence of the helix is not a common
feature of retroviral PRs. It adopts an α-helical conformation only in EIAV PR, whereas it forms a
310-helix in MPMV, HTLV-1, FIV and SFV PRs. The Ddi PRs of all studied species were found to
contain the additional α-helix, but it needs to elucidated in future structural studies whether other
eukaryotic retroviral-like PRs share this feature.

Possibly, the presence of the additional α-helical insert may be related to the substantially different
substrate binding mode considered characteristic of Ddi PRs. The conformations of flaps are different in
Ddi PRs, and they do not resemble those of HIV-1 PR. In the known structures, the flaps make the active
site accessible to the solvent. The relatively wider substrate cavity is supposed to be responsible for
recognising secondary or tertiary structure—it permits the binding of smaller globular proteins [5,6,8].
Despite the special flap arrangement and larger substrate cavity compared with those in HIV-1 and
other retroviral PRs, Ddi1-Lm PR exhibited substrate binding and catalytic activity [12]. A polypeptide
substrate has been modelled to the substrate binding cavity of the homodimeric Ddi1-Sc PR, and the
structure of the proposed complex indicated that the enzyme can bind a polypeptide, despite the lower
number of closer enzyme-substrate contacts [5]. The mode of the putative substrate engagement was
revealed by the crystal structure of Ddi1-Sc PR, and because of a crystallization artefact, the N-terminal
region of the protein was found to act as pseudo-substrate. Therefore, the flaps did not exhibit a
closed conformation, and in this binding mode, the pseudo-substrate was exposed to the solvent [7].
Whereas, the flap elbow of HIV-1 PR provides an opening of the flaps, the additional α-helix affects
flap movement in Ddi1-Lm PR [8], and it may be a structural determinant of substrate engagement.

In conclusion, our results suggest that the organization of dimer interface is a main determinant
of the intermonomeric interactions, and the distribution of characteristics of the regions involved
in dimer formation is in accordance with the evolutionary relationships, not only among retroviral
proteases but also relative to retroviral-like Ddi proteases. The homodimerization of Ddi1 and Ddi2
proteases have already been proved either by X-ray crystallography or SAXS [5–8,84], but characteristics
of dimerization, especially in vitro dimer stabilities (e.g., UC50 and Kdapp values) are available in
the literature only for some PRs having type I or type II/A interface, but not for enzymes having
type II/B interface organization. Our results imply that non-viral retroviral-like PRs potentially
have relatively lower dimer stability compared to retroviral counterparts. We assume that getting
better insight into the structural requirements for the dimer formation through the protease domain
may help understanding the roles of Ddi-like proteins in proteasomal shuttles and ubiquitination
pathways [6,7,63,64,67,68,84,85], even in physiological or pathological conditions. Furthermore, future
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studies are needed to prove our findings by determining the in vitro dimer stabilities, and correlating
the features described in our study with those of additional eukaryotic retroviral-like or endogenous
retrovirus PRs.

4. Materials and Methods

4.1. Data

Protease sequences were obtained from previous comparative analyses [72,73] and from the UniProt
knowledgebase (https://www.uniprot.org) [86]. The identifiers of the studied proteases are listed in
Table S4. Coordinate files were downloaded from the Protein Data Bank (http://www.rcsb.org) [87].
Contact maps were downloaded from the PDBsum database (http://www.ebi.ac.uk/pdbsum) [88].
The protease structures used for comparison are listed in Table S2.

4.2. Analysis

Multiple sequence alignment was performed using Clustal X v1.83 [89]. Phylogenetic tree
was built using the Interactive Tree Of Life web server (iTOL, https://itol.embl.de) [90]. Sequence
logos were prepared by WebLogo 3 web server (http://weblogo.threeplusone.com/create.cgi) [91].
Secondary structure predictions were performed using GORIV (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_
automat.pl?page=npsa_gor4.html) [92] and JPred4 (http://www.compbio.dundee.ac.uk/jpred) [93]
servers. The SWISS-MODEL server (https://swissmodel.expasy.org) was used for homology modeling
of WEHV-1 PR [94], using the crystal structure of XMRV PR as template (PDBID: 3SM1). Multiple
protein structure alignment was performed by using mTM-align web server (http://yanglab.nankai.edu.
cn/mTM-align) [74]. Structural figures were prepared using the PyMOL Molecular Graphics System
(Version 1.3, Schrödinger, LLC, Portland, OR, USA). Statistical analysis was performed by the PAST
v3.26 software, using Mann–Whitney pairwise algorithm (several-sample tests) [95].
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AMV Avian myeloblastosis virus
BAEV Baboon endogenous virus
BFV Bovine foamy virus
BIV Bovine immunodeficiency virus
BLV Bovine leukemia virus
CAEV Caprine arthritis encephalitis virus
Ddi1-Lm DNA damage-inducible protein 1 (Leishmania major)
Ddi1-Sc DNA damage-inducible protein 1 (Saccharomyces cerevisiae)
Ddi1-Hs DNA damage-inducible protein 1 (Homo sapiens)
Ddi2-Hs DNA damage-inducible protein 2 (Homo sapiens)
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EFV Equine foamy virus
EIAV Equine infectious anemia virus
FELV Feline leukemia virus
FFV Feline foamy virus
FIV Feline immunodeficiency virus
GALV Gibbon ape leukemia virus
HFV Human foamy virus
HIV-1 Human immunodeficiency virus type 1
HIV-2 Human immunodeficiency virus type 2
HTLV-1 Human T-lymphotropic virus type 1
HTLV-2 Human T-lymphotropic virus type 2
HTLV-3 Human T-lymphotropic virus type 3
JSRV Jaagsiekte sheep retrovirus
MMLV Moloney murine leukemia virus
MMTV Mouse mammary tumor virus
MPMV Mason–Pfizer monkey virus
MSRV Multiple sclerosis-associated retrovirus
OLV Ovine lentivirus
PDB Protein Data Bank
PERV Porcine endogenous retrovirus
PR Protease
RSV Rous sarcoma virus
SFV Simian foamy virus
SIV Simian Immunodeficiency virus
SMRV Squirrel monkey retrovirus
SRV-1 Simian retrovirus type 1
SRV-2 Simian retrovirus type 2
STLV-1 Simian T-lymphotropic virus type 1
STLV-2 Simian T-lymphotropic virus type 2
STLV-3 Simian T-lymphotropic virus type 3
VISNA Maedi visna virus
WDSV Walleye dermal sarcoma virus
WEHV-1 Walleye epidermal hyperplasia virus type 1
WEHV-2 Walleye epidermal hyperplasia virus type 2
XMRV Xenotropic murine leukemia virus-related virus
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44. Matúz, K.; Mótyán, J.; Li, M.; Wlodawer, A.; Tőzsér, J. Inhibition of XMRV and HIV-1 proteases by pepstatin
A and acetyl-pepstatin. FEBS J. 2012, 279, 3276–3286. [CrossRef] [PubMed]

45. Li, M.; Gustchina, A.; Matúz, K.; Tözsér, J.; Namwong, S.; Goldfarb, N.E.; Dunn, B.M.; Wlodawer, A.
Structural and biochemical characterization of the inhibitor complexes of xenotropic murine leukemia
virus-related virus protease. FEBS J. 2011, 278, 4413–4424. [CrossRef]

46. Li, M.; DiMaio, F.; Zhou, N.; Gustchina, A.; Lubkowski, J.; Dauter, Z.; Baker, D.; Wlodawer, A. Crystal
structure of XMRV protease differs from the structures of other retropepsins. Nat. Struct. Mol. Boil. 2011, 18,
227–229. [CrossRef]

47. Wosicki, S.; Gilski, M.; Zabranska, H.; Valterová, I.; Jaskolski, M. Comparison of a retroviral protease in
monomeric and dimeric states. Acta Crystallogr. Sect. D Struct. Boil. 2019, 75, 904–917. [CrossRef]

http://dx.doi.org/10.1021/bi00211a015
http://dx.doi.org/10.1021/bi960179j
http://dx.doi.org/10.1021/bi9612733
http://www.ncbi.nlm.nih.gov/pubmed/8841139
http://dx.doi.org/10.1021/bi9716074
http://dx.doi.org/10.1038/nsb0695-480
http://www.ncbi.nlm.nih.gov/pubmed/7664111
http://dx.doi.org/10.1021/bi9707436
http://www.ncbi.nlm.nih.gov/pubmed/9271500
http://dx.doi.org/10.1002/(SICI)1097-0134(20000101)38:1&lt;29::AID-PROT4&gt;3.0.CO;2-N
http://dx.doi.org/10.1186/1742-4690-4-1
http://dx.doi.org/10.1107/S0907444911011681
http://dx.doi.org/10.1016/j.jmb.2008.05.064
http://dx.doi.org/10.1002/prot.340140307
http://dx.doi.org/10.1021/bi972183g
http://dx.doi.org/10.1021/bi00477a002
http://dx.doi.org/10.1016/j.jmb.2010.06.052
http://dx.doi.org/10.1021/acs.jmedchem.5b00346
http://www.ncbi.nlm.nih.gov/pubmed/26000468
http://dx.doi.org/10.1073/pnas.0509335102
http://www.ncbi.nlm.nih.gov/pubmed/16352712
http://dx.doi.org/10.1111/j.1742-4658.2012.08714.x
http://www.ncbi.nlm.nih.gov/pubmed/22804908
http://dx.doi.org/10.1111/j.1742-4658.2011.08364.x
http://dx.doi.org/10.1038/nsmb.1964
http://dx.doi.org/10.1107/S2059798319011355


Int. J. Mol. Sci. 2020, 21, 1352 21 of 23

48. Khatib, F.; DiMaio, F.; Foldit Contenders Group; Foldit Void Crushers Group; Cooper, S.; Kazmierczyk, M.;
Gilski, M.; Krzywda, S.; Zábranská, H.; Pichová, I.; et al. Crystal structure of a monomeric retroviral protease
solved by protein folding game players. Nat. Struct. Mol. Boil. 2011, 18, 1175–1177. [CrossRef]

49. Veverka, V.; Bauerová, H.; Zábranský, A.; Lang, J.; Ruml, T.; Valterová, I.; Hrabal, R. Three-dimensional
structure of a monomeric form of a retroviral protease. J. Mol. Boil. 2003, 333, 771–780. [CrossRef]
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