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Cancer immunotherapy has led to significant therapeutic progress in the treatment

of metastatic and formerly untreatable tumors. However, drug response rates are

variable and often only a subgroup of patients will show durable response to a

treatment. Biomarkers that help to select those patients that will benefit the most from

immunotherapy are thus of crucial importance. Here, we aim to identify such biomarkers

by investigating the tumor microenvironment, i.e., the interplay between different cell

types like immune cells, stromal cells and malignant cells within the tumor and developed

a computational method that determines spatial tumor infiltration phenotypes. Our

method is based on spatial point pattern analysis of immunohistochemically stained

colorectal cancer tumor tissue and accounts for the intra-tumor heterogeneity of immune

infiltration. We show that, compared to base-line models, tumor infiltration phenotypes

provide significant additional support for the prediction of established biomarkers in a

colorectal cancer patient cohort (n = 80). Integration of tumor infiltration phenotypes

with genetic and genomic data from the same patients furthermore revealed significant

associations between spatial infiltration patterns and common mutations in colorectal

cancer and gene expression signatures. Based on these associations, we computed

novel gene signatures that allow one to predict spatial tumor infiltration patterns from

gene expression data only and validated this approach in a separate dataset from the

Cancer Genome Atlas.

Keywords: immunotherapy, machine learning, colorectal cancer, spatial statistics, immune response

INTRODUCTION

Cancer immunotherapy is the most promising therapy for many metastatic and formerly
untreatable tumors. However, often only a subgroup of patients will benefit from its application.
Biomarkers are important predictors of patients’ response to a treatment and, moreover, offer
new insights into drug mechanisms of action (1, 2). There are different types of biomarkers: For
instance, over-expression of genes like PDL1, mutations in specific genes like KRAS or BRAF
or impaired DNA mismatch repair (microsatellite instability, MSI) have all been shown to be
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informative biomarkers in the context of immunotherapy for
colorectal cancer (CRC) patients (2). While recently, tumor
mutation burden (TMB), i.e., the number of mutations per
megabase has been established as another genetic biomarker
(3, 4), the field is currently shifting its focus toward the tumor
microenvironment (TME) (5–8). The TME is characterized by
the complex interaction between malignant tumor cells, immune
cells (e.g., CD8+ or CD4+ T cells), as well as stromal cells. It
has been shown that the presence of immune cells in malignant
tumors is predictive of the success of certain immunotherapies
(5, 9). Abundances of immune cells are either determined by
gene expression signatures from bulk RNA sequencing (10), or
based on immunohistochemical (IHC) staining of tissue samples
(11) and subsequent calculation of the immune cell density,
i.e., the number of immune cells divided by the tissue area.
Traditionally, immune cell densities have been hand-annotated
by a pathologist, whereas today, many such workflows have been
automated and digitalized using methodology from the fields of
Artificial Intelligence and Computer Vision (1, 6, 12).

However, neither gene expression based immune cell
abundances, nor immune cell densities derived from IHCprovide
insight into whether T cells are effectively infiltrating a tumor or
whether they are blocked outside of the tumor and concentrated
within the stromal tissue. Recently, three major patterns of tumor
immune infiltration have been described: deserted (no to low T
cell abundance), excluded (T cells and tumor cells occupy disjoint
spatial areas) and inflamed (T cells and tumor cells spatially co-
localize) (13). It is hypothesized that the spatial arrangement of T
cells and tumor cells and in particular the proximity of cytotoxic
CD8+ T cells to malignant tumor cells is strongly affecting the
immune response (14, 15).

While deserted tumors can be fully characterized based on T
cell abundance, the distinction between excluded and inflamed
tumors requires spatial pattern analysis. In this work, we present
a novel computational method based on Ripley’s L function
(16) that, for the first time, is capable to successfully distinguish
excluded and inflamed tumor infiltration phenotypes (TIPs) in
CRC tissue (Figure 1B). Ripley’s L function has previously been
used to characterize the patterning of stromal cells in breast
cancer (6) and the patterning of CD8+ T cells and tumor cells
in pancreatic cancer (14).

We observed that the patterning of T cells in many tumors
showed substantial local heterogeneity across the tissue sample.
In order to account for this spatial variation of infiltration
phenotypes, we tessellated the sample area into hexagonal tiles
(edge length = 375µm) and calculated the co-localization of T
cells and tumor cells per tile. Each tile’s specific shape of the
L function then served as the input features to a logistic fused
lasso regression model (17, 18), that was subsequently trained
to classify each tile to either infiltration phenotype (inflamed
vs. excluded). In order to aggregate tile-level information to a
quantitative biomarker on the sample level, we computed the
respective proportion of tiles for each TIP across the tissue
sample. In total, we characterized TIPs for 80 samples from
CRC patients. We show that TIPs add valuable information
to the prediction of established biomarkers like TMB and
MSI and immune cell subpopulations, as defined by gene

expression signatures. Further, we developed a novel gene
expression deconvolution scheme, accounting for differently
sized populations of immune- and tumor cells within a sample,
which allowed us to infer distinct gene expression signatures that
predict the spatial tumor infiltration phenotypes of a sample. We
validated the prediction of these phenotypes from gene signatures
in the Cancer Genome Atlas.

MATERIALS AND METHODS

Histological Data
Surgical specimens from primary colorectal tumors were
procured. They were collected from consented patients
(informed consent) and under approval from the respective
Institutional Review Board, National Ethics Committee, or
equivalent agency. The samples had been fixed in formalin,
embedded in paraffin and archived prior to shipment.

A total amount of 80 tissue specimens was obtained.
The cells in the sections were stained by fluorescent
immunohistochemistry with the markers Ki67+ (30-9, Ventana
Medical Systems), CD3+/CD4+ (2GV6, Ventana Medical
Systems) and CD3+/CD8+ (SP239, Spring Biosciences) (19).
The slides were digitized with a Zeiss Axio Scan.Z1 at 20x
magnification, resulting in a pixel resolution of 325 nm.

In order to determine the MSI status, the slides of the tissue
samples were stained and assessed for the presence or absence
of four mismatch repair (MMR) proteins, MLH1 (M1, Ventana),
MSH2 (G219-1129, Ventana),MSH6 (SP93, Ventana), and PMS2
(A16-4, Ventana). Tumors with loss of one or more of the MMR
proteins are considered MSI, whereas intact MMR staining is
classified as MSS (20). 24% of the patients were MSI (Table 1)
and most patients were at a late tumor stage (stage 3: 20%, stage
4: 64%) (Table 1). Tumor mutational burden was calculated as
the number of mutations per megabase.

Image Processing and Analysis
Tumor and immune cells were detected and classified by a
proprietary machine learning algorithm based on color, intensity,
texture, object shape. For each cell, we obtained its position
and its cell type (Figure 1A): Tumor cells (stained by KI67+),
CD4 cells (stained by CD3+CD4+ or CD3+CD4+Ki67+),
CD8 cells (stained by CD3+CD8A+ or CD3+CD8A+KI67+).
An expert pathologist, who also verified the results of the
algorithm, manually annotated tumor regions. Only cells within
the manually labeled tumor region were used for analysis.
Furthermore, we excluded areas within each tile (hexagons, side
length= 50µm)with less than two cells in order to avoid artifacts
caused by these regions, e.g., holes could bias the computation of
the Ripley’s L function (Supplementary Figure 1A).

Genomic Data
The mutation dataset consisted of 373 cancer and immune
related genes based on the gene panel of FoundationOne
(21). Mutation data was available for 75 patients. For the
mutation analysis, we kept only genes that had a mutation in
at least 20% of the patients, resulting in a dataset of 19 genes
(Supplementary Table 6).
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FIGURE 1 | Tumor infiltration phenotypes (TIPs). (A) Tumor cells, CD8+ T cells and CD4+ T cells are detected in the immunohistochemistry multiplex stains. (B)

Assignment of tumor infiltration phenotypes on tile level. If a tile contains less immune cells than a threshold t, a tile is classified as deserted. Otherwise, a tile is

classified to either an inflamed or excluded tumor infiltration phenotype using the distribution of Ripley’s L function as the input to a fused lasso logistic regression

model. (C) For each tile within a sample, local infiltration patterns are predicted using the trained logistic regression model. The relative frequencies of the classified

tiles serve as the measurement for the TIPs of the whole sample. (D) On the tile level, TIPs can exhibit high degrees of heterogeneity with respect to different immune

infiltration phenotypes. TIPs for CD8 and CD4 immune cells, respectively, computed within the same sample did not always follow a similar distribution. (E) On the

sample level, both CD8+ T cells as well as CD4+ T cells show higher proportions of exclusion in the cohort. (F) The inflamed (tumor, CD8) TIP is in strong

concordance with manually assigned labels from an expert pathologist.

For generating the RNAseq data for the tissue samples (22),
genomic DNA and total RNA were purified from 10µm thick
FFPET curls using the AllPrep DNA/RNA FFPE Kit (Qiagen

Cat No./ID: 80234). The Qubit instrument was used to assess
the RNA samples for quality and quantity and the Agilent
Bioanalyzer was used to determine the degradation of the RNA
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TABLE 1 | Characteristics of the dataset.

Characteristic N = 80

Agea 69 (60,77)

Tumor grade

G1 9 (11%)

G2 45 (56%)

G3 26 (32%)

Gender

Female 40 (50%)

Male 40 (50%)

MMR status

MSI 19 (24%)

MSS 61 (76%)

Tumor stage

I 2 (2.5%)

II 11 (14%)

III 16 (20%)

IV 51 (64%)

aStatistics presented: median (IQR).

samples (DV200 value). To further generate the sequencing
library, the hybridization-based Illumina TruSeq RNA Access
method was performed, with first preparation of the total
RNA library and second library enrichment for coding RNA.
Finally, normalized libraries were sequenced using the Illumina
sequencing-by-synthesis platform, with a sequencing protocol
of 50 bp paired-end sequencing and total read depth of 25M
reads per sample (22). The data has been deposited as part of a
previous publication in the Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE152395). For
further analyses, we selected from the gene expression data all
genes that had no missing value in any patient resulting in
RNAseq count data for 14,634 genes and 66 patients. Signatures
for immune subpopulations were derived from Angelova et al.
(23), while the effect size of association of a signature and a
patient sample was calculated by gene set enrichment analysis
using the gCMAP package (24, 25).

Gene expression data for the TCGA-COAD andTCGA-READ
datasets from the Cancer Genome Atlas (TCGA) were retrieved
by TCGAbiolinks (26). Tumors with the classification: Splenic
flexure of colon, Sigmoid colon, Descending colon, Rectosigmoid
junction were considered as left side tumors. Tumors with the
classification: Ascending colon, Transverse colon, Cecum, Hepatic
flexure of colon were considered as right side tumors.

Pathway Mutation Score
Pathways were retrieved from the KEGG database (27). We
selected pathways for which the overlap between the pathway
genes and our mutation gene set (373 genes) was at least 40%
which resulted in 14 pathways (Figure 4B).

The pathway mutation score mi,p for a patient i and pathway
p was calculated as:

mi,p =
#mutated genes for patient i in pathway p

#genes in pathway p

Spatial Statistics Measuring Interaction of
Cells
Tumor tissue was tessellated into hexagonal tiles with a side
length of 375µm. Based on spatial x and y coordinates of each
cell, as derived from image processing of the imaged tissue,
Ripley’s L function was calculated for different combinations
of cell types i and j within each tile. Lij (r) is defined

as: Lij (r) =

√

Kij(r)

π
, where

Kij (r) =
1
λj
∗ E

[

t
(

u, r,X(j)
)

|u ∈ X(i)
]

(28), λj is the density

of cell type j and

t
(

u, r,X(j)
)

=
∑n(x(j))

k=1 1{0 < ‖u− xk ‖ ≤ r} is the number

of cells of type j that lie within a distance r of the location u (28).
In what follows, i always denotes tumor cells, and j either denotes
CD8 or CD4 cells, i.e., we quantify the proximity of immune
cells to tumor cells from the perspective of each tumor cell. The
expectation value in Ripley’s L function is estimated by empirical
cell frequencies. Since the area under scrutiny however is finite, it
is necessary to apply isotropic edge correction (28) to obtain an
unbiased estimate.

Calculation of Tumor Infiltration
Phenotypes
In order to cast Ripley’s L curves into the phenotypes inflamed
vs. excluded, we trained a 1d logistic fused lasso regression model
based on each tile’s feature vector. Let S be the number of samples
(tiles). Let ys ∈ (inflamed, excluded), s = 1,. . . ,S be the ground
truth labels of the tiles. A feature vector xsr = Lsij (r) − r, with
r ranging over an equidistant grid of n values in the range
of 1 to 338µm, is calculated for every tile. Here Lsij (r) is the
observed L function in the tile for cell types i and j and r is the
expected value of the L function under the assumption that there
is independence between the two point patterns. The logistic
fused lasso regression model is defined as:

β̂ = argminβ∈Rn −
1

S

S
∑

s=1

{

ys

(

β0 + βTxs

)

− log
(

1+ eβ0+βTxs
) }

+

λ1

n−1
∑

r=1

|βr+1 − βr| + λ2

n
∑

r=1

|βr|(17, 18)

The ground truth labels ys, required to fit the logistic
regression model, were annotated by an expert pathologist.
The penalty term λ1 in the model enforces smoothness of
neighboring coefficients, i.e., points on the Ripley’s L curve,
and makes it particularly suitable for a situation, where we
expect high degrees of correlation between consecutive points
in this 1d-sequential feature space. The fused lasso regression
model was fit on a balanced training set of n = 118 tiles.
As fluorescent immunohistochemistry multiplex stainings are
difficult to analyze visually this ground truth data was created
based on a KI67/CD8 duplex staining. We chose a side length
of 375µm for the tiles, which ensured a sufficient number of
tiles per tissue, but was also large enough for the pathologist to
evaluate the patterning of the cells in the tile. A minimum of
more than five immune cells was required for a pathologist to
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reliably distinguish the infiltration patterns inflamed vs. excluded.
Therefore, if the number of immune cells within a tile was smaller
than or equal to five, we set its infiltration pattern to deserted.

Estimates of Ripley’s L function become unstable at radii
close to the maximum tile size (375µm). We therefore restricted
our feature vector to values of r from 1 to 338µm, the latter
being about 90% of the tile size. The parameters λ1 and λ2
that regularize both the difference of consecutive coefficients as
well the coefficients by itself were determined by five-fold cross
validation (Supplementary Figure 1B). We use the notation
inflamed (i,j) and excluded (i,j) to describe the TIPs, both on the
tile level and on the whole tissue level. On the tile level the TIP
inflamed (tumor, CD8), for instance, represents the classification
result of the fused lasso regression model, whereas on the whole
tissue level it represents the fraction of tiles classified inflamed. In
order to make the calculations robust against the exact position
of the tiles, we shifted the tile grid by 10% in all directions that
are integer multiples of 90◦ and repeated the calculation of TIPs.
The resulting four proportions and the original one are averaged
to obtain the final TIP.

Multivariate Regression Analysis for
Biomarker Validation
We evaluated the predictive capacity of TIPs for established
biomarkers and the gene expression signatures against a base
model consisting of the covariates Age, Tumor Stage > IV, CD8+
T cell density and CD4+ T cell density. We selected inflamed
(tumor, CD8) and inflamed (tumor, CD4) for evaluation.

In the process of building the extended model containing
the TIPs, we first applied a univariate regression against an
established CRC biomarker. We then checked if any of the tumor
infiltration phenotypes had a Pearson correlation coefficient
larger than 0.6 with another TIP. In this case, in order to avoid
correlated co-variates, we selected the TIPs that performed better
in the univariate regression. We added all uncorrelated TIPs
to the base model, reduced the model by stepwise regression
analysis (forward-backward selection) and tested if the advanced
model significantly improved over the base model (likelihood
ratio (LR) test).

Gene Expression Deconvolution
Bulk RNAseq gene expression data is derived from a mixture
of different cell types, most prominently immune cells and
cancer cells in our application. Therefore, we implemented
a gene expression deconvolution scheme in order to derive
gene expression values with reduced bias from the cellular
composition of the bulked measurement, i.e., highly imbalanced
abundances of different cell types.

Let G be a set of genes and S a set of samples, let

X =
(

xg,s
)

∈ R
GxS

be the expression matrix normalized first by samples and
afterwards by genes. The technical noise of gene expression data
is following a poison distribution (29) in which the variance
equals the mean, thus we divided every gene by the square root
of its mean (i.e., variance). By variance stabilizing each gene, we
ensured that the linear approximation of all components is not

dominated by a few highly expressed genes and that the following
convex optimization has a physical interpretation as a mixture
of cells.

Let λ = (λs; s ∈ S), 0 ≤ λ ≤ 1 be the vector of relative
abundances of immune cells.

The task is to infer a prototype cancer cell expression profile
C = (cg; g ∈ G) and an immune expression profile I = (ig; g ∈

G) such that X is approximated by a convex combination X̃ of I
and C:

X ≈ X̃ = I ∗ λT + C ∗ (1− λ)T

This can be solved using constrained convex optimization:

argmin
I,C

(X − X̃ (I,C))
2

Subject to the constraints:

ig ≥ 0; g ∈ G,
∑

g

ig = 1

cg ≥ 0; g ∈ G,
∑

g

cg = 1

Gene Signatures
For every sample, s ∈ S the estimated value x̃g,s, s ∈ S reveals the
closest approximation of the value xg,s, s ∈ S using only amixture
of the global cancer profile C and the global immune profile I.
Genes that influence the spatial localization of immune cells (=
the Tumor Infiltration Phenotype) should be independent from
the x̃g,s, s ∈ S pattern. A measurement from a TIP a = (as; s ∈ S)
is thus associated to rg,s = xg,s − x̃g,s, rǫR. This association of
a TIP a to the expression of a certain gene g can be estimated by
linear regression:

as = βg ∗ rg,s, rǫR

Genes that showed a significant association with a TIP
(Bonferroni multiple testing correction) became part of this TIP’s
gene expression signature.

Using the expression values of the genes in the signature as
covariates, tumor infiltration phenotypes can be explained by
gene expression alone. Therefore, we trained a support vector
machine for the prediction of tumor infiltration phenotypes from
gene signatures. The gamma and the cost parameter were tuned
by a grid search (cost=4, gamma=0.0009765625).

Other Statistical Methods and Data
Availability
All statistical analysis was carried out using R ≤3.5.1 (R Core
Team 2013). The R package spatstat was used for spatial analysis
(28, 30, 31). The R package penalized was used for the fused
lasso model (32). GGplot2 was used for visualization (33). The
lmerTest package was used for the likelihood ratio test (34). We
used the package lol for the stability selection approach (35).

CVXRwas used for solving the gene expression deconvolution
(36). TopGO was used for differential gene expression analysis
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(37). The R-package e1071 was used for the training of the
support vector machine (38). Example sourcecode as well as
all spatial point patterns can be found in supplementary data
(Supplementary File 2–6).

RESULTS

Computation of Tumor Infiltration Patterns
From IHC Stained Tissue
In order to determine local immune infiltration patterns in
the tumor, CD8+ T cells, CD4+ T cells and tumor cells
were first detected by an automated image processing pipeline
(Methods, Figure 1A). Subsequently, in order to account for the
spatial heterogeneity of immune infiltration, we separated the
tumor sample into hexagonal tiles (Methods). For each tile, we
computed Ripley’s L function across pairs of tumor and immune
cells within the tile (Methods). Ripley’s L function is a cumulative
function that determines, from the perspective of one type of cell,
the number of neighbors of another type of cell within a certain
distance r (Figure 1B, Methods). The shape of the L function is
indicative of a segregating or an aggregating relationship between
the two cell types.

After computing the L function, we classified each
tile within the sample into local infiltration patterns
(Figure 1B, Methods) using a fused lasso logistic regression
model (Methods). The fused lasso regression model
was trained on tiles that were manually labeled by a
pathologist and resulted in a cross-validation accuracy of
85% (Supplementary Figure 1B, Methods).

The TIPs inflamed (tumor, CD8) and inflamed (tumor, CD4)
represent patterns where tumor cells and immune cells are
co-clustered, whereas the TIPs excluded (tumor, CD8) and
excluded (tumor, CD4) represent patterns where immune cells are
segregated from tumor cells.

We found that the tile-level distribution of TIPs varied
substantially, indicating high degrees of intra sample
heterogeneity. For the same sample, we also identified different
spatial infiltration patterns for CD8+ T cells and CD4+ T
cells, respectively (Figure 1D). On the sample level we detected
excluded (tumor, CD8) and excluded (tumor, CD4) to be the
most frequent TIPs in the cohort (Figure 1E). We compared the
TIP inflamed (tumor, CD8) to immune infiltration phenotypes
manually assigned by an expert pathologist based on inspection
of the whole tissue sample. Samples labeled inflamed by the
pathologist also showed significantly higher fractions (p =

2.2e-05) of the TIP inflamed (tumor, CD8), indicating strong
concordance between predicted infiltration patterns and experts’
ground truth annotations (Figure 1F).

Tumor Infiltration Phenotypes Predict
Established, Prognostic Biomarkers in
Colorectal Cancer
Patient survival and response in colorectal cancer is well-known
to be linked with the presence of certain prognostic biomarkers,
like the microsatellite instability (MSI) status, tumor mutational
burden (TMB) and the expression of immune cell signatures. We

investigated the association of TIPs with these biomarkers and
evaluated if TIPs could act as their independent predictors.

We found a positive univariate association of the TIP inflamed
(tumor, CD8) with the patients’ microsatellite instability (MSI)
status (p = 5.8e-07, Figure 2A). In order to quantify the
observed association, we investigated, if TIPs provide orthogonal,
non-redundant information for the prediction of MSI and
tumor mutational burden (TMB) when compared to a baseline
model consisting of the biomarkers CD8+ T cell density,
CD4+ T cell density, Age and Tumor stage (≥ Stage 4).
All computationally derived TIPs were added as covariates to
the base model. Subsequently, the number of covariates was
iteratively reduced using stepwise regression (Methods). For the
prediction of MSI, inflamed (tumor, CD8) was kept as a covariate
in the extended model (Figure 2B, Supplementary Table 1),
improving the overall model significantly (p= 0.009).

Similarly, the TIP inflamed (tumor, CD8) was associated
positively with high TMB [p = 3.1e-06, a TMB threshold of 20
was used for the assignment to the TMB high or low group (39),
Figure 2C]. When compared to the base model, the prediction
of TMB was again significantly improved by adding inflamed
(tumor, CD8) (p= 0.004, Figure 2D, Supplementary Table 2).

Further, we investigated the association of TIPs with
subpopulations of tumor infiltrating lymphocytes. We calculated
the effect size of three immune signatures [cytotoxic T cell, T
helper cell 1 (TH1) and T helper cell 17 (TH17) (23)] from
matched gene expression data using gene set enrichment analysis
(see Methods). There was an association between inflamed
(tumor, CD8) and the sign of cytotoxic and TH1 immune
signature’s effect size (Cytotoxic cells: p = 0.00012, Figure 3A,
TH1: p = 1.4e-06, Figure 3C) and between inflamed (tumor,
CD4) and the effect size of the TH17 signature (p = 0.007,
Figure 3E).

In order to quantify if the TIPs provide additional, non-
redundant information for the prediction of the effect sizes
of the three immune signatures, we again added them to the
base model and reduced the number of covariates by stepwise
regression (Methods).

For the prediction of the immune signature of cytotoxic cells,
inflamed (tumor, CD8) was kept in the model. The addition of the
TIP improved the model significantly (p = 5.01e-07, Figure 3B,
Supplementary Table 3).

For the prediction of the immune signature of TH1
cells, again inflamed (tumor, CD8) was kept in the
model (Figure 3D, Supplementary Table 4). For the
prediction of the immune signature of TH17 cells,
inflamed (tumor, CD4) was kept in the model (Figure 3F,
Supplementary Table 5). Both models were significantly
improved by adding the TIPs (TH1 cells: p = 2.8e-08,
TH17 cells: p= 0.0002).

Tumor Infiltration Phenotypes Are
Associated With Mutations on the
Single-Gene and Pathway Level
We investigated the association of common mutations in CRC
with TIPs. For this purpose, we implemented a Lasso regularized
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FIGURE 2 | Association of tumor infiltration phenotypes (TIP) with established biomarkers in colorectal cancer. (A) Univariate and multivariate (B) association of

inflamed (tumor, CD8) with the MSI status (logistic regression). Multivariate prediction of the MSI status is significantly improved, when adding inflamed (tumor, CD8) to

the base model [likelihood ratio (LR) test = 0.009]. (C) Univariate and multivariate (D) association of inflamed (tumor, CD8) with tumor mutational burden (TMB). The

TMB in (C) is grouped into high and low by a threshold of 20. Multivariate prediction of TMB is significantly improved when using the inflamed (tumor, CD8) as an

additional biomarker [likelihood ratio (LR) test = 0.004]. In all forest plots, the X-axis represents the log odds ratio (MSI) or the regression coefficients (TMB) and 95%

intervals (whiskers). The dashed vertical line represents a regression coefficient or and log odds ratio of 0. Significant covariates are indicated in blue, non-significant

covariates are indicated in turquoise.

regression model that explains each TIP (inflamed and excluded)
using the patients’ mutation profiles as covariates (Figure 4). The
analysis was performed both on the single-gene level (Figure 4A)
and the pathway level (Figure 4C) using single-gene mutations
that occurred in at least 20% of patient samples and 14 selected

pathways with at least 40% overlap with the set of mutated
genes, respectively (see Methods and Supplementary Table 6).
In order to robustly select pathways and mutations that are
associated with TIPs, we used a stability selection approach for
the Lasso model (35, 40), using the selection probability as an
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FIGURE 3 | Tumor infiltration phenotypes (TIPs) predict immune cell signature effect sizes. (A) Univariate association of inflamed (tumor, CD8) with positive and

negative effect size of the cytotoxic immune cell signature (Wilcoxon test). (B) Multivariate association of inflamed (tumor, CD8) with the effect size of cytotoxic immune

(Continued)
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FIGURE 3 | cell signature. Inflamed (tumor, CD8) improves the base model significantly [likelihood ratio (LR) test = 5.01e-0.7]. (C) Univariate association of inflamed

(tumor, CD8) with positive and negative effect size of T-helper Cell 1 immune cell signature. (D) Multivariate association of inflamed (tumor, CD8) with the effect size of

T-helper Cell 1 immune cell signature. The base model is significantly improved [likelihood ratio (LR) test = 2.8e-08]. (E) Univariate association of inflamed (tumor, CD4)

with positive and negative effect size of T helper cell 17 immune cell signature (Wilcoxon test). (F) Multivariate association of inflamed (tumor, CD4) with the effect size

of T-helper Cell 17 immune cell signature [likelihood ratio (LR) test = 0.0002]. In all forest plots, the X-axis represents the regression coefficients and 95% intervals

(whiskers). The dashed vertical line represents a regression coefficient of 0. Significant covariates are indicated in blue, non-significant covariates are indicated in

turquoise.

FIGURE 4 | TIPs are associated with mutations both on the single-gene and pathway level. (A) Associations between mutations and TIPs by Lasso stability selection.

The coefficients represent the selection probability in 200 runs of the Lasso model. TP53, ARID1A, and RNF43 showed the strongest associations with a TIP. (B)

Associations of mutated genes with TIPS (Wilcoxon test). (C) Associations between mutations in signaling pathways (pathway mutation scores) and TIPs by Lasso

stability selection. The coefficients represent the selection probability in 200 runs of the Lasso model. The Fanconi Anemia pathway, the IL7 signaling pathway and the

AKT phosphorylates pathway showed the strongest associations with TIPs. (D) Association of high and low pathway mutation scores with TIPs (Wilcoxon test).

Pathway mutation scores are split into low and high at the median.

indicator of the association strength of a gene or a pathway with
a TIP.

On the single-gene level, four out of 19 genes were selected in
at least 40% of the runs (TP53, GPR124, ARID1A, and RNF43)
reflecting the importance of these genes in explaining different
TIPs. The tumor suppressor gene p53 (p = 1.6e-05, Wilcoxon
Test, Figure 4B) and the kinases ARID1A (p= 0.0007, Wilcoxon
Test, Figure 4B) and RNF43 (p = 0.00012, Wilcoxon Test,
Figure 4B) showed the strongest single-gene associations with
a TIP in terms of selection probability (Figure 4A), indicating

these genes to be relevant factors for the TIPs inflamed (tumor,
CD4) (TP53, RNF43) and inflamed (tumor, CD8) (ARID1A),
respectively. On the pathway level, 12 of the 14 pathways were
found to be associated with at least one TIP. Here, mutations
in the Fanconi Anemia pathway (p = 0.0024, Wilcoxon Test,
Figure 4D), the IL-7 signaling pathway (p = 0.041, Wilcoxon
Test, Figure 4D) and the AKT pathway (p = 0.018, Wilcoxon
Test, Figure 4D) showed the strongest associations with a TIP
[inflamed (tumor, CD4): Fanconi Anemia pathway, inflamed
(tumor, CD8): IL-7 signaling pathway, AKT pathway].
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Tumor Infiltration Phenotypes Are
Associated With Gene Expression Changes
in Immune-Related Pathways
We hypothesized that TIPs evoke distinct gene regulatory
programs in lymphocytes and tumor cells, respectively.
Therefore, we were interested in detecting differences in
gene expression that cannot be explained by variation in cell
type composition, but which result from changes in pathway
activity in either lymphocytes or tumor cells. For this purpose,
we developed an approach for the deconvolution of gene
expression, separating variation in gene expression due to cell
proportions from changes in gene expression resulting from
distinct regulatory programs (Figure 5A, Methods). Afterwards,
we determined the association of TIPs to differentially expressed
genes by linear regression analysis, with the TIP as the response
and the gene expression values as covariates. Genes with
regression coefficients significantly different from zero (p < 0.05
after Bonferroni multiple testing correction) were added to the
respective TIP’s gene signature.

We found 303 genes to be significantly associated with
inflamed (tumor, CD8) (Figure 5B, Supplementary Table 7),
and 87 genes to be associated with inflamed (tumor, CD4)
(Supplementary Figure 2, Supplementary Table 8).

Gene ontology (GO) term enrichment analysis on the
upregulated genes for the TIP inflamed (tumor, CD8) revealed
terms associated with the immune system (including immune
response, leukocyte activation, immune effector process)
(Figure 5B). The downregulated genes were found to
be associated to dendrite morphogenesis regulation and
transcription initiation. Among the significantly downregulated
genes we identified the DNA mismatch repair protein MLH1
(41), the genes CRCP and ZXDAwith roles in DNA transcription
regulation and BBS10 with a role in protein folding (42, 43). The
most significant upregulated genes included histocompatibility
antigens like HLA-DMA, HLA-DPA1, HLA-DRA, HLA-DPB1,
HLA-DMB, and genes with a role in immune response (CD74,
TCIRG1, RAC2, ITGAE).

GO terms in the gene signature for inflamed (tumor, CD4)
were enriched for neutrophil migration, neutrophil chemotaxis
and regulation of dendritic spine (Supplementary Figure 2).

Genetic Signatures Predict Tumor
Infiltration Phenotypes
Gene signatures allow extending the definition of TIPs from the
tissue to the molecular level. In order to test if the derived TIP-
specific gene signatures can also be used to predict TIPs in new
datasets with missing IHC image data, we obtained two genomic
datasets fromCRC patients, TCGA-COAD (n= 298) and TCGA-
READ (n= 98), using the Cancer Genome Atlas (TCGA).

First, we trained a support vector machine on the original
CRC (n = 80) dataset with the TIPs as response variables
and the genes of the corresponding gene signature as features
(Figure 5C), learning the association between gene expression
and TIPs. Afterwards we applied this model to predict TIPs in
the genomic datasets from TCGA. We found the predicted TIP
inflamed (tumor, CD8) to be significantly higher in MSI-High

patients than in MSI-Low or MSS (Microsatellite stable) patients
as defined in TCGA (Figure 5D, p= 3.7e-16). Further, we found
the TIP inflamed (tumor, CD8) to be significantly higher in right
side tumors as compared to left side tumors (Figure 5D, p =

1.1e-06), confirming the hypothesis of right side tumors having
a stronger immune infiltrated tumor microenvironment (44).

DISCUSSION

The quantification of spatial tumor immune infiltration has
great potential to form patient enrichment strategies for
immunotherapy, or to help to better understand the mode of
action of a drug in early clinical trials. For instance, the co-
localization of immune cells and tumor cells has been proven to
be connected to beneficial survival in many tumor types (14, 15).
Here, we have developed a method that is based on the three
basic immune infiltration patterns inflamed/excluded/deserted
but, in contrast to other approaches, is independent of
manual annotations and thus allows the automated, quantitative
identification from immunohistochemically stained samples. In
comparison to other studies that used spatial statistics to infer
spatial patterns of immune and tumor cells (14, 45), our method
considers the intra-tumor heterogeneity of immune infiltration.
This is achieved by dividing the tissue into tiles and applying
Ripley’s L statistic in order to classify the tiles according to
their local immune infiltration pattern. The proportion of the
local immune infiltration patterns in the sample serves as our
measurement of the global tumor infiltration phenotype (TIP).

We have demonstrated that TIPs are associated with the MSI
and TMB status of a patient. While it has been shown previously
that MSI and high TMB are associated with a higher immune cell
density (46), we could show that they are also associated with
an increased co-localization between CD8+ T cells and tumor
cells. Moreover, TIPs were shown to be independent from other
covariates like cell density, age and tumor stage and thus served
as an additional factor for the prediction of the MSI and TMB
status, respectively.

Notably, the effect size of the immune signature for
Cytotoxic T cells was correlated with increased co-localization
between tumor and CD8+ T cells. This highlights the
great potential to combine spatial infiltration phenotypes
with phenotypes derived from gene expression, like the
subpopulation of cytotoxic cells in order to predict the outcome
of immunotherapy. Nevertheless, the prognostic and predictive
relevance of phenotype combinations must be determined in
future studies.

Furthermore, we found TIPs to be associated with common
mutations in CRC. It has been shown that immune infiltration
is triggered by somatic mutations. Whereas, on the one hand
mutations can induce immune escape mechanisms in the tumor
cells (47), they can on the other hand also form neoantigens
that are detected by the immune system (48). We showed that
mutations in p53 resulted in reduced co-localization between
tumor and CD8+ T cells whereas mutations in ARID1A and
RNF43 had the opposite effect. A reason may be that p53
dysfunction leads to immunosuppression and immune evasion
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FIGURE 5 | Association of gene expression and TIPs. (A) Deconvolution of bulk gene expression data using cell proportions from image processing. The observed

gene expression data is approximated by the mixture composition of immune and cancer cells. (B) Enriched GO terms in the gene expression profile for inflamed

(tumor, CD8). The z-score indicates the gene count for the specific term. (C) Prediction of TIPs from gene expression data. A support vector machine classifier is

trained with the sample’s genes expression values as features and the TIP value as response, which allows the prediction of spatial immune infiltration phenotypes

from genomic data. (D) Prediction of TIPs from gene expression data in a separate cohort of CRC patients (TCGA) and association to microsatellite instability (MSI)

and tumor laterality, respectively.

(49) whereas mutations in ARID1A and RNF43 might act as
neoantigens. Notably, mutations in the Fanconi Anemia pathway
were associated with an increased co-localization between tumor
cells and CD4 cells. As the Fanconi pathway is a DNA mismatch
repair pathway (50), perturbation of this pathway causes an
accumulation of replication errors, making cancer cells more
easily recognizable by cytotoxic cells (51). Moreover, mutations
in the AKT pathway and the IL7 signaling pathway were
connected with TIPs. The AKT pathway is a cell signaling
pathway. It is well-know that activation of AKT is a mechanism
of tumor immune evasion (52), which is corresponding to the
observation that high mutation rates in this pathway were in
our analysis connected with more co-localization between tumor
cells and CD8 cells. Interleukin-7 is an important cytokine that
stimulates B and T cell development. However, it has been
shown that in tumor cells IL-7 is associated with increased
aggressiveness of solid tumors and enlarged metastasis rate (53,
54). Although the association of high mutation rates in these
pathways with TIPs is less obvious, it shows the potential of TIPs
for the characterization of the immune response when combined
with genomic data.

Following this line of thought, we integrated spatial immune
infiltration patterns, as represented by the TIPs, with gene
expression data. Using a gene expression deconvolution scheme
in combination with a regression model, we were able to find
specific gene signatures for TIPs. We found upregulated genes
in the signature of inflamed (tumor, CD8) to be connected to

the immune system whereas downregulated genes were shown
to have a role DNA in mismatch repair. This supports the
hypothesis that errors in DNA replication are the main driver for
the immune answer in CRC.

Interestingly, these gene signatures can be seen as a
representation of TIPs on the genomic level and allow the
determination of TIPs also in data sources for which no IHC
imaging data is available. We have demonstrated this approach
in a CRC dataset from TCGA and showed that the predicted
TIPs were associated with MSI-high tumors and the laterality of
the tumor. The definition of TIPs on the genomic level, enable
their use in a much broader range of data sources, e.g., in public
databases or phase 3 clinical trials for which typically no IHC
stainings are available.

In conclusion, we have demonstrated how tumor infiltration
phenotypes can be quantified in CRC samples using a
computational method that accounts for the high variability of
spatial immune infiltration across the sample. The computational
tumor infiltration phenotypes do not only have the potential
to serve as biomarkers in immunotherapy but also enable
a more detailed exploration of the immune response in
CRC. Although immunotherapy has been successful in CRC
in the last years, response rates are variable. In order
to find the right treatment for every patient, a detailed
characterization of individual tumors is necessary. Despite the
established classifications for CRC, e.g., by consensus molecular
subtypes or the MSI status, tumor infiltration phenotypes
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offer the potential for an even deeper characterization of
CRC patients.

In the future, it would be of great interest to include more cell
types into the analysis e.g., myeloid cells or fibroblasts to capture
additional factors in the tumor microenvironment. Moreover, it
remains to be shown whether TIPs can serve as prognostic or
predictive biomarkers by testing their association to endpoints
such as overall survival or treatment response.
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