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Shallow feed-forward networks are incapable of addressing complex tasks such as natural

language processing that require learning of temporal signals. To address these require-

ments, we need deep neuromorphic architectures with recurrent connections such as deep

recurrent neural networks. However, the training of such networks demand very high pre-

cision of weights, excellent conductance linearity and low write-noise- not satisfied by current

memristive implementations. Inspired from optogenetics, here we report a neuromorphic

computing platform comprised of photo-excitable neuristors capable of in-memory compu-

tations across 980 addressable states with a high signal-to-noise ratio of 77. The large linear

dynamic range, low write noise and selective excitability allows high fidelity opto-electronic

transfer of weights with a two-shot write scheme, while electrical in-memory inference

provides energy efficiency. This method enables implementing a memristive deep recurrent

neural network with twelve trainable layers with more than a million parameters to recognize

spoken commands with >90% accuracy.
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The success of deep learning in diverse fields such as image
classification1 and face recognition2 has spurred a renewed
interest in the area of artificial intelligence (AI). Despite the

impressive progress already demonstrated with conventional
CMOS-based programmable architectures3, innovative neuro-
morphic hardware approaches are required to emulate the scale,
connectivity and energy efficiency of biological neural
networks4,5. The first wave of neuromorphic hardware solutions
based on electrical memristors have demonstrated advantages in
parallel summing and update operations, scalability, cost, and
power consumption6–8. However, the switching dynamics of
conventional memristors produces abrupt transitions and write
non-linearity, resulting in asymmetric weight updates and limited
number of accessible states9. Such limited precision weights can
only be used for shallow feed-forward networks trained to classify
simple datasets and are incapable of addressing applications like
speech recognition and natural language processing (NLP) that
require learning of temporal signals. To address these require-
ments, we therefore need neuromorphic architectures with
recurrent connections and deeper architectures (>10 hidden
layers) such as deep recurrent neural networks (DRNNs)10,11.
However, the efficient training of DRNNs calls for fully-parallel
write/read operations, which demands non-volatile memory ele-
ments with multiple linearly distributed conductance states
addressable via blind updates- not satisfied by current electrical
implementations. A potential way to accelerate the training
process of DRNN is to exploit the increased speed offered by
optical processing platforms. However, such all-photonics-based
computing platforms require meticulous integration of numerous
optical components with a large footprint12 and are incapable of
updating weights in a precise, linear manner, necessary for
training DRNNs via parallel updates13. Present electrical and
optical approaches therefore do not sufficiently address the
effective bit precision and accuracy required for energy-efficient
computation-in-memory implementation of DRNNs.

This motivates us to re-examine neuroscience, specifically
those based on optogenetics, for a second wave of neuromorphic
devices for advanced AI applications14. Optogenetics- a photo-
stimulated neuromodulation technique, utilises optical pulses to
monitor and manipulate neuronal activities by controlling ionic
currents in biological tissues15,16. With higher speed and spa-
tiotemporal precision over its electrical counterparts, optogenetics
has facilitated precise probing of neuronal circuits14, unravelling
underpinnings of cognition and memory. Beyond probing the
neural pathways, optogenetics is now extensively employed to
stimulate and silence neural activity to manipulate locomotion17

and rewire neural pathways to cure disorders18. This strategy of
utilising light to tune the learning and memory behaviours19,20

can be adopted to selectively activate artificial neurons and
synapses in hardware circuitry to address the drawbacks of lim-
ited number of accessible states, non-linearity and asymmetric
weight updates. Inspired from optogenetics, we propose an
optoelectronic neuromorphic computing platform comprising of
photo-excitable neuristors (PENs) to selectively control the
excitability of artificial neurons and update the weights of
synapses with high linearity to obtain precise weights necessary
for DRNNs.

Since we derive our inspiration from optogenetics, we first
demonstrate light-modulated firing of neuron circuits and spike-
timing dependent plasticity (STDP)-based synapses on
atomically-thin low-bandgap PENs with rhenium disulfide (ReS2)
active channels (Supplementary Note 1, Supplementary Fig. 1), to
benchmark our devices against state-of-the-art spike-based
learning synapses. We illustrate spatiotemporally selective per-
turbation: a key factor in optogenetics, to demonstrate the pos-
sibility of selectively probing a specific group of neurons/synapses

with high precision. To demonstrate the excellent properties of
our devices, we extensively characterise the switching character-
istics and calculate the endurance, cyclability, signal-to-noise ratio
(SNR) and linear dynamic range (LDR) for benchmarking against
state-of-the-art. The reported number of accessible non-volatile
states (980 or ~10-bit equivalent) is the highest till date to the best
of our knowledge. The SNR values as high as 77 are also among
the highest reported till date. Since the internal adjustment of
weights in a neural network can be simplistically viewed as
mathematical addition and subtraction operations or their
extensions, we demonstrate abacus operations to illustrate the
weight changes of synaptic connections in a more tangible and
comprehendible manner. Finally, we propose a new method of
optical writing to transfer offline learnt weights on to the device,
after which the device is used for inference in electrical mode only
without requiring optical inputs, resulting in high energy effi-
ciency due to in-memory computing. Offline learning enables
DRNN training with advanced learning rules while the exquisite
write linearity afforded by the optical gating is the major phe-
nomenon we exploit to get very accurate weight transfer with a
two-shot write scheme. The proposed PEN features an order of
magnitude higher LDR than other recent state-of-the-art reports,
enabling us to simulate a DRNN for speech recognition with an
order of magnitude higher parameters than digit recognition
networks.

Results
Inspiration from optogenetics. While conventional optogenetics
targets specific neurons for excitation or inhibition, our approach
of using PENs gives us the flexibility to selectively activate either
neurons or synapses in an artificial neural network (Fig. 1a). We
first demonstrate the selective ability to address neurons, a hall-
mark of optogenetics. The PENs were configured to construct an
integrate and fire (I&F) circuit as shown in Fig. 1b and Supple-
mentary Note 2, Supplementary Table 1. Upon illumination of
the PEN, the conductance increased, resulting in higher firing rate
of the I&F neuron in contrast to a photo-insensitive one (Fig. 1b),
in direct correlation to conventional optogenetics. This selective
neuronal photo-excitability is hitherto not demonstrated for
hardware neuromorphic circuits. To qualify as optoelectronic
synapses, the PENs were next benchmarked on the degree of
manipulation of spike-timing-dependent plasticity (STDP) win-
dows as a function of the optical stimuli. STDP is a figure-of-
merit of plasticity of memristive elements for unsupervised
learning21,22. Asynchronous electrical spikes of identical ampli-
tude and duration induced a standard asymmetric Hebbian STDP
function in the PENs (Supplementary Note 3, Supplementary
Fig. 2). Illumination induced a permanent increase in the device
conductance or long-term potentiation (LTP), resulting in a
positive shift of the electrical STDP functions (Fig. 1c). Increasing
intensity or energy of illumination resulted in larger positive
shifts of the electrical STDP windows, resulting in an output
dependent on both electrical and optical inputs (Supplementary
Note 3, Supplementary Figs. 3 and 4). This modulation of STDP
windows with light or photo-modulated STDP resemble biolo-
gical optogenetic measurements23,24, qualifying these PENs as
equivalents to optogenetic actuators or opsins. In all the above
measurements, programming weights with optical pulses resulted
in near-linear changes of the electrical STDP window as a func-
tion of the dosage (wavelength and intensity) of incident light.
This opens up the possibility of accessing linearly distributed
weights with high precision utilizing optical blind updates,
essential for DRNNs.

Spatiotemporally selective perturbation is another key factor in
optogenetics, enabling probing of a specific group of neurons with
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high precision. To demonstrate selective perturbation, a 6 × 6
mini-array of PENs was selectively subjected to sinusoidal global
clocks of red and blue wavelengths (Fig. 2a). The PENs subjected
to blue irradiation resulted in a larger modulation of the synaptic
weights with the final spatial conductance map corresponding to
~102 nS, while those activated by red light depicted a final
conductance ~13 nS. This difference in photoresponse or
wavelength selectivity allows a wide flexibility for setting the
threshold for neuronal firing (Supplementary Note 3, Supple-
mentary Fig. 5). To substantiate selective activation further, a 36-
element array comprising of 16 light-sensitive ReS2 and 20
insensitive indium tungsten oxide (IWO) synapses was assembled
as shown in Fig. 2b. Details of the IWO transistor fabrication and
synaptic characterisation is detailed in our earlier work25. All
synapses were initially programmed to a common low

conductance state (5 nS). Upon illumination with red light (λ=
623 nm, 65 mWcm−2 intensity), the channel conductance of the
ReS2 PENs depicted a non-volatile increment (5–6.5 nS) due to its
low bandgap (1.5–1.8 eV)26. On the other hand, the channel
conductance of IWO synapses remained constant (5 nS) due to
their large bandgap (3.6 eV)27. A spatial conductance map
readout of the array resembled the image of “N” with the light-
sensitive ReS2 PENs spatially arranged to resemble this alphabet
as shown in Fig. 2b. These results illustrate the high spatial
specificity of the light-based write operations, globally capable of
addressing light-sensitive neural elements on demand. By
employing semiconductors of varying band-gap and optical
absorption, this concept can be extended to a wide variety of
material systems and wavelength division multiplexing schemes,
enabling highly selective probing of artificial neural networks.

This work
- Activates only photo-excitable neuristors (PENs)
- PENs connected to LIF neurons help achieve good specificity
at the neuron level similar to conventional optogenetics
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This work
- activates only photo-excitable neuristors (PENs)
- PENs as artificial synapses help achieve good specificity
at the memory level going beyond conventional optogenetics

a

b

c

Fig. 1 Optogenetics-inspired light-driven computational circuits. a Inspiration from optogenetics. Our approach of using PENs in an artificial neural
network gives us the flexibility to selectively activate either neurons or synapses. b An I&F circuit is designed using two operational amplifiers and the PEN
functionally mimicking optically active ion-channels in optogenetics. Without light activation, the neuron fires at a baseline rate set by the reversal potential
Vin of the artificial ion-channel. On illumination by blue light (λ= 445 nm, amplitude= 5mWcm−2 and pulse width= 10ms), the conductance of the PEN
(Gnr) increases, resulting in a higher frequency of neuronal firing (top). An I&F neuron constructed using conventional resistors does not show any change
in firing rate on optical stimulation (bottom). c Photo-modulated spike-timing-dependent plasticity learning rules in PENs. The graphs (read row-wise)
depict the modulations of STDP upon illumination with red (623 nm), green (525 nm) and blue (445 nm) light with an intensity= 230mWcm−2.
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Optoelectronic switching for deep recurrent neural networks.
From the algorithmic point of view, an ideal synapse should
typically satisfy linear weight updates for high classification
accuracies using online blind programming schemes28. Even for
transferring offline learnt weights with high bit precision to a
neuromorphic hardware necessary for speech recognition or
NLP, blind weight updates without iterative read-write proce-
dures are necessary to avoid prohibitively long write times for
large-scale DRNNs29. Update linearity and write noise have been
identified as the prime analogue device properties which degrade
the accuracy of neural networks9,30. However, most memristive
systems depict a nonlinear and asymmetric response due to
their abrupt filamentary switching physics, failing to sufficiently
address the bit precision and accuracy required for in-memory
computations in DRNNs. We propose to exploit the exquisite
write linearity and low write noise afforded by the optical gating
to get very accurate weight transfer with a two-shot write
scheme.

To demonstrate the extremely high density and linearity of
non-volatile states available for analogue computation, the
PENs were subjected to an input optical pulse train of constant
pulse width and interval. Upon illumination (λ= 623 nm, 65
mWcm−2 intensity), the conductance updates exhibited excellent
linearity, non-volatility and retention characteristics. Real-time
monitoring of the conductance changes revealed a precise stepped
linear increase in conductance from 1.25 to 180 nS with a step
size of ~0.18 nS, equivalent to 980 distinct conductance states
(~10-bit) (Supplementary Note 4, Fig. 6). Shorter activation
wavelengths resulted in higher slopes, wider conductance
ranges, higher retention and SNR (Fig. 3a, Supplementary Note 4,
Supplementary Figs. 7 and 8). Figure 3a depicts a magnified
view of the conductance transitions (states 1–16 and 965–980)
upon blue illumination (λ= 445 nm, 65 mWcm−2 intensity),
while Supplementary Note 4 and Supplementary Fig. 8 depicts all
the 980 conductance transitions achieved with the PEN.

An ideal neuromorphic device should depict a narrow
distribution centred about the average change in conductance
due to a write operation (ΔGavg) over the entire range of
conductance (G) to enable a high dynamic range of weights with
extremely accurate weight updates31. A test of write endurance
(1600 switching cycles – 800 write and 800 erase steps between
the 1st 16 conductance states) revealed high endurance and low
write noise in the investigated devices for all wavelengths of
optical stimulation (Fig. 3b–j). Supplementary Note 5 and
Supplementary Fig. 9 depicts a magnified view of the conductance
response during the first 128 voltage-controlled write and erase
operations and limits of linear weight updates, and Supplemen-
tary Fig. 10 depicts the endurance of the non-volatile states. The
conductance changes exhibited predictable, saw-tooth-like con-
ductance steps without any degradation in the overall channel
conductance. Probability distribution plots of the write-erase
processes depicted exceptionally high write-linearity with an
average SNR (ΔGavg

2/ σ2; σ- standard deviation) of 39 (potentia-
tion)/30 (depression), 77 (potentiation)/24 (depression) and 75
(potentiation)/53 (depression) for red, green and blue wavelength
optical write and their corresponding electrical erase operations
(Fig. 3e–j). This is among the highest SNR reported till date and
the first demonstration of such linear weight updates with optical
stimuli. In comparison, state-of-the-art filamentary RRAMs and
PCMs showed lower SNR (<1) and orders of magnitude greater
non-linearity28.

To demonstrate the precise weight-update capability of our
PENs through blind optical writes and electrical erases in a
tangible form, we implement an optoelectronic arithmetic
calculator analogous to an abacus that requires highly linear
operations for summing and subtraction (Fig. 3k, Supplementary
Note 6, Fig. 11). To accommodate multi-digit calculations, two
PENs were used – one (blue) to represent the first and the other
(red) to represent the second digit of the base-10 number system.
Both devices were pre-programmed to a common low

a

b

1

1.0

5
4

6 5 6
4
2
0

4
3
2
1
0

4
2
0

3
2
1
0

16
14
12
10

8
6
4
2
0

0.8
0.6

C
onductance (nS

)

C
on

du
ct

an
ce

 (
nS

)

C
on

du
ct

an
ce

 (
nS

)

C
on

du
ct

an
ce

 (
nS

)

C
on

du
ct

an
ce

 (
nS

)

C
onductance (nS

)

100
80

80
60
40
20

0

100

60
40
20

0

C
onductance (nS

)

C
on

du
ct

an
ce

 (n
S

)

0.4
0.2
0.0

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

6

1

2

3
Row 4

5

61

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

1

2

3

Colu
m

n

4

5

6

Fig. 2 Spatiotemporally selective perturbation. a A 36-element array of PENs was assembled and initially programmed to a common low conductance
state (1 nS). Illumination with optical sinusoidal stimuli (red and blue) selectively activated the PENs with each device depicting a non-volatile weight
change corresponding to the wavelength of illumination. Blue illumination triggered significant weight changes in the devices resulting in a final spatial
conductance map ~102 nS, crossing the pre-set activation/firing threshold of 80 nS. On the other hand, red wavelength stimulation triggered weight
changes to a final value of ~13 nS, inactivating these synapses. b A 36-element array comprising of 16 light-sensitive ReS2 and 20 insensitive IWO synapses
was assembled and initially programmed to a common low conductance state (5 nS). Spatial conductance maps of the synapses when subjected to red
(λ = 623 nm) optical stimuli (intensity= 65mWcm−2) is shown. Illumination with optical stimuli selectively activated the light-sensitive low-band-gap
ReS2 PENs without affecting the light-insensitive high-band-gap IWO synapses. A spatial conductance map readout of the array resembled the image of
“N” with the light-sensitive ReS2 PENs spatially arranged accordingly as shown.
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conductance state (1 nS, representing ‘0’) prior to any calculations
(stage-i). In abacus, this is represented by an extreme left shift of
all the beads. For an addition operation of ‘27+ 14’ (Fig. 3k), the
1st PEN was optically programmed with as many steps as the
augend (‘7’ in this case) (stage-ii). In abacus, this is represented by
right shift of an appropriate number of blue beads. This was

followed by programming steps equivalent to the addend ‘4’.
When the sum reached ‘10’ (stage-iii), the unit’s place PEN was
RESET to the initial conductance state by appropriate electrical
pulses (amplitude=+40 V, pulse width=1 s, number= 10,
Supplementary Note 5, Fig. 9a), represented by extreme left shift
of all the blue beads (stage-iv). Concurrently, the second PEN
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representing the ten’s place was updated by a single programming
pulse (carry over) to hold ‘1’ temporarily (stage-iv). In abacus,
this carry over operation is represented by a right shift of a single
red bead. Subsequently, programming steps equivalent to
the remainder (‘1’) was carried out to get a final sum of ‘1’
in the unit’s place (stage-v). Similar operations were carried out
on the second PEN (currently holding ‘1’ from the carry over)
resulting in a final sum of ‘4’ in the unit’s place (stages-vi–vii).
The conductance states of both PENs were read by a reading
voltage of 0.1 V to get the result ‘41’. Detailed illustration of other
arithmetic operations are provided in Supplementary Note 6
Supplementary Fig. 11. The in-memory computing capabilities
elementarily demonstrated as arithmetic operations, represent the
weight update protocols underlying powerful approaches like
backpropagation in neural networks.

The linear increase/decrease of weights in a material system
depend on a number of factors including the nature of traps and
its temporal response, the kinetics of photo-carrier generation
and their recombination. The programming scheme we adopt
caters for many of these factors (Supplementary Note 7,
Supplementary Figs. 12–16 and Supplementary Note 9, Supple-
mentary Figs. 22–25). We attribute the optical modulation due to
persistent photoconductivity (PPC)32 to be the reason for linear
programming of weights in our work. Upon illumination or in
other words during each optical write operation, photocarriers
(electrons) generated in the channel increase the conductance
(potentiation) and the photogenerated holes are localised/
trapped in states within the semiconductor bulk or/and at the
semiconductor-dielectric interface resulting in a delayed recom-
bination. This photogating effect33 results in a permanent change
in the channel’s carrier concentration, resulting in a non-volatile
weight update. Carriers generated during the subsequent
illumination adds to the existing carrier concentration with
every input pulse, updating weights in a linear manner. While
optical pulses enable linear incremental non-volatile write steps,
electrical gating is used to erase via defect-assisted recombina-
tion. During erase, the electrical gating raises the Fermi level to
induce electron accumulation in the channel and this accelerates
the recombination with the holes in the trap sites reducing the
photoconductance34 (depression) as shown in Fig. 3b–d and
Supplementary Note 5, Fig. 9. The number of distinct states are
determined primarily by the programming pulse resolution and
recombination kinetics of the photo-generated carriers, and
hence, the programming pulses could be chosen to achieve a
near-perfect linearity. Detailed explanation on the mechanistic
understanding, choice of gate and drain voltages, and the

illumination conditions to maximise the dynamic conductance
range of linear weight updates is provided in (Supplementary
Note 7, Supplementary Figs. 12–16 and Supplementary Note 9,
Supplementary Figs. 22–25).

Simulations. The extremely low noise and high linearity in writes
was exploited to create high-accuracy energy-efficient neural net-
works for pattern classification by implementing vector matrix
multiply (VMM) operations (that form the bulk of the computa-
tions35) within memory (Fig. 4a–c, Supplementary Note 8, Sup-
plementary Figs. 17–21). Unlike convolutional neural networks
(CNNs)36–38, DRNNs like long short term memory (LSTM)10,39

that achieve state of the art results in speech classification, require
much more precise weights11,40. Earlier work41,42 on memristive
devices have shown their ability to classify handwritten digits from
the MNIST dataset43 using fully connected networks (FCN) with
online learning. However, such online learning schemes using
stochastic gradient descent are unsuited for training DRNNs on
large-scale datasets; instead sophisticated momentum based learn-
ing rules such as ADAM44 are preferred for offline training which
enables gradient averaging across mini-batches. Hence, in this work
we use offline learning of weights followed by optically-assisted
weight transfer to the PEN crossbar which can then perform the
inference operation in electrical mode with extremely low energy
dissipation (Fig. 4b).

Compared to CNNs, DRNNs require higher weight precision
(≥6 bits) due to the recurrent layers40 (Fig. 4c). Programming
weights in non-volatile memories with high precision require
iterative read-write schemes with 20-30 iterations being common
to account for device non-linearity and variability between
multiple memory elements45–47. We exploit the exquisitely high
linearity and low write noise of the PENs to propose a two-shot
write scheme for writing weights with high accuracy. Character-
isation of the PENs across five devices and three wavelengths
show a high linear dynamic range (LDR > 6000) obtained by
dividing the linear range of weights (conductance range where
deviation from best-fit straight line is less than half of step size)
by the standard deviation of write noise (Fig. 3, Supplementary
Note 8, Supplementary Fig. 17). However, measuring all states to
get a best-fit line is not scalable to DRNNs with millions of
weights and infeasible for reprogramming deployed devices. A
practical way to estimate the slope of the straight line is to use a
two-shot measurement procedure that eliminates multiple read-
write cycles per PEN at the cost of slope estimation errors. A
hardware friendly method (adopted for simulations shown) of
using global optical potentiation to the maximum weight followed

Fig. 3 Optically addressable multi-level memory for DRNNs. An input optical pulse train of constant pulse width and interval (10 s, 65mWcm−2) intensity
resulted in a precise stepped increase in conductance equivalent to 980 distinct conductance states. a shows a magnified version of the conductance states
1–16 and 965–980 activated by 445-nm wavelength of optical stimuli. To maximise the dynamic range of linear response, the devices were electrically pre-
programmed at –40 V to ensure a low initial conductance state. This electrical bias was also maintained constant throughout the optical writing steps.
Analysis of endurance during write-erase operations. Application of synergistic optoelectronic pulses result in precisely controlled near-symmetric
bidirectional weight changes via optical potentiation and electrical depression as shown in b–d. Positive weight changes activated by 623-nm optical stimuli
were erased by electrical pulses of amplitude +20 V. Higher electrical voltages were applied at the back gate to erase the higher degree of potentiation
induced by shorter wavelength optical stimulation. For instance, positive weight changes of higher magnitude due to 525/445 nm optical activation were
erased by electrical pulses of amplitude +35/40 V respectively. e–j ΔG vs G box and whisker plots – a measure of endurance and write noise during
cycling tests. The box portion of the box plot are defined by two lines at the 25th and 75th percentiles and the line drawn inside the box represents the
median (50th percentile). Plots e–g depict the variation in the changes in conductance during the optical write operations, while h–j depict the variations
during the electrical erase operations for all the three wavelengths of optical stimuli. k Optoelectronic abacus operation. Precise optical potentiation and
electrical depression enabled facile emulation of arithmetic operations, analogous to an abacus. Multiple PENs were employed to represent the unit’s (blue
bead) and ten’s (red bead) place, and programming steps were designed as per the arithmetic operation under calculation. Optical stimulations resulted in
potentiation represented by the rightward sliding of the beads, while electrical stimulations caused depression (leftward sliding of the beads). The
methodology of the arithmetic operations are indicated with necessary illustrations as insets.
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by selective electrical depotentiation required one optical write,
two electrical writes and two measurements per PEN (Supple-
mentary Note 8, Supplementary Fig. 18). The linearity of the
write operation allows simple one parameter (slope) calibration
avoiding more complex read-write schemes for non-linear
elements45–47 and reducing the number of iterations by an order

of magnitude. In mapping the weights to conductance values,
both write noise and slope estimation errors were considered.
While noise sets the lower limit of achievable weight update,
estimation errors limit the dynamic range of weight values
accessible by our two-shot measurement scheme to ~600
(Supplementary Note 8, Supplementary Fig. 19). The number of
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write operations could be further reduced by using optical means
to set the weights directly to the desired value provided selective
optical stimulation is possible.

As a first experiment to prove the efficacy of our two-shot write
method and to compare with other reported works, we
demonstrate results for classifying digits from the MNIST dataset
using a combination of CNN and FCN with four trainable layers.
For MNIST classification, the four layer network programmed
with the two-shot scheme achieves an accuracy of 99.09%(±0.1)
that is almost indistinguishable from its software full precision
counterpart (99.2%) and at par with the state-of-the-art41,48

(Supplementary Note 8, Supplementary Fig. 20). Going beyond
such shallow networks, we next demonstrate classification of
spoken commands49 using a twelve trainable layer DNN with
convolutional layer, FCN, and bi-directional LSTM layers
(Fig. 4a), where the VMM operations in all layers are
implemented using PENs. For the speech classification problem,
spectrograms of dimension 256 × 101 were input to the network.
On the twelve class speech classification task, the PEN-based
VMM with two-shot writes achieves 93.25%(±0.2) accuracy
which is only ~2.5% less than its software counterpart. The LSTM
layers are found to be most sensitive to low LDR due to
recurrence (Fig. 4c). Without slope estimation error in two-shot
updates, the high LDR > 6000 of our PENs help achieve near-
perfect accuracy (Supplementary Note 8, Supplementary Fig. 21).

Discussion
Thus, we demonstrate that such optoelectronic neuromorphic
devices can be adapted to execute highly parallel energy-efficient
blind weight-update protocols for DRNNs, accelerated by in-
memory computing. In comparison to state-of-the-art, the pro-
posed PEN features an order of magnitude higher LDR facil-
itating an order of magnitude lower iterations for weight
programming, and enabling us to simulate a DRNN for speech
recognition with an order of magnitude higher parameters than
digit recognition networks (Fig. 4d). Thus, our work extends the
frontiers of current neuromorphic devices by enabling unprece-
dented accuracy and scale of parameters required for online,
adaptive and truly intelligent systems for applications in speech
recognition and natural language processing. Modulating the
generation and recombination dynamics of photocarriers, the
proposed optoelectronic architecture can be extended to a wide
variety of photoresponsive semiconducting platforms (Supple-
mentary Note 9, Supplementary Figs. 22–25). By employing
semiconductors of varying band-gap and optical absorption, this
concept can utilise wavelength division multiplexing schemes,
enabling selective probing of artificial neural networks. In com-
parison to previous works that demonstrate optical programming
and electrical erase50–52, a Vgs that keeps the trap states empty, a
Vds that ensures the leakage currents do not interfere with the
weight readouts, a low initial background carrier concentration to
prevent screening effects and a light intensity sufficient to fill the
traps ensures the better linear update of weights in our devices
(Supplementary Note 7, Supplementary Figs. 12–16 and

Supplementary Note 9, Supplementary Figs. 22–25). Our con-
cepts could be realised in larger scales by leveraging on the
developments of 2D TMDC wafer scale device arrays and het-
erointegration concepts53–55. In short, our optoelectronic neu-
romorphic computing platform would allow memristive-based
implementations to advance beyond simple pattern matching to
complex cognitive tasks such as visual question answering,
machine translation and dialogue generation.

Methods
Device fabrication. A scotch-tape method was used to exfoliate ReS2 flakes from
bulk crystal and was transferred onto a degenerately doped Si substrate with 285
nm SiO2. The electrodes were patterned via photolithography, followed by thermal
evaporation of Cr/Au (5/50 nm) and subsequent lift-off process. Height profiling
with atomic force microscopy (AFM) was conducted to determine the thickness of
the sample. Raman characterisation was performed to confirm the purity of the
sample.

I–V measurements. For all the optoelectronic characterisations in the manuscript,
the PENs were subjected to input optical pulse trains of constant pulse width and
interval using an LED light source (ThorLabs SOLIS-445C) equipped with a
DC2200 driver. The device conductance was measured using a parameter analyser
(Keithley 4200SCS) in sync with the LED light source.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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