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a b s t r a c t

The data presented here includes selection of 5 successfully
amplified protein-coding markers for inferring phylogenetic re-
lationships of the family of amphipod crustaceans Niphargidae.
These markers have been efficiently amplified from niphargid
samples for the first time and present the framework for robust
phylogenetic assessment of the family Niphargidae. They are
useful for phylogenetic purposes among other amphipod genera as
well. In detail, the data consists of two parts: 1. Information
regarding markers, specific oligonucleotide primer pairs and con-
ditions for PCR reaction that enables successful amplification of
specific nucleotide fragments. Two pairs of novel oligonucleotide
primers were constructed which enable partial sequence amplifi-
cation of two housekeeping genes: arginine kinase (ArgKin) and
glyceraldehyde phosphate dehydrogenase (GAPDH), respectively.
Additionally, 3 existing combinations of oligonucleotide primer
pairs for protein-coding loci for glutamyl-prolyl tRNA synthetase
(EPRS), opsin (OP) and phosphoenolpyruvate carboxykinase
(PEPCK) were proven to be suitable to amplify specific nucleotide
fragments from selected amphipod specimens; 2. Information on
novel nucleotide sequences from amphipod taxa of the family
Niphagidae and related outgroup taxa. Unilocus phylogenetic trees
were constructed using Bayesian analysis and show relationships
among selected taxa. Altogether 299 new nucleotide sequences
from 92 specimens of the family Niphargidae and related outgroup
c).
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For amphipod crustacean family Niphargidae only a small number of universal markers have been
used for phylogenetic analyses (two fragments of ribosomal 28S, ITS (internal transcribed spacer), COI
(mitochondrial cytochrome oxidase I), ribosomal 12S, H2 (histone 2)) ([1e5]). Among them, only very
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short and highly conserved fragment of histone (H2) represents nuclear protein coding locus ([6,7]).
Unilocus and multilocus analyses using this limited set of markers did not provide robust framework,
hence the hierarchic relationships among and within lineages remain poorly resolved ([1,5,7,8]). Low-
copy nuclear protein coding loci are proved to be effective markers for inferring phylogenetic re-
lationships among groups of arthropods within or above species level ([9e11]). They provide useful
information for resolving lineages where utility of traditional non-coding ribosomal DNA and mito-
chondrial markers does not provide effective resolution ([10]). The data presented here provides a
selection of five successfully amplified specific protein-coding loci in order to provide power to
phylogenetic framework and recoverage of relationships in the family Niphargidae. The nucleotide
fragments may be successfully amplified in other amphipod species as well.

1.1. Oligonucleotide primer sequences of 5 nuclear protein-coding loci

The list of oligonucleotide primer sequences of successfully amplified nuclear protein coding
markers in niphargids is presented in Table 1.

1.2. PCR amplification conditions for selected markers

For marker EPRS the conditions of touchdown cycling protocol for amplification are as follows:
Initial denaturation step of 4min at 94 �Cwas followed by 24 cycles of touchdown PCR. In each cycle

denaturation step of 45 sec at 94 �C was followed by annealing step of 45 sec where annealing tem-
perature decreased in increments of 0,4 �C for every subsequent set of cycles. Hence the annealing
temperature of the first cyclewas 55 �C and the temperature of the last cyclewas 45,6 �C. The extension
step of each cyclewas performed at 72 �C and lasted for 1min 30 sec.15 cycles of denaturation of 45 sec
Table 1
Oligonucleotide primer sequences used for successful PCR amplification and sequencing of the markers, and source of
information.

Marker Name and sequence (50to 30) of the primer Comment Source

EPRS; EPRS_1_F: CAGGAAACAGCTATGACCGARAARGARAARTTYGC
EPRS_1_R:TGTAAAACGACGGCCAGTTCCCARTGRTTRAAYTTCCA

[10]

EPRS_2_F:CTATGACCGAGAAAGAGAAGTTCGC
EPRS_2_R: CAGTGGTTGAACTTCCARGCTGG

nested PCR

ArgKin; ArgKin_F3: CCCCTTCAACCCYTGYCTBACYGAGGC
ArgKin_R3: GGVAGCTTRATRTGGACGGAGGC

This study

PEPCK; PEPCK-F3: GAGGGCTGGCTRGCMGARCAYATG
PEPCK-R3: GGMCGCATTGCRAAYGGRTCRTGCAT

[12]

OPSIN; OPS_1_F: TGGTAYCARTWYCCICCIATGAA
OPS_1_R: CCRTAIACRATIGGRTTRTA

[10]

OPS_2_F: CCGCCGATGAAGTCGARATGGTA
OPS_2_R: TTRTAIACIGCRTTIGCYTTIGCRAA

nested PCR

GAPDH; GAPDH_2F: GGACTACATGGTGTACATGTTYAARTWYGA
GAPDH_2R: GAGTAGCCGAACTCGTTRTCRTACCA

This study

Table 2
Numbers of successfully amplified sequences, fragment length, best substitution model and GenBank repository accession
numbers.

Nuclear
marker

Number of
sequences

Fragment length
(bp)

Best substitution
model

GenBank repository accession
numbers

EPRS 82 403 GTRþGþI MH481451 - MH481531
Arginine
Kinase

76 411 GTRþGþI MH493738 - MH493813

PEPCK 54 633 HKYþGþI MH500354 - MH500407
Opsin 42 737 GTRþGþI MH635367 - MH635408
GAPDH 46 790 GTRþGþI MH668918 - MH668963
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at 94 �C, annealing step of 45 sec at 45 �C, and extension step of 1 min 30 sec at 72 �C followed. Final
extension step lasted for 3 min at 72 �C.

For marker PEPCK the conditions of amplificationwere as follows: Initial denaturation step of 3 min
at 94 �C was followed by 40 cycles of denaturation step of 45 sec at 95 �C, annealing step of 45 sec at
57 �C and extension step of 1 min at 72 �C. Final extension step lasted for 7 min at 72 �C.

For markers ArgKin, OPSIN and GAPDH the conditions of touchdown cycling protocol for amplifi-
cation are as follows: Initial denaturation step of 7 min at 95 �C was followed by 25 cycles of touch-
down PCR. In each cycle denaturation step of 30 sec at 95 �C was followed by annealing step of 1min
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Fig. 1. Consensus phylogenetic tree inferred by Bayesian Analysis based on EPRS marker. Posterior probabilities larger than 90 % are
indicated on nodes as black or grey circles. Voucher numbers are indicated on leaves e information regarding specimens is pre-
sented in supplementary material 1.
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where annealing temperature decreased in increments of 0,4 �C for every subsequent set of cycles.
Hence the annealing temperature of the first cycle was 60 �C and the temperature of the last cycle was
50 �C. The extension step of each cycle was performed at 72 �C and lasted for 2 min. 20 cycles of
denaturation of 45 sec at 94 �C, annealing step of 45 sec at 45 �C, and extension step of 1 min 30 sec at
72 �C followed. Final extension step lasted for 3 min at 72 �C.

In some cases, first amplification did not yield proper amount of the product to be used for
sequencing. In this case, the second amplification using nested primer pair was performed. For nested
primer pairs 1e2 mL of the product of PCR amplification was used as a template for the second
amplification using nested primer pairs with the same amplification conditions.

1.3. New molecular sequence data and phylogenetic trees

Information on new molecular sequence datasets of protein-coding markers which were success-
fully amplified in specimens of the family Niphargidae and in some related amphipod crustacean taxa
for the first time is presented in Table 2. Nucleotide sequences may be retrieved from GenBank re-
pository. Additional information regarding specimens is presented in the supplementary material 1. All
the newly obtained sequences were validated by BLAST searches (https://blast.ncbi.nlm.nih.gov/Blast.
cgi) using optimization either for megablast or discontiguous megablast. BLAST results for each
sequence obtained from the first hit are presented in the supplementary material 2. For further vali-
dation purposes all the sequences were translated into amino acids, checked for the presence of stop
codons and used in alignment generation and phylogeny reconstruction.

Phylogenetic trees for eachmarker were constructed using Bayesian Analysis and are shown in Figs.
1e5.
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2. Experimental design, materials and methods

2.1. Materials

The specimens of family Niphargidae and related amphipod crustaceans were collected in time
period of the last two decades. For detailed information regarding the specimens and their locality see
information in supplementary material 1. Specimens for morphological analyses and isolated DNA are
deposited at Zoological collection, Department of Biology, Biotechnical faculty, University of Ljubljana,
Slovenia (SubBio Lab Group).
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2.2. Search for suitable markers and existing oligonucleotide primer sequences

Information regarding suitable nuclear protein coding markers for amphipod family Niphargidae
was obtained from available research literature and public databases of nucleotide sequences (Gen-
Bank, Ensembl, UniProtKB). Since no nuclear protein coding sequences for the family Niphargidaewere
available, the search was extended to nuclear protein-coding markers available for phylogenetic an-
alyses in phylum Arthropoda. Selected nuclear protein coding loci were tested for successful amplifi-
cation using already available oligonucleotide primers and amplification protocols. Among them, 3
markers proved to be suitable for amplification from majority of studied specimens: Glutamyl and
prolyl t-RNA (EPRS), opsin and phosphoenole pyruvate charboxylase (PEPCK).
2.3. Oligonucleotide primer sequence pair construction

For the two housekeeping genes Arginine kinase (ArgKin) and glyceraldehyde phosphate dehy-
drogenase (GAPDH) we constructed new degenerate oligonucleotide primer pairs. Using the online
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tool BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) we obtained homologous sequences of several
representatives of the phylum Arthropoda. We aligned nucleotide sequences using plug-in software
MAFFT v. 6 implemented in Geneious Pro 5.6 (Biomatters, New Zealand) [13]. The alignment of se-
quences translated into amino acids was constructed using Clustal W [14]. Both alignments were used
to construct degenerate oligonucleotide primer pairs for amplification of partial fragments of ArgKin
and GAPDH using software iCODEhop [15].
2.4. DNA isolation

Entire specimen or an appendage was used for isolation of DNA. DNA was isolated using GenElute
Mammalian Genomic DNA Miniprep Kit (Sigma Aldrich, USA) following the protocol for DNA isolation
from tissues » Mammalian Tissue Preparation«. One specimen (Niphargellus nolli; voucher number
NB365) was fixed in formalin. Therefore for the successful amplification of DNA we followed the
protocol for DNA isolation from formalin-fixed samples [16].
2.5. PCR amplification, purification of the products and sequencing

The PCR amplifications were conducted in a 15-mL reaction mixture as in Ref. [8]. PCR cycling
protocols followed conditions in subsection 1.2. PCR products were purified using Exonuclease I and

https://blast.ncbi.nlm.nih.gov/Blast.cgi


A. Mo�skri�c, R. Verovnik / Data in brief 25 (2019) 104134 9
shrimp alkaline phosphatase (Thermo Fisher Scientific, USA) as in Ref. [8]. Each fragment was
sequenced in both directions using PCR amplifications primers by Macrogen Europe (Amsterdam,
Netherlands).

2.6. Editing of the sequences

Chromatograms were assembled and sequences were edited manually using Geneious R8.1.6. and
11.1.2 [13]. Alignments of nucleotide sequences for eachmarkerwere performed using plug-in software
ClustalW [14] implemented in Geneious R8.1.6 [13]. The alignments were translated into amino acids
and checked for stop codons and inconsistencies. All the new sequences were submitted to GenBank
repository (NCBI) (accession numbers in Table 2 and in Supplementary material 1).

2.7. Phylogenetic trees

The best substitution model for each marker was calculated based on Akaike information criterion
(AIC) using SMS e Smart model selection on web server: http://www.atgc-montpellier.fr/phyml-sms/
[17] (Table 2). Unilocus phylogenetic trees were estimated by Bayesian analysis using MrBayes 3.2.2
[18] on the Cipres Science Gateway v 3.3. (http://www.phylo.org/index.php). Two simultaneuous runs
with four chains each were run for three to four million generations until both runs reached
convergence. Runs were sampled every 1000th generation. First 25 % of the sampled trees were
discarded as burnin and the consensus tree of each marker was constructed by 50 % majority rule.
The trees were visualised in FigTree v.1.4.3 software (http://tree.bio.ed.ac.uk/software/figtree/).
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