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ABSTRACT Alcohols are commonly derived from the degradation of organic matter
and yet are rarely measured in environmental samples. Wetlands in the Prairie Pot-
hole Region (PPR) support extremely high methane emissions and the highest sul-
fate reduction rates reported to date, likely contributing to a significant proportion
of organic matter mineralization in this system. While ethanol and isopropanol con-
centrations up to 4 to 5 mM in PPR wetland pore fluids have been implicated in sus-
taining these high rates of microbial activity, the mechanisms that support alcohol
cycling in this ecosystem are poorly understood. We leveraged metagenomic and
transcriptomic tools to identify genes, pathways, and microorganisms potentially ac-
counting for alcohol cycling in PPR wetlands. Phylogenetic analyses revealed diverse
alcohol dehydrogenases and putative substrates. Alcohol dehydrogenase and alde-
hyde dehydrogenase genes were included in 62 metagenome-assembled genomes
(MAGs) affiliated with 16 phyla. The most frequently encoded pathway (in 30 MAGs)
potentially accounting for alcohol production was a Pyrococcus furiosus-like fermen-
tation which can involve pyruvate:ferredoxin oxidoreductase (PFOR). Transcripts for
93 of 137 PFOR genes in these MAGs were detected, as well as for 158 of 243 alco-
hol dehydrogenase genes retrieved from these same MAGs. Mixed acid fermentation
and heterofermentative lactate fermentation were also frequently encoded. Finally,
we identified 19 novel putative isopropanol dehydrogenases in 15 MAGs affiliated
with Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Ignavibacteriae, Thau-
marchaeota, and the candidate divisions KSB1 and Rokubacteria. We conclude that
diverse microorganisms may use uncommon and potentially novel pathways to pro-
duce ethanol and isopropanol in PPR wetland sediments.

IMPORTANCE Understanding patterns of organic matter degradation in wetlands is
essential for identifying the substrates and mechanisms supporting greenhouse gas
production and emissions from wetlands, the main natural source of methane in the
atmosphere. Alcohols are common fermentation products but are poorly studied as
key intermediates in organic matter degradation in wetlands. By investigating genes,
pathways, and microorganisms potentially accounting for the high concentrations of
ethanol and isopropanol measured in Prairie Pothole wetland sediments, this work
advanced our understanding of alcohol fermentations in wetlands linked to ex-
tremely high greenhouse gas emissions. Moreover, the novel alcohol dehydroge-
nases and microbial taxa potentially involved in alcohol metabolism may serve bio-
technological efforts in bioengineering commercially valuable alcohol production
and in the discovery of novel isopropanol producers or isopropanol fermentation
pathways.
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Fermentation is a primary mode of organic matter degradation. Fermentative path-
ways can both result in carbon mineralization and generate substrates that fuel

anaerobic respiration, contributing to methane (CH4) and carbon dioxide (CO2) emis-
sions. The relevance of these interconnected processes in soils and sediments has been
previously reported across a range of ecosystems. For example, Wrighton et al. (1)
suggested that fermentation was a major route of carbon turnover in a shallow alluvial
aquifer, resulting in the generation of a range of labile substrates, including hydrogen,
ethanol, formate, acetate, lactate, and butyrate. In this system these intermediates were
inferred to support nitrate, sulfate, and iron reduction. In boreal fens, the fermenter
community differed between high-CH4- and high-CO2-producing peat slurry incuba-
tions, indicating that various fermentative pathways may impact the CO2/CH4 ratio in
greenhouse gas emissions (2). In marine sediments, temperature perturbation experi-
ments revealed a close coupling between fermentation and sulfate reduction (3), while
iron reduction and methanogenesis were inferred to be supported by fermentation
products in Arctic tundra soils (4).

Although alcohols—particularly ethanol, but also 1-propanol, isopropanol (2-propanol),
and butanol—are common fermentation products, their role in stimulating sedimentary
carbon cycling has received little attention. Indeed, knowledge gaps associated with the
magnitude and fate of ethanol produced in wetlands represent a fundamental constraint
in estimating global carbon budgets (5). Technical issues have frequently precluded the
measurement of alcohols in complex environmental samples. For instance, pore water
samples for proton-nuclear magnetic resonance (1H-NMR) are often concentrated using
alcohols, a process which prohibits the measurement of natural alcohol abundances in the
sample (6). However, there are some instances of alcohols being measured in sedimentary
samples; in 2005, Metje and Frenzel reported ethanol concentrations of up to 10.5 mM in
methanogenic peat soil incubations (7), while Zhuang et al. developed pretreatment
techniques to measure ethanol and methanol using gas chromatography in marine sedi-
ment pore waters, reporting ethanol concentrations that ranged from 3 to 62 �M (8). The
same technique was used to measure concentrations of ethanol ranging from 11 to
2,535 nM in freshwater sediments (9).

The Prairie Pothole region (PPR) of North America is the tenth largest wetland
ecosystem in the world (10). Using nonconcentrated sediment pore waters, ethanol and
isopropanol concentrations of up to 4 to 5 mM have been measured using 1H-NMR in
PPR wetland sediments (11), suggesting that fermentation may play a key role in
organic matter degradation into these alcohols. This ecosystem is carbon rich, with
pore fluid dissolved organic carbon concentrations reaching �180 mg/liter (12). In
addition, extremely high methane fluxes (�160 mg CH4/m2/h) and the highest sulfate
reduction rates ever reported to date (�22 �mol/cm3/day) have been measured in PPR
wetlands (11). The depletion of alcohols during a period of high sulfate reduction, as
well as the identification of candidate sulfate-reducing bacterium genomes encoding
alcohol dehydrogenases, suggested a possible role for these substrates in driving
sulfate reduction in this system. Moreover, the detection of F420-dependent alcohol
dehydrogenases and mcrA genes affiliated with alcohol-utilizing Methanofollis species
indicated that methanogenesis may also be directly supported by these fermentation
products (13). Despite the potential importance of alcohols in supporting biogeochemi-
cal activity in PPR sediments, the microbial members and the pathways responsible for
alcohol fermentation in this system remain unknown.

Here, we used metagenomics and metatranscriptomics to investigate putative
alcohol-cycling microorganisms in PPR wetland sediments using sequencing data
obtained for samples previously analyzed (11, 13). We have examined genome-
encoded alcohol dehydrogenases and pathways that could result in ethanol and
isopropanol production in Prairie Pothole wetlands. Our results indicate that known
and novel pathways for alcohol cycling are active across phylogenetically diverse
microbial groups in this ecosystem and that a variety of novel alcohol dehydrogenases
have yet to be characterized. These results have both environmental relevance—in the
context of carbon cycling and greenhouse gas emissions—and industrial importance,
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given the decades of efforts in engineering microorganisms for the production of these
alcohols (14, 15).

RESULTS
Putative alcohol-cycling microorganisms are phylogenetically diverse and en-

code a variety of alcohol dehydrogenases. Depth-resolved metagenomic data sets
were obtained from sediments in two characteristic wetlands near Jamestown, ND, and
processed as previously described (13). These wetlands are rich in dissolved organic
carbon (12) and sulfur compounds (16, 17) due to the local hydrological regime and the
underlying pyrite-rich glacial till (18). Dynamic shifts in redox conditions occur in these
wetlands due to annual and seasonal rainfall and temperature changes, storm events
that transport agricultural runoff into the wetlands, and prairie winds, which can mix
and oxygenate the shallow (1- to 3-m) water column (19). Samples analyzed in this
study had been previously characterized for pore water concentrations of methane,
sulfate, sulfide, ethanol, methanol, isopropanol, and acetate, as well as for sulfate
reduction rates, dissolved organic carbon compounds, and 16S rRNA gene-based
microbial communities (11). Remarkably, extremely high ethanol and isopropanol
concentrations (up to 4 to 5 mM), methane concentrations (up to 6 mM), and sulfate
reduction rates (up to 22 �mol/cm3/day) were measured in these sediments, with
substrates depleted from spring to summer when methane emissions and sulfate
reduction rates were highest (11).

Metagenome-assembled genomes (MAGs) were screened for the presence of
both an aldehyde dehydrogenase and an alcohol dehydrogenase (ADH) with
potential for primary or secondary alcohol fermentation or oxidation, which ex-
cluded short-chain, aryl, and polyvinyl ADHs, as well as choline, sugar-alcohol, and
phosphonate catabolism-related ADHs. Of 449 MAGs recovered from our meta-
genomic data sets, 62 had at least one gene encoding each enzyme and estimated
contamination levels of less than 13% and thus were selected for further analyses.
Known pathways for alcohol fermentation (Fig. 1) were investigated in order to
determine the potential for ethanol and isopropanol production.

An overview of the MAGs selected for this study is provided in Fig. 2. Detailed MAG
information on genome and investigated genes is provided in Table S1 in the supple-
mental material. The selected MAGs had abundances (Table S1) varying between 0.12
and 0.62 total coverage normalized per Gbp of metagenome (average, 0.34; median,
0.31), which is well within general trends observed for the entire 449-MAG data set
(minimum coverage of 0.004 and maximum of 2.5, with an average of 0.26 and a
median of 0.25).

The selected MAGs representing candidate alcohol-cycling microorganisms spanned
16 phylum-level taxonomic groups (Fig. 3): Proteobacteria (n � 20 MAGs), Chloroflexi
(n � 8), Acidobacteria (n � 6), Ignavibacteriae (n � 5), Actinobacteria (n � 4), Plancto-
mycetes (n � 4), Bacteroidetes (n � 2), Thaumarchaeota (n � 2), Cyanobacteria (n � 1),
Nitrospirae (n � 1), Spirochaetes (n � 1), Verrucomicrobia (n � 1), Calditrichaeota (n �

1), and candidate phyla KSB1 (n � 1), Rokubacteria (n � 1), and Latescibacteria (n � 1).
Three bacterial MAGs were unclassified.

A wide variety of alcohol dehydrogenases with potential for alcohol fermentation or
oxidation were recovered from PPR draft genomes, varying in number between 1 and
30 per MAG. Overall, 366 ADHs were identified, with 334 being at least 100 amino acids
long. Phylogenetic analyses of these sequences (Fig. 4) indicated that ADHs formed
clusters primarily based on cofactor, with a major segregation between iron-, zinc-, and
pyrroloquinoline quinone (PQQ)-type ADHs, and secondarily based on putative sub-
strate preference. A monophyletic cluster of 91 poorly annotated ADHs was determined
to contain NADH:quinone oxidoreductases and uncharacterized medium-chain dehy-
drogenase superfamily members (collapsed branch in Fig. 4), which excluded the
corresponding genes from further analyses. Of the remaining 243 ADH genes, 158 were
inferred to be expressed within the microbial community via metatranscriptomic data
(Table S2).
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Reference isopropanol dehydrogenases included in the phylogenetic analysis
formed a monophyletic group with 36 sequences in total, allowing the identification of
19 binned ADHs as putative isopropanol dehydrogenases. These sequences belonged
to 15 MAGs affiliated with the betaproteobacterial order Burkholderiales, the alphapro-
teobacterial family Hyphomicrobiaceae, the phyla Acidobacteria, Ignavibacteriae, Chlo-
roflexi, Planctomycetes, and Thaumarchaeota, candidate divisions KSB1 and Rokubacte-
ria, and one unclassified bacterial genome. Of these 19 putative isopropanol
dehydrogenase genes, 14 were detected in metatranscriptomic data (Table S2).

Another monophyletic group contained mostly propanol-preferring ADHs (71 se-
quences) plus only four ethanol-preferring reference ADHs (both fermentative and
oxidative ADHs from Saccharomyces cerevisiae, ADH-I from Streptococcus pneumoniae,
and the fermentative ADH-I from Zymomonas mobilis). Similarly, PQQ-type methanol/
ethanol dehydrogenases (34 sequences) also formed a monophyletic group that also
contained two zinc-type and two iron-type ADHs. Interestingly, eleven lanthanide-
dependent methanol dehydrogenases (including two unbinned sequences from our
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dehydrogenase; 35, acetoacetyl-CoA:acetate/butyrate:CoA transferase; 36, acetoacetate decarboxylase; 37, isopropanol dehydrogenase; 38, hydrogen dehy-
drogenase; 39, aldehyde:ferredoxin oxidoreductase; 40, acetyl-CoA synthetase. Fermentations are not balanced, and reversible reactions are not indicated.
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MAG and Taxonomy
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FIG 2 Overview of metagenome-assembled genomes selected for this study. MAG name, taxonomy,
completeness, contamination, and abundance are provided. Taxonomy was inferred with CheckM and
phylogenetic analyses of RpsC sequences. Abundance is expressed as total normalized coverage (across
all metagenomes) per Gbp of metagenome (see Materials and Methods for details).
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metagenomes annotated as XoxF) formed a monophyletic group within the PQQ-type
ADH branch (Fig. 4).

Finally, 99 sequences formed a branch of mostly inferred ethanol dehydrogenases.
Bifunctional acetaldehyde/ethanol dehydrogenases formed two monophyletic groups;
a subbranch of sequences almost exclusively identified in this work contained only two
reference sequences (the propanediol utilization propanol dehydrogenase PduQ from
Enterococcus faecalis and the oxidative ADH-II from Zymomonas mobilis), while a second
subbranch contained only 3 sequences from this study, and 16 reference sequences (9
butanol dehydrogenases, 4 ethanol dehydrogenases, 2 propanediol utilization propa-
nol dehydrogenases, and 1 methanol dehydrogenase), with 4 of these reference
sequences obtained from Clostridium species.

Known, unusual, and novel pathways may be used for ethanol and isopropanol
fermentation in prairie pothole wetland sediments. In this study, we additionally
analyzed central carbon metabolism pathways in the context of alcohol fermentations.
Respiratory processes were also examined in order to determine whether MAGs could
represent facultative or obligate fermenters (Table S1). Investigated fermentation path-
ways are represented in Fig. 1, and the MAG genomic potential is summarized by taxa
in Fig. 5 (with a detailed gene presence/absence report provided in Table S1). Detailed
descriptions of inferred metabolisms in each MAG are presented in the supplemental
material. The majority of the MAGs (59 of 62) encoded sugar utilization systems, the
machinery for Embden-Meyerhof-Parnas (EMP) glycolysis (58 of 62), and the pentose
phosphate pathway (52 of 62). Moreover, 50 of the MAGs had a pyruvate dehydroge-
nase complex, and 49 contained tricarboxylic acid (TCA) cycle genes (2 Thaumarchaeota
MAGs contained an incomplete TCA cycle). Only one MAG encoded the Entner-
Doudoroff pathway.

The potential for alcohol fermentation was encoded across a range of pathways.
Overall, 42 of 62 MAGs had potential for at least one of the fermentative pathways
investigated, although all encoded at least one acetaldehyde dehydrogenase and one
alcohol dehydrogenase, suggesting that novel pathways may exist in these microor-
ganisms. P. furiosus-like fermentation was the most frequent fermentation pathway

Tree scale: 1
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FIG 3 Phylogeny of alcohol-cycling microorganisms spanning the archaeal and bacterial tree of life based on
reference and MAG-retrieved RpsC sequences. Binned sequences were present in the color-coded clades. Only
taxonomic groups containing binned RpsC sequences are labeled; however, some MAGs were lacking the rpsC
gene (27/62). In these instances, taxonomy was inferred solely with CheckM (such MAGs are absent from this tree).
Taxonomic groups are labeled by the branch. CPR, candidate phyla radiation (collapsed clade).
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present in our MAGs (30 of 62), with 68% of the pyruvate:ferredoxin oxidoreductase
(PFOR) genes in these MAGs identified in metatranscriptomic data (Table S3). In total,
48 MAGs encoded PFOR; 46, 2-oxoglutarate:ferredoxin oxidoreductase (OGFOR); 29,
indolepyruvate:ferredoxin oxidoreductase (IFOR); 3, 2-oxoisovalerate:ferredoxin oxi-
doreductase (OIFOR); 49, acetyl coenzyme A synthetase (ACS), 22, aldehyde:ferredoxin
oxidoreductase (AFOR); and 30, ferredoxin:NADP oxidoreductase. In addition, 18 MAGs
contained the functional potential for mixed acid fermentation, and 11 MAGs for
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heterofermentative lactate fermentation. Despite previous detection of acetone and
isopropanol in PPR wetland pore fluids (11), none of the MAGs reconstructed here
contained the minimal set of genes (see Materials and Methods) to determine potential
for acetone/isopropanol-butanol-ethanol fermentation.

Only one Chloroflexi MAG (metabat2.725) encoded a glyceraldehyde-3-phosphate:
ferredoxin oxidoreductase; therefore, we infer that the conversion of glucose to pyru-
vate does not proceed as in P. furiosus (20), but as in the conventional EMP glycolysis
in the majority of the MAGs in this study. From pyruvate (or indolepyruvate,
2-oxoglutarate, and 2-oxoisovalerate), the pathway may involve the reactions described
by Ma et al. (21) as displayed in Fig. 1. The PFOR reaction would generate acetyl
coenzyme A (acetyl-CoA) and acetaldehyde. Acetyl-CoA would be converted into
acetate by ACS, while acetaldehyde would be converted into acetate by AFOR or into
ethanol by an alcohol dehydrogenase.

Of the 14 MAGs encoding putative isopropanol dehydrogenases, only 3 also had
other genes involved in isopropanol-butanol-ethanol fermentation. The KSB1-affiliated
MAG (metabat2.380; �95% complete) encoded a putative isopropanol dehydrogenase,
phosphotransbutyrylase, and butyrate kinase and represents the most likely microor-
ganism involved in isopropanol-butanol-ethanol fermentation in this study. Despite
this, no transcripts for its putative isopropanol dehydrogenases were detected. Simi-
larly, the Acidobacteria MAG maxbin2.0013 (�61% complete) encoded a putative
isopropanol dehydrogenase and a butyraldehyde dehydrogenase, while the Alphapro-
teobacteria MAG metabat2.370 (�30% complete) encoded both acetoacetate decar-
boxylase and a putative isopropanol dehydrogenase. However, in contrast to the KSB1
MAG, transcripts matching putative isopropanol dehydrogenases were detected in
both of these MAGs. Although we acknowledge that genome incompleteness may play
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a role in the detection of truncated pathways for isopropanol-butanol-ethanol fermen-
tation, we note that even relatively complete genomes (�95%), such as the Burkhold-
eriales MAG metabat2.802 and the Ignavibacteriae MAG metabat2.334, lacked other
genes in this fermentation pathway aside from a putative isopropanol dehydrogenase,
suggesting that these microorganisms may use novel pathways for isopropanol pro-
duction or consumption. In addition, 5 of the 14 putative isopropanol dehydrogenases
that were inferred to be active (via mRNA transcripts) were encoded in Acidobacteria
MAGs and 2 in Planctomycetes MAGs, taxa that are not currently known to play a role
in isopropanol cycling. Together, these data indicate that novel isopropanol-producing
pathways may await discovery and that phyla that were previously unrecognized in
playing a role in isopropanol metabolism may be important in this process in Prairie
Pothole wetlands.

Organisms with the ability to cycle alcohols were implicated in reducing a range of
oxidized substrates. Seven of the MAGs contained marker genes for sulfate reduction,
while 31 were potentially able to catalyze dissimilatory nitrate reduction to ammonium
(DNRA) (Fig. 5). Although none of the MAGs contained genes encoding the complete
denitrification pathway, 38 contained a truncated pathway. Reflecting the metabolic
versatility of these microorganisms, the majority (54 of 62) of MAGs were also predi-
cated to perform oxygen reduction. Only 2 MAGs did not have potential for any of
these respiratory processes. Thaumarchaeota maxbin2.0428 had no NADH dehydroge-
nase or cytochrome c reductase and lacked a complete TCA cycle. Both Thaumar-
chaeota MAGs had amoBC but not amoA. Actinobacteria maxbin2.0055 contained an
NADH dehydrogenase but lacked a TCA cycle or cytochrome c reductase; however,
given that the genome was only �50% complete, additional undetected respiratory
terminal reductases may be affiliated with this microorganism (Table S1).

DISCUSSION

This study aimed to investigate potential microbial genes, taxa, and pathways
implicated in the production of ethanol and isopropanol in Prairie Pothole wetlands,
since these alcohols have been previously measured in millimolar concentrations in
sediment pore waters (11). MAGs were obtained from sediment samples in which these
alcohols were measured and screened for alcohol metabolism genes, resulting in the
selection of 62 MAGs for further analyses in this study.

Of 16 phylum-level groups, the potential for ethanol production was detected in 13,
while candidate isopropanol dehydrogenases were identified in 8 (see the supplemen-
tal material). This potential for isopropanol metabolism should be considered putative,
given that enzymatic studies are needed to confirm substrate specificity of these
alcohol dehydrogenases. Most of the MAGs missing the minimal criteria for a fermen-
tative pathway still had genes commonly involved in fermentation (e.g., lactate dehy-
drogenase, phosphotransacetylase, acetate kinase, and formate dehydrogenase). The
reconstruction of MAGs from complex sedimentary matrices is an ongoing computa-
tional challenge, with the result that only 28 of the genomes analyzed here were more
than 70% complete. Genome incompleteness may therefore explain the absence of a
complete pathway for acetone/isopropanol-butanol-ethanol fermentation in these ge-
nomes, despite the detection of genes (or subunits), including acetoacetyl-CoA:acetate/
butyrate CoA transferase, acetoacetate decarboxylase, putative isopropanol dehydroge-
nase, butyraldehyde dehydrogenase, butanol dehydrogenase, phosphotransbutyrylase,
and butyrate kinase in 30 MAGs, with some genomes having up to 3 of these genes
(Table S1). While we acknowledge the potential underestimation of microbial groups
implicated in alcohol cycling in Prairie Pothole wetlands, we argue that the MAGs
selected for this study had metabolic potential, abundances, and transcript activity that
support their role in alcohol cycling in this ecosystem.

The clustering of 167 MAG-encoded ADH sequences from this study with reference
sequences allowed the inference of ADH substrates. However, a greater challenge was
determining the potential for alcohol production versus alcohol consumption based on
genomic data alone. While some alcohol dehydrogenases run preferentially in the
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oxidative or fermentative direction, many are reversible and utilize a broad range of
substrates (22–24). Therefore, we cannot rule out that many of these microorganisms
may utilize ethanol and/or isopropanol as electron donors. While ethanol oxidation
enters central carbon metabolism via acetyl-CoA, isopropanol oxidation is less under-
stood and is hypothesized to follow the order isopropanol ¡ acetone ¡ acetol ¡
methylglyoxal ¡ pyruvate in unclassified bacteria isolated from environmental samples
(25).

Since the first report on isopropanol dehydrogenase activity in photosynthetic
Rhodopseudomonas species in 1940 (26) and the confirmation that the enzyme gener-
ated acetone by direct dehydrogenation of isopropanol (27), a variety of studies have
demonstrated the microbial ability to oxidize isopropanol. Hoshino reported this
metabolism in Lactobacillus brevis, which expressed an enzyme running preferentially in
the oxidation direction (28). Interestingly, methylotrophic Bacillus strains have been
shown to oxidize not only methanol, but also ethanol, isopropanol, n-propanol, isobu-
tanol, n-butanol, and a variety of methylated amines, sugars, and organic acids (29).
Moreover, it is known that methanogens can utilize isopropanol as a hydrogen donor
(30), generating acetone via F420-dependent alcohol dehydrogenase, and that acetone
can be fermented to acetate by sulfate-reducing bacteria (31) or degraded by nitrate
(32) and sulfate reducers (33) via different pathways (acetone decarboxylase in the first
and 2-hydroxyisobutyryl-CoA mutase and 3-hydroxybutyryl-CoA dehydrogenase in the
latter). Further research is required to elucidate the complex metabolic networks in
which the putative isopropanol dehydrogenases identified in this study participate, as
well as whether they act as isopropanol dehydrogenases.

Interestingly, efforts in bioengineering P. furiosus for industrial-scale ethanol pro-
duction have focused on the insertion of a heterologous acetaldehyde-utilizing alcohol
dehydrogenase (AdhA) and a carbon monoxide dehydrogenase (34) and also in delet-
ing the aldehyde:ferredoxin oxidoreductase while expressing a heterologous bifunc-
tional acetaldehyde/alcohol dehydrogenase (35). The first approach resulted in an
ethanol yield of 20 mM. In Prairie Pothole wetland sediments, natural ethanol concen-
trations reach 4 mM, and MAGs with potential for P. furiosus-like fermentation encoded
the genomic variations targeted in bioengineering. Moreover, the Rhodobacter nitrogen
fixation (Rnf) complex was present in some of these MAGs and could be utilized to
oxidize ferredoxin and reduce NAD� while pumping sodium ions, subsequently utilized
for ATP synthesis. Concomitant NADH formation by this Rnf complex could be coupled
to alcohol production by NAD-dependent ADHs. While laboratory isolation and bio-
chemical studies are required to test these hypotheses, preliminary genomic data
suggest that Prairie Pothole wetlands could be attractive sources of novel microorgan-
isms for the industrial production of alcohols.

Given the diversity of energetically favorable respiratory metabolisms encoded
within these genomes, would fermentative processes be expected in PPR sediments?
We hypothesize that the heterogeneous sediment matrix allows the formation of
anoxic or hypoxic pockets where electron acceptors are temporarily depleted, creating
the conditions required for fermentation to occur (36). As geochemical conditions
dynamically shift (e.g., sulfate upward influx from pyrite oxidation as oxygenated
groundwater flows through the bedrock, nitrogen inputs from agricultural runoff
during storm events, or temporary oxygenation of sediments at the water-sediment
interface from wind-driven water column mixing) microorganisms may return to respi-
ratory processes or enter into a fermentative mode. Dalcin Martins et al. investigated
the genomes of candidate sulfate-reducing bacteria in PPR wetland sediments and
similarly observed the potential for other respiratory processes: DNRA, denitrification,
and oxygen reduction (13). Despite this metabolic flexibility, the extremely high
measured SRRs indicate that sulfate reduction was still a critical process contributing to
carbon mineralization in these sediments. We suggest that the putative fermenters
identified here show similar metabolic flexibility to the candidate SRB in PPR sediments.
Indeed, �65% of binned ADHs were transcribed, indicating the selected MAGs repre-
sent microorganisms active in alcohol metabolism. Via this metabolic flexibility, redox
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chemistry is able to deviate from expected reaction order, as has been observed in
other studies (1, 11, 37–39). For example, sulfate reducers may preferentially oxidize
ethanol over acetate due to higher thermodynamic yields (40). Thus, the incomplete
oxidation of ethanol to acetate may provide additional substrate for acetoclastic
methanogens, leading to cooperation instead of competition. Moreover, high substrate
concentrations may alleviate thermodynamic inhibition and allow sulfate reducers and
methanogens to coexist. High organic carbon loads have been previously hypothesized
to allow for the cooccurrence of acetoclastic methanogens and sulfate reducers in
coastal marine sediments (41). Alternatively, coculture experiments indicated that H2

leaking from acetoclastic methanogens could support sulfate reducers (42), while
methanogens may induce sulfate reducers to enter a fermentative mode (43). Here,
seven MAGs presented potential for sulfate reduction and also fermentation, indicating
that the latter is also a potential explanation—among many—for the cooccurring high
methane emissions and sulfate reduction rates measured in Prairie Pothole wetlands.

We conclude that PPR wetland sediments harbor a vast diversity of candidate
alcohol-cycling microorganisms encoding a variety of alcohol dehydrogenases with
potential for unusual, classical, and novel fermentation pathways. We have been able
to assign putative substrates to alcohol dehydrogenases and better understand alcohol
production in this ecosystem, which is predicted to directly support the highest sulfate
reduction rates ever reported, and indirectly, via fermentation— or directly, via F420-
dependent alcohol dehydrogenases—support methanogenesis that results in ex-
tremely high methane emissions (11, 44, 45). Alcohols are likely key intermediates in
sediment carbon cycling and in CO2 and CH4 generation, highlighting the need for
systematic measurements in sediment pore waters, as well as isolation and biochemical
investigations of key microorganisms implicated in alcohol cycling. Particularly, isopro-
panol metabolism in natural environments requires more attention, given both the
industrial importance of this alcohol and the potential role as an intermediate in carbon
cycling in sedimentary systems. The roles of the putative isopropanol dehydrogenases
identified in this study remain to be elucidated.

MATERIALS AND METHODS
Sample collection, DNA extraction and sequencing, metagenome assembly, and binning. Sediment

core samples were collected from two adjacent wetlands, P7 and P8, at the U.S. Geological Survey-
managed Cottonwood Lake Study Area near Jamestown, ND (11). Accordingly, samples spanned wetland
type (P7 and P8), season (winter, spring, and summer), and depth (1 to 3, 10 to 12, and 19 to 21 cm). The
18 sediment samples chosen for metagenomic sequencing are the same samples previously analyzed
(see supplemental file 1 in reference 13), and MAGs selected for this study belong to this same MAG data
set (13). As such, five previously published MAGs have been reanalyzed and included in this study:
maxbin2.0908, maxbin2.1011, maxbin2.0177, metabat2.783, and metabat2.793. All 57 other MAGs were
analyzed in the present study.

DNA was extracted using the MoBio PowerLyzer Powersoil DNA isolation kit (Mo Bio Laboratories,
Inc., Carlsbad, CA) and quantified using a Qubit fluorometer (Invitrogen, Carlsbad, CA). Metagenomic
sequencing was performed at the DOE Joint Genome Institute. Briefly, libraries were constructed with an
Illumina regular fragment (300 bp) in tubes. For this, 100 ng of DNA was sheared to 300 bp using the
Covaris LE220 and size selected using SPRI beads (Beckman Coulter, Brea, CA). The fragments were
treated with end-repair, A-tailing, and ligation of Illumina-compatible adapters (Integrated Device
Technology, San Jose, CA) using a KAPA-Illumina library creation kit (KAPA Biosystems, Wilmington, MA).
The prepared libraries were quantified using KAPA Biosystems’ next-generation sequencing library qPCR
kit and run on a Roche LightCycler 480 real-time PCR instrument. The quantified library was then
multiplexed with other libraries, and a pool of libraries was then prepared for sequencing on the Illumina
HiSeq sequencing platform utilizing a TruSeq paired-end cluster kit, v4, and Illumina’s cBot instrument
to generate a clustered flow cell for sequencing. Sequencing of the flow cell was performed on the
Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4, following a 2 � 150 indexed
run recipe.

After read trimming and quality control using BBDuk and BBMap (46) as previously described (13),
metagenome assembly was performed using MEGAHIT v1.0.3 (47) using a range of kmers at default
settings. The 18 assemblies were merged using the first part of the MeGAMerge pipeline (48) with default
parameters. Only contigs larger than 1,500 bp were retained. Reads were mapped back to the final contig
set using Bowtie2 (49). The generated sequence mapping files were handled and converted as needed
using SAMtools 1.6 (50). Metagenome binning into draft genomes was performed using three different
binning algorithms with default parameters: CONCOCT 0.4.1 (51), MaxBin2 v2.2.3 (52), and MetaBAT2
v2.10.2 (53). The three resulting bin sets were supplied to DAS Tool 1.0 (54) for consensus binning and
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dereplication, generating an optimized set of MAGs. A single-copy marker gene analysis was performed
using CheckM 1.0.7 (55) to assess MAG quality.

Annotation and gene analyses. Contigs (contiguous DNA sequences) were gene called and
annotated using an in-house annotation pipeline as previously described (56, 57). Briefly, genes were
called with Prodigal (58) and annotated based on forward and reverse blast hits (using a minimum
300-bit score threshold for reciprocal matches and 60-bit score threshold for one-way matches) to amino
acid sequences in the databases UniRef90 and KEGG, while motifs were analyzed using InterProScan.

MAGs were selected for in-depth gene analyses based on the potential for alcohol cycling. At least
110 genes were searched for in each draft genome, totaling �8,000 genes (see Table S1 in the
supplemental material) involved in a variety of pathways. The minimal criteria to determine whether a
MAG had the potential for a pathway are presented in Table 1. The abundance of MAGs was inferred
from total normalized coverage (59), calculated as the total base pairs of mapped reads (summed across
all 18 metagenomes) multiplied by 1 Gbp divided by genome length and metagenome base pairs
(summed across all 18 metagenomes).

The taxonomical classification of these selected MAGs was determined based on lineage-specific
phylogenetic markers from CheckM (55). To resolve instances in which CheckM could not classify a MAG
beyond domain level or to confirm taxonomy, binned rpsC sequences (encoding the ribosomal protein
S3) were used to place MAGs in a phylogenetic tree containing reference sequences from the 2016
update of the tree of life (60). MAGs including genes for alcohol dehydrogenases were used to build a
phylogenetic tree containing also reference sequences retrieved from the National Center for Biotech-
nology Information (NCBI; minimum sequence length of 100 amino acids for any sequences in this tree).
For these phylogenetic trees, entire amino acid sequences were aligned with MUSCLE v3.8.31 (61), and
columns with at least 95% gaps were removed using Geneious 9.0.5 (62). Trees were built using FastTree
v2.1.10, which infers approximately maximum-likelihood phylogenetic trees (63), using default param-
eters under the Jones-Taylor-Thornton model of amino acid evolution, and visualized with iToL (64).
Figures were edited in Adobe Illustrator v16.0.0 (Adobe Systems, Inc., San Jose, CA).

Metatranscriptomic analyses. In total, six sediment samples for metatranscriptomics were sent to
the Environmental Molecular Sciences Laboratory (EMSL) in Richland, WA: MayP7_core1_1-3cm,
MayP8_core1_1-3cm, SepP7_core6_1-3cm, SepP8_core1_1-3cm, SepP7_core5_10-12, and SepP8_core2_
10-12cm. These samples correspond to our previously published data (11, 13). RNA was extracted from

TABLE 1 Minimal criteria to determine the potential for a pathway, process, or enzyme

Metabolic trait Criteria used to determine metabolic potential

Sugar utilization At least one sugar-specific phosphotransferase component II enzyme or sugar kinase
EMP glycolysis Six of ten genes (or five, with one being a phosphofructokinase)
Pentose phosphate pathway Four of seven genes
Entner-Doudoroff pathway Both 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphate-gluconate

aldolase
Pyruvate or 2-oxoglutarate dehydrogenase complex At least component E1 or component E2
TCA cycle Five of nine genes; if 2-oxoglutarate dehydrogenase was missing but 2-oxoglutarate:

ferredoxin oxidoreductase was present, it counted as an alternative; if both were
missing, the TCA cycle was considered incomplete; for succinate dehydrogenase/
fumarate reductase, at least two of four subunits needed to be present

Pyrococcus furiosus-like fermentation Pyruvate, indolepyruvate, 2-oxoisovalerate, or 2-oxoglutarate:ferredoxin
oxidoreductase, and two of another three components: (i) acetyl-CoA synthetase;
(ii) aldehyde:ferredoxin oxidoreductase; and (iii) ferredoxin:NADP� oxidoreductase

Heterofermentative lactate fermentation Potential for EMP, phosphoketolase, lactate dehydrogenase, aldehyde
dehydrogenase, and ADH

Mixed acid fermentation Pyruvate-formate lyase (PFL) or PFL-activating enzyme (AE), formate dehydrogenase,
acetate kinase, potential for TCA or succinate dehydrogenase or lactate
dehydrogenase, aldehyde dehydrogenase, and ADH

Butanediol fermentation Aldehyde dehydrogenase, ADH, and 2,3-butanediol dehydrogenase
Acetone-butanol-ethanol fermentation Acetoacetyl-CoA: acetate/butyrate CoA transferase, acetoacetate decarboxylase,

phosphotransbutyrylase, butyrate kinase, aldehyde dehydrogenase and ADH
Isopropanol-butanol-ethanol fermentation Acetoacetyl-CoA: acetate/butyrate CoA transferase, acetoacetate decarboxylase,

phosphotransbutyrylase, butyrate kinase, aldehyde dehydrogenase, ADH, and
isopropanol dehydrogenase

Sulfate reduction At least one subunit of the dissimilatory sulfide reductase (dsrABD) and no sox
pathway

DNRA At least one ammonia-forming nitrite reductase (nirBD or nrfAH)
Denitrification (partial) At least one of the following: nitrate reductase (narGHI or napAB), nitrite reductase

(nirKS), nitric oxide reductase (norBC), or nitrous oxide reductase (nosZ)
Oxygen respiration At least one of the following oxygen reductases: aa3-type cytochrome c oxidase

(coxABCD), cbb3-type cytochrome c oxidase (ccoNOPQ), cytochrome ba3 heme
quinol oxidase, cytochrome bo3 ubiquinol oxidoreductase (cyoABCDE), cytochrome
aa3-600 menaquinol oxidase (qoxABCD), or cytochrome bd1 ubiquinol
oxidoreductase/cyanide-insensitive oxidase (cydABX)
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sediments using the RNeasy Powersoil Total RNA kit (Qiagen, Hilden, Germany), followed by genomic
DNA removal and cleaning using Qiagen’s RNase-Free DNase set kit and an RNeasy minikit. The integrity
of the RNA samples was assessed using an Agilent 2100 bioanalyzer (Agilent, Santa Barbara, CA). RNA
samples having RNA integrity numbers between 9 and 10 were used in this work. A Ribo-Zero rRNA
removal kit plant (Illumina, San Diego, CA) was used for enrichment of transcripts. The SOLiD Total
RNA-Seq kit (Thermo Fisher Scientific, Waltham, MA) was used to construct template cDNA for RNA-Seq
according to the manufacturer’s instructions. Briefly, mRNA was fragmented using chemical hydrolysis,
followed by ligation with strand-specific adapters and reverse transcript to generate cDNA. The cDNA
fragments, 150 to 250 bp in size, were isolated and amplified through 15 amplification cycles to produce
the required number of templates for the SOLiD EZ Bead system, which was used to generate the
template bead library for ligation base sequencing by 5500xl SOLiD instrument (Thermo Fisher Scientific).
The 50-base short read sequences produced by the SOLiD sequencer were mapped in color space using
the whole-transcriptome analysis pipeline in Life Technologies LifeScope software v2.5 against the
metagenome. Adapter and quality trimming and quality control were performed using LifeScope’s
default settings. Because LifeScope software does not accommodate the large number of genes present
in the metagenome, the 7,471,083 gene sequences were collapsed into 95 artificial chromosomes. A
companion gtf file was also created, with gene locations adjusted accordingly. Since the number of
annotated genes that LifeScope is designed to handle is also limited, a placeholder gtf was provided for
the LifeScope pipeline. Output bam files were then provided as input for htseq-count (65) for mapping
of aligned reads to genes, with the “nonunique” argument set to “all.” LifeScope selects locations based
on the best read-matching score and randomly chooses locations when multiple loci receive the same
score. The “–nonunique all” setting of htseq-count allows these reads to be included. RPKM (reads per
kilobase per million mapped reads) values for each gene were calculated as the number of mapped reads
times 109 divided by the total number of reads in that sample times the gene length in base pairs using
R software (66).

Data availability. Raw reads, trimmed reads, individual assemblies, and quality control reports are
available at the JGI genome portal under project name “Seasonal Sulfur Cycling as a Control on Methane
Flux in Carbon-Rich Prairie Pothole Sediment Ecosystems” and JGI proposal ID 2025 (https://genome.jgi
.doe.gov/portal/Seasulecosystems/Seasulecosystems.info.html). All MAGs used in this study and meta-
transcriptomic data were deposited on NCBI under BioProject number PRJNA330672. Additional files are
publicly available at CyVerse (https://de.cyverse.org/de/): amino acid fasta files, annotation files, ADH
sequences, and trees from this study. To access these files, users must create an account, log in, and enter
the folder pathway “/iplant/home/pdalcin/PPR_alcohol_files.” The merged contig set from Dalcin Martins
et al. (13) is available at “/iplant/home/pdalcin/microbiome_files.”

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.00189-19.
SUPPLEMENTAL FILE 1, XLSX file, 0.05 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.03 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.02 MB.
SUPPLEMENTAL FILE 4, PDF file, 0.1 MB.
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