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Abstract: Wireless sensor networks (WSN) involve large number of sensor nodes distributed at
diverse locations. The collected data are prone to be inaccurate and faulty due to internal or external
influences, such as, environmental interference or sensor aging. Intelligent failure detection is
necessary for the effective functioning of the sensor network. In this paper, we propose a supervised
learning method that is named artificial hydrocarbon networks (AHN), to predict temperature in a
remote location and detect failures in sensors. It allows predicting the temperature and detecting
failure in sensor node of remote locations using information from a web service comparing it with
field temperature sensors. For experimentation, we implemented a small WSN to test our sensor in
order to measure failure detection, identification and accommodation proposal. In our experiments,
94.18% of the testing data were recovered and accommodated allowing of validation our proposed
approach that is based on AHN, which detects, identify and accommodate sensor failures accurately.

Keywords: artificial organic networks; artificial hydrocarbon networks; distributed services architecture;
failure detection; internet-of-things; machine learning; weather web services; sensor networks

1. Introduction

Nowadays, weather conditions affect the daily life of many people in the world [1]. The need of
environmental information for the development of activities around the cities, farms and communities
is increasing as technology of meteorological predictions becomes available. Likewise, the grown
of development of meteorological stations for reports is increasing [2–7]. The weather monitoring
stations help to predict and understand the weather conditions in order to monitor and track weather
changes. These stations uses multiple meteorological sensors to monitoring weather conditions by
sensing weather variables such as temperature, humidity, atmospheric pressure, wind speed, wind
direction and rainfall, with the objective to give accurate information to users.

In fact, some institutions and companies, and in some cases, buildings and homes, have their
own weather stations to collect weather data. With a right distribution of meteorological sensors,
a prediction based on acquired data with information obtained in real time can be created. This
information is used to their own ends, and in some cases, shared between third parties through a new
rising technology like the Internet of Things (IoT) to keep in hand the needed information to anticipate
and be alert to the weather and climate conditions.

In this context, IoT is a new part of a novel generation of information technology that allows
the connection between devices to share multiple data to control, automate and centralize systems
of a variety of application domains. This technology has several application domains such as
environmental monitoring, smart cities, smart business and product management, smart homes,
smart building management, healthcare and security and surveillance. To achieve this, many protocols
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for communication and management must allow the connection with sensors, cloud-based systems,
control devices and monitoring [8–10]. Moreover, it is important to mention that the failures from
sensor nodes to receive messages must be taken into account, i.e., sensors can have a poor connection to
the base station, meaning that the data transmission from that sensor has a high risk to fail. In addition,
due to the limited energy capacity, sensor nodes with run out battery may cause disconnected links
which will result in failed data transmission in IoT [11–13].

The implementation of weather monitoring station based on IoT system allows to obtain
information from weather web services and physical multi-sensors connected into IoT network,
attaining better accuracy of data used to predict and show weather statistics [14–17]. Moreover, the
problem of failure detection in sensor nodes is essential since this issue can destabilize the normal
operation of measurement. In addition, artificial intelligence (AI), i.e., machine learning and data
mining, enhance predictive climate conditions actions over IoT systems [18]. And, some approaches
have been developed on sensor failure using AI.

In particular, sensor failure detection, identification and accommodation (SFDIA) approaches
are those schemes used to preserve robustness and high reliability of sensor-based systems [19].
For instance, sensor accommodation (SA) refers to the ability of the system to replace the
malfunctioning sensor with another sensor or estimator. A typical scheme for SA is redundancy
in hardware using multiple sensors for one measurement, in which, if one of them has different
behavior than the others, one of the other sensors replaces it [19]. Sensor failure detection and
identification (SFDI) refers to determine an anomaly in the system and to identify where it takes place.
Literature reports SFDI schemes is mainly applied with the comparison between the real sensor value
and an estimation of it [19,20]. For estimation, linear and nonlinear models have been applied [19].
Recently, AI has been applied to solve SFDIA systems. Another approach, mainly for wireless sensor
networks, is the check-point recover algorithm which measures the energy level of a sensor and sends
that information through all the network. If one sensor is not able to send this energy level, then it is
assumed as a fault [21]. In literature [19–22], some proposal for failure detection in sensors through
neural networks learning algorithms and support vector machines have been reported.

In this context, this paper proposes to apply artificial intelligence by means of a supervised
learning method namely artificial hydrocarbon networks (AHN), to predict temperature in a remote
location and detect failures in sensors. For this work, a small wireless sensor network over IoT protocols
is developed. This network consists on three temperature sensors, remotely located indoors, and a
temperature web service. At each node of the network, an AHN-model for predicting temperature
is trained, but also the architecture of the AHN considers a failure detection method. In this sense
the system is able to identify a failure in sensors over the wireless network and to promote SFDIA.
For validation purposes, a simulated and a real data sets of large number of sensor nodes were
previously tested.

The contribution of this work considers: (i) the development of a wireless sensor network for
indoor temperature estimation using AHN, and (ii) the proposed sensor failure detection module
using AHN. To the best of our knowledge, this is the first time AHN is implemented for failure
detection systems.

The rest of the paper is organized as follows. Section 2 summarizes the prototype development
of the IoT system. Section 3 describes the proposed intelligent sensor failure detection module using
artificial hydrocarbon networks. Section 4 shows the applicability of the proposed strategy in large
wireless sensor networks. Section 5 presents experimental results and discussion about the proposal,
and Section 6 concludes this work.

2. Prototype Development

The prototype implementation of the proposed system uses a weather web service and physical
temperature sensors under DSA (Distributed Services Architecture) open source platform for IoT [23].
The main goal of the DSA is to unify multiple devices, services and application in real time, structured
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and adaptable data model. To achieve this, we employed an embedded system Raspberry Pi 3 as a DSA
server to control the system using a distributed server link (DSLink) to enable data exchange with other
connected sensor nodes, as a weather web service in the cloud that uses Yahoo Weather API [24], and a
communication protocol for receiving physical sensors data by means of EnOcean®protocol [25–27].
Figure 1 shows the IoT architecture of the prototype development.

In addition to the embedded system, the DGLux5®program, integrated in the DSA server, allows
to work with real time data to ensure the design and deployment process can be shown satisfactory
on the different temperatures from physical sensors and the weather web service. The visual
programming language to designing the front-end was performed connecting blocks that represent
different operations. In the dataflow, to display the various temperatures and save the values in a
database, the blocks were dragged and placed to be connected.

As shown in Figure 1, the DSA obtains the temperatures from the weather web service
connected to the cloud via internet and collects the information from the physical sensors using
the EnOcean®protocol. The temperature data obtained are shown in a graphical interface of
DGLux5®program, where each of the temperatures appears, and where it is possible to download a
CSV file of each one of them, as shown in Figure 2.

For this prototype implementation, the temperature sensors were located physically in three
different locations inside a building of the Faculty of Engineering in Universidad Panamericana
(Aguascalientes, Mexico). Sensor 1 was located on an electronic laboratory; sensor 2 was placed in a
manufacturing room; and finally, sensor 3 was positioned on an office. Figure 3 shows the locations of
the three sensors inside the building, while Figure 4 shows the inside enclosures where the sensors
were placed.

Figure 1. Architecture of the IoT system.
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Figure 2. Snapshot of the front-end developer of DGLux5 ®program.

Figure 3. Layout of the building showing the location of the three temperature sensors.
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Figure 4. Location of the three temperature sensors inside enclosures.

3. Development of the Temperature Estimation and Sensor Failure Detection System

In order to perform an intelligent system that can predict temperature changes and failure
detection in sensors through an IoT system, the AHN supervised learning method is proposed.
In particular, this work is focused solely on the prediction of the temperature and failure detection
sensors using the IoT system presented in Section 2. The proposed intelligent system is shown in
Figure 5. The ensuing is a general description of wireless sensor network architecture, the method of
artificial hydrocarbon networks and the description of the intelligent module.

AHN-Based 

Sensor Failure Detection

Module

- sensor failure?

- which sensor?

- sensor accommodation

  (if required)

WSN

AHN-Based 

Temperature Estimation

Module

Figure 5. Proposed intelligent system for temperature estimation and sensor failure detection.

3.1. Wireless Sensor Networks

A wireless sensor network (WSN) is composed of a large number of sensor nodes that
cover an even larger set of application areas [28], such as, military and surveillance [29–31],
environment [3,32,33], health [34–36], home and building monitoring [37–39]. On the network, sensor
nodes send information at regular time intervals from inside enclosures to be monitored, and ensure
that the nodes in the network operate faultlessly. Therefore, fault detection in sensors nodes play an
important role in network monitoring since an error can have a negative effect on the system’s efficiency
and reliability. Figure 6 shows our WSN architecture that is applied in temperature monitoring which
contains sensor nodes, gateway and user. Sensor nodes will communicate with each other and transmit
the processed data to gateway over a wireless communication. The gateway collects data from all the
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sensor nodes, transmits the analyzed data to user via Internet and receives data from temperature
web services.

Figure 6. Wireless sensor network architecture of the IoT system.

3.2. Artificial Hydrocarbon Networks

In machine learning, AHN is a supervised learning method. It aims to model data using the
inspiration of carbon networks, simulating the chemical rules involved within organic molecules to
represent the structure and behavior of data [40,41]. Thus, the method loosely simulates the chemical
interactions of hydrocarbon molecules.

The basic unit of information in AHN is namely CH-molecule or simply molecule. From
inspiration on nature, a molecule is formed with one carbon atom that is linked to up to four hydrogen
atoms. Generally speaking, one molecule models a chunk of data in its parameters (hydrogen and
carbon atoms) and configuration. The molecule has a structural representation, a graphical model
as shown in Figure 7, and a chemical behavior. Mathematically, the behavior ϕ of a molecule with k
hydrogen atoms is expressed as in (1); where, σ ∈ Rn is called the carbon value, Hi ∈ Rn is the i-th
hydrogen atom attached to the carbon atom, and x = (x1, . . . , xn) is the input vector with n features.

ϕ(x, k) =
n

∑
r=1

σr

k≤4

∑
i=1

Hirxk (1)

µ1

µ2 µj

µm

σ1 σ2 σj σm
... ...

α1

α t

αc

input space

mixture

compound t

R n

hydrogen

atoms

carbon

atoms

inputs output

Figure 7. Schematic of an artificial hydrocarbon network.
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Two or more unsaturated molecules, i.e., those with k < 4 hydrogen atoms, can be joined
together. In AHN, this structure is called a compound. Different compounds have been defined
in literature [40,42,43]. The simplest one is the saturated and linear chain of m molecules. It is
composed structurally of two molecules with three hydrogen atoms and (m − 2) molecules with
two hydrogen atoms. The behavior ψ of a saturated-and-linear compound is defined as (2); where,
ϕj is the behavior of the jth associated molecule that represents a subset Σj of the input x such
that Σj = {x| arg minj(x − µj) = j}, and µj ∈ Rn is the center of the jth molecule [44,45]. In fact,
Σj1 ∩ Σj2 = ∅ if j1 6= j2. In this regard, literature reports extensive usage of AHN with a single
saturated-and-linear compound [40,41,43–46].

ψ(x) =



ϕ1(x, 3) x ∈ Σ1

ϕ2(x, 2) x ∈ Σ2

· · · · · ·
ϕm−1(x, 2) x ∈ Σm−1

ϕm(x, 3) x ∈ Σm

(2)

Compounds can interact among them in definite ratios αt, so-called stoichiometric coefficients or
weights, forming a mixture S(x) as shown in (3); where, c represents the number of compounds in the
mixture and αt is the weighted factor of the t-th compound [40].

S(x) =
c

∑
t=1

αtψt(x) (3)

Formally, an AHN is a mixture of compounds (see Figure 7) each one computed using
a chemical-based heuristic rule, expressed in its own training algorithm, as depicted in
Algorithm 1 [40,42,46]. At first, it initializes the structure of a saturated and linear compound with m
molecules, and the centers of molecules {µj} are randomly set. While a stop criterion is not reached,
the compound is computed and updated as follows. First, for each molecule, the training dataset Σ is
partitioned in subsets Σj such that every input x is near to µj. Then, the hydrogen and carbon values
of each molecule is computed independently using the least squares estimates (LSE) method, and the
error Ej between the output response of the j-th molecule and the actual targets y of the j-th subset
is calculated. If any of the subsets is empty, then these subsets require a new position, i.e., update
their centers. This relocation is made by simply changing the center of the empty subset randomly
close to one molecule with large error. Later on, the center of molecules are updated via a gradient
descent approach with learning rate 0 < η < 1, previously chosen, as shown in (4) with E0 = 0. Lastly,
the compound ψ is updated with the behaviors of molecules calculated so far.

µj ← µj − η(Ej−1 − Ej) (4)

A detailed description of the AHN-algorithm can be found in [40]. Information about properties
and comparisons with other supervised learning methods can be seen in [40,44,45].

3.3. Temperature Estimation and Sensor Failure Detection Module

For our proposal, we model the dynamics of the temperature sensors in the WSN to provide
an estimate using AHN. In addition, this estimation is then compared with the actual sensor values,
and treated statistically for failure detection. In the following, the entire module is explained.
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Algorithm 1 Simple AHN training algorithm
Data: the training data set Σ = (x, y), the number of molecules in the compound m ≥ 2 and the

learning rate 0 < η < 1.
Result: the trained compound ψ.

1. Create the structure of a new compound with m molecules.
2. Randomly initialize a set of molecular centers, µj.
while not reach a stop criterion do

for j = 1 to m do
3. Σj ← do a subset of Σ using µj.
4. {Hj, σj} ← calculate molecular parameters of ϕj using LSE method.
5. Ej ← compute the error in molecule.

end
for j = 1 to m do

if Σj = ∅ then
6. µj ← relocate the center of molecule near to other µk such that Ek is very large.

end
end
7. Update all centers using µj = µj − η(Ej−1 − Ej).

end
8. Update the behavior of compound ψ using all ϕj already calculated.
9. Return ψ.

3.3.1. Temperature Estimation Module

Consider a WSN with N sensors as nodes, si for all i = 1, . . . , N. Also, let say that sensor si
fails. Then, we propose a sensor accommodation using the estimations of an AHN-based model

f̂ s
(i)
ω of sensor si, as expressed in (5); where, ŝi(t) ∈ R is the estimation of sensor si in time t and

swsn(t) ∈ R(N−1) is a vector of values of the (N − 1) sensors swsn(t) = (s1(t), . . . , sk(t), . . . , s(N−1)(t))
and i 6= k in time t.

ŝi(t) = f̂ s
(i)
ω (swsn(t), swsn(t− 1)) (5)

This sensor model f̂ s
(i)
ω is proposed to be based on AHN with a vector of parameters ω that

represents the hydrogen, carbon and molecular centers over the hydrocarbon compound, such that
ω = {Hir, σr, µj}. For training the AHN-model, we use tuples of the form (swsn(t), swsn(t − 1)) ∈
R2(N−1) as training inputs and si(t) ∈ R as training outputs, collected from the WSN for a given period

of time. In this regard, the sensor model f̂ s
(i)
ω is trained by minimizing the error function described

in (6) using the gradient descent method.

E(ω) =
1
2 ∑

swsn(t),swsn(t−1)∈R2∗(N−1)

‖si(t)− f̂ s
(i)
ω (swsn(t), swsn(t− 1))‖2 (6)

3.3.2. Failure Detection Module

The aim of this module is to detect sensor failures through implicit estimations of the dynamic
system. In general, this process considers two steps: (i) compute the error between the dynamic of the
system and the estimates, and (ii) compute a metric for failure detection. This is described below.

Consider a WSN with N sensors as nodes, si for all i = 1, . . . , N. Moreover, consider the dynamics
function model f̂ω of a sensor as (7), where si(t) ∈ R is the value of sensor si in time t, swsn(t) ∈ R(N−1)

is a vector of values of the (N − 1) sensors swsn(t) = (s1(t), . . . , sk(t), . . . , s(N−1)(t)) and i 6= k in time
t, and ∆ŝwsn(t) represents the changes in sensors values swsn in time t.

∆ŝwsn(t) = f̂ω(swsn(t), si(t)) (7)
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The dynamic function f̂ω is proposed to be parameterized with AHN, where the vector of
parameters ω represents the hydrogen, carbon and molecular centers over the hydrocarbon compound,
i.e., ω = {Hir, σr, µj}. After training the AHN-model f̂ω and using (7), it is easy to compute the
predicted next values of sensors swsn for time t + 1 as expressed in (8).

ŝwsn(t + 1) = swsn(t) + f̂ω(swsn(t), si(t)) (8)

For training the AHN-model, we use tuples of the form (swsn(t− 1), si(t− 1)) ∈ RN as training
inputs and differences ∆swsn(t) = swsn(t)− swsn(t− 1) ∈ RN−1 as training outputs, collected from
the WSN for a given period of time, and all these data were randomly shuffled. Thus, we train the
dynamics function model f̂ω by minimizing the error (9) using the gradient descent method.

E(ω) =
1
2 ∑

swsn(t−1),si(t−1)∈RN

‖∆swsn(t)− f̂ω(swsn(t− 1), si(t− 1))‖2 (9)

It is remarkable to say that using the definition from (7), it is possible to observe that changes of
sensors values ∆ŝwsn in t are impacted by the actual values of the sensor si(t). Thus, if si(t) fails, then
it will impact on the changes of sensors values and also in the prediction of the next values ŝwsn(t + 1).

From the above, it is possible to detect a failure in the system comparing the actual values of
sensors swsn(t) and the estimation ŝwsn(t) as shown in (10), where Ei is the error between the actual
and estimate values of the sensors using the function model excited from si.

Ei(t) = ‖swsn(t)− ŝwsn(t)‖ (10)

Since an actual failure of si affects on all the function models built for each sensor in the WSN,
then Ej for all j = 1, . . . , N are affected differently. To take into account all these variations, an overall
error (11) is computed.

E(t) =
N

∑
j=1

Ej(t) (11)

It would be easy to use a threshold scheme for sensor failure detection [19]. However, tuning
the threshold is highly dependent on the behavior of the WSN. Hence, we propose to normalize the
overall error online, obtaining its mean µE and standard deviation σE from zero to t, such a confidence
value α for failure detection can be selected. To this end, the failure detection function f ail(t) can be
expressed as in (12).

f ail(t) =

1
(

E(t)−µE
σE

)2
> α

0 otherwise
(12)

3.3.3. Sensor Identification

The aim of this phase is to determine which sensor fails in a given time t. From the above
description, if a sensor failure is produced, then it is possible to detect it comparing the dynamic
system with the estimation of the dynamics. Since the estimation dynamics is computed for each sensor
node, then the one with the highest error would be identified as the failure one, as described below.

To identify a failed sensor si over a WSN of N sensor nodes, it is possible to simply compare

the actual values sk(t) and the estimation values ŝk(t) of all sensors (using the sensor model f̂ s
(k)
ω ),

and determine which sensor k obtains the maximum difference, as calculated in (13).

i = max
k
‖sk(t)− ŝk(t)‖ (13)
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3.3.4. SFDIA Using AHN

To this end, a complete SFDIA is proposed over a WSN of N sensor nodes by employing AHN at
different levels of the approach. Algorithm 2 summarizes the whole SFDIA strategy.

It consists in five phases: (i) a training step that consists on collecting healthy data for building all
AHN-models required for the strategy (sensor models and dynamic function models), (ii) a failure
detection step that determines if there exists or not a sensor failure, (iii) a sensor identification step
where the system recognizes which sensor failed, (iv) a sensor accommodation step that replaces the
sensor failed by the sensor estimations done with its related sensor model, and (v) an update statistics
step that recalculates the statistical values of overall error that allows to define a failure (c.f. Figure 5).

Algorithm 2 Sensor failure, identification and accommodation strategy using AHN
Data: the WSN with N sensor nodes and failure confidence value α.
Result: SFDIA strategy.

Training Phase:
1. Collect healthy data from WSN.

2. Train all sensor models f̂ s
(k)
ω based on AHN.

3. Train dynamic function models f̂ω based on AHN.
while true do

Failure Detection Phase:
4. Compute the error in dynamic function models using (10).
5. Calculate the overall error in dynamic function models using (11).
6. Compute the failure function f ail using (12).

if fail then
Sensor Identification Phase:
7. Detect the sensor failed si using (13).
Sensor Accommodation Phase:
8. Replace sensor si by estimation ŝi using f̂ s

(i)
ω .

else
Update Phase:
9. Calculate the online statistics µE and σE of overall error.

end
end

4. Applicability of the Proposed SFDIA with AHN

We conducted a preliminary experimentation using the SFDIA strategy including AHN in order
to test its performance over large WSN. Two experiments using both simulated and real WSN were
done, as described in the following section.

4.1. SFDIA with AHN on Simulated WSN

We simulated three WSN with different number of nodes, ranging from N = 20, 50 and 100.
In this case, each sensor node simulates the measurement of indoor temperature in different locations.
Data were simulated using a pseudo-stochastic periodic function and random values in the frequency
and translation parameters. Figure 8 shows thumbnails of sensor nodes in the experiment with N = 20,
only in the testing data.

For training sensor models and dynamic function models, we generated 10,000 samples, 70%
of them for training and 30% for testing. The training set was considered as healthy information.
We built all AHN models using the following parameters: molecules m = 5, learning rate η = 0.1 and
a maximum of 1000 iterations as stop criterion. For suitability, data were normalized uniformly before
using at training step.
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Figure 8. Thumbnails of sensor nodes in a simulated WSN with N = 20.

We then polluted sensor data artificially during two windows of time. These windows were
chosen to be fixed in positions for comparative purposes. The windows for failure sensors were in
ranges (110, 150) min and (900, 1250) min. After applying our proposed SFDIA strategy, of Algorithm 2,
over the different scenarios (N = 20, 50, 100) in WSN, we obtained the results summarized in Table 1.
As shown, these results report the accuracy of the failure detection phase, using (12), in comparison
with the ground-truth. Figure 9 depicts an example when N = 20 of the comparison between the
estimated failure detection and the real failure.

It is shown in Figure 9 that the first part of the estimation in failure detection computes several
false-positive. However, this is not an issue assuming that in these regions, the actual values of
the identified failure sensor will be replaced by estimated values using the corresponding sensor
model. Moreover, from Table 1 it can be observed that increasing the number of nodes does not affect
significantly the accuracy of failure detection, e.g., mean accuracy of 89.42%. Thus, our proposed
SFDIA with AHN can deal with different number of sensor nodes in WSN.

Table 1. Accuracy in failure detection in different simulated WSN.

N Accuracy (%)

20 92.13
50 88.09

100 88.03

0 500 1000 1500 2000 2500 3000

time (min)

0

0.5

1

fa
il

real faliure

failure detection

sensor 2 failure sensor 7 failure

Figure 9. Failure detection response in the system, for N = 20.



Sensors 2019, 19, 854 12 of 19

4.2. SFDIA With AHN on Real WSN

We tested our proposed SFDIA with AHN on a real WSN. We employed the Intel Lab data set [47]
that comprises 54 sensors retrieving weather data such as: temperature, relative humidity and light,
as well as the voltage of the battery. Data were gathered in the Intel Lab, as shown in Figure 10,
between 28 February and 5 April 2004.

Figure 10. Location of the sensor nodes in the Intel Lab. Layout taken from [47].

For training sensor models and dynamic function models, we extracted 12651 samples for
training and 22,251 for testing. These data only contain temperature values as continuous time
series. The training set was considered as healthy information, as depicted in Figure 11. In this case,
testing data contain altered values (e.g., far from the mean value of time series) from the original data
set. We built all AHN models using the following parameters: molecules m = 5, learning rate η = 0.1
and a maximum of 1000 iterations as stop criterion. For suitability, data were normalized uniformly
before using at training step.

Figure 11. Training data set obtained from the Intel Lab WSN with N = 54 sensor nodes.

We applied the proposed SFDIA with AHN of Algorithm 2. After completion of the SFDIA
strategy, this experiment reported an accuracy of 98.30% in failure detection phase. Figure 12 shows the
testing data set with some failures, and the comparison between the estimated failure detection and the
real failure. It can be observed that some regions of false-negative values are estimated. Unfortunately,
the proposed SFDIA strategy cannot correct sensor failure detection in the latter regions. Nevertheless,
this experiment validates the feasibility to detect sensor failures in an accurate way over real data.
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Figure 12. (a) Sensor failures in testing data and (b) failure detection response in the Intel Lab WSN
with N = 54 sensor nodes.

5. Experimental Results and Discussion

We conducted a series of experiments over the WSN, described in Section 2, to evaluate the
performance of our proposed SFDIA strategy based on AHN. Three enclosed temperature sensors
(s1, s2, s3) and a temperature remote web service (s4) were considered as sensor nodes (N = 4).
We collected 2409 temperature samples from all the sensor nodes during ten days in a non-uniform
way (no sample rate defined).

5.1. Training Phase

We considered the first seven days of data (1687 samples) as healthy information retrieved
from the sensor nodes. So, these data were employed for training all the sensor and dynamic
function AHN-models.

For the temperature sensor estimators, we configured the AHN models with the following
parameters: molecules m = 5, learning rate η = 0.1 and a maximum of 1000 iterations as stop criterion.
For the dynamic function estimators, the AHN models were configured with the parameters: molecules
m = 5, learning rate η = 0.1 and a maximum of 1000 iterations as stop criterion. Notice that we only
trained models related to the physical sensors in our WSN: s1, s2 and s3. For suitability, data were
normalized uniformly before using for training the AHN-models.

Figure 13 shows the output response of the temperature sensor AHN-models. As observed, the
left part depicts estimation over the training data and the right part depicts estimation over the testing
data (722 samples representing three days). Table 2 summarizes the root-mean-squared error (RMSE)
in the estimation for both training and testing in all the physical sensor nodes.

For the dynamic function estimators, we configured the AHN models with the following
parameters: molecules m = 5, learning rate η = 0.1 and a maximum of 1000 iterations as stop
criterion. For the dynamic function estimators, the AHN models were configured with the parameters:
molecules m = 5, learning rate η = 0.1 and a maximum of 1000 iterations as stop criterion. In this case,
we only trained models related to the sensor nodes: s1, s2 and s3. Notice that these models shape the
dynamics of other sensor nodes, except for si. We normalized data uniformly before using for training
the AHN-models.
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Figure 13. Temperature estimation associated to each physical sensor node s1, s2 and s3 in comparison
with the actual values. Left side of the vertical line refers to training data and right side refers to the
testing data.

Table 2. Output response of the temperature estimations in training and testing, using AHN-models.

Temperature Sensor Model RMSE (◦C) in Training RMSE (◦C) in Testing

ŝ1 0.4482 0.6986
ŝ2 0.4042 0.9739
ŝ3 1.1986 2.7036

Figure 14 shows the absolute error between the output response of the dynamic function
AHN-models and the actual dynamics system. Again, the left part depicts estimation over the
training data and the right part depicts estimation over the testing data. Table 3 summarizes the RMSE
in the estimation for both training and testing in all the dynamic functions. Notice that these RMSE
results are for each of the sensor node signals related in the dynamic function.

Table 3. Output response of the dynamic functions estimations in training and testing, using AHN-models.

Dynamic Function Model RMSE (◦C) in Training RMSE (◦C) in Testing

f̂ (1)ω (0.0196,0.0579,0.0403) (0.0307,0.0838,0.1042)
f̂ (2)ω (0.0087,0.0583,0.0404) (0.0187,0.0824,0.1045)
f̂ (3)ω (0.0097,0.0213,0.0352) (0.0161,0.0225,0.0846)
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Figure 14. Absolute error between the dynamic function estimations associated to each sensor node
s1, s2 and s3 in comparison with the actual values. Left side of the vertical line refers to training data
and right side refers to the testing data.

5.2. Failure Detection Phase

Using the above AHN-models, we conducted an experiment on sensor failure, so we can test and
evaluate the performance of our SFDIA proposal. To do so, we collected data from the WSN in the
three-day period (i.e., the testing set), and then we changed some sensor values to artificially produce
sensor failures. The sensor failures where done by changing the real value with a random constant
value below the mean values of sensors (measured in the training data). Then, we simulate an online
failure detection.

At each simulation step, we computed the error between the dynamic function estimation f̂ (i)ω

and the actual values of the sensors in WSN, except the sensor i, such that (10) is calculated. After that,
we obtained the overall error by adding up the error in the dynamic function estimations, as expressed
in (11). Lastly, we computed the failure function f ail using (12) with a confidence value α = 1.65
representing 95.05% of confidence in failure detection. Figure 15 shows the output response of this
sensor failure detection. As observed, the failure detection is done in 100%, but until now, the sensor
failed is not detected.
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Figure 15. Failure detection response in the system.
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5.3. Sensor Identification and Accommodation Phases

In order to identify the sensor who failed, the proposed SFDIA computes a comparison between

the actual value of one sensor sk and the estimation provided by the sensor AHN-model ŝk = f̂ s
(k)
ω ,

as expressed in (13). Figure 16 shows the comparison between the actual and the estimated sensor
failed. For this experiment, the accuracy of the sensor identification over the testing set was 94.18%.
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Figure 16. Sensor failure identification response in the system.

To this end, the sensor identification served for sensor accommodation. In this regard, failed
values from sensors sk were changed by estimations from sensors ŝk, as shown in Figure 17. Notice
that only 5.82% of testing data failed to be recovered.
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Figure 17. Sensor accommodation and final results over the WSN using the proposed SFDIA approach.

5.4. Discussion

From the previous results, it can be seen that AHN-models can detect failures, identify and
accommodate sensor nodes with accuracy over the testing set of 94.18%. In this context, the proposed
method of intelligent failure detection to discover malfunctions has the following advantages: the
response of the dynamic functions estimations in training and testing, using AHN-models proved
high accuracy data; the system had the capability to detect the failure of sensor with a confidence of
95.05% in failure detection; in order to identify the sensor that fails, the proposed SFDIA provided a
good accuracy in the detection response with 100% correct appreciation rate; furthermore, the sensor
accommodation was obtained from this identification where only 5.82% of testing data failed to
be recuperated.

Nonetheless, a number of limitations have been identified in the failure detection method that will
need to be addressed in order to improve the efficiency in the system. It requires more data acquisition
from sensor nodes in order to perform better accuracy to train the AHN-models, it needs more sensor
nodes for failure detection in each one of them, and it also needs retraining to minimize the error in
time and to collect healthy data. Also, it is important to highlight that the threshold parameter α was
set experimentally. Thus, a further study on how to obtain this parameter is required. One possibility
refers to compute α by simulating fake sensor failures during the training phase.

6. Conclusions

In this work, we proposed a sensor failure detection, identification and accommodation approach
based on artificial hydrocarbon networks over a wireless sensor network. This approach consisted in
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two modules: the temperature estimation and the dynamic function models. In addition, an algorithm
(c.f. Algorithm 2) was introduced as the implementation of this method.

After experimentation over large WSN with simulated and real data sets and a real small WSN,
we observed that our proposal can detect sensor failures in a high accurate way. Moreover, sensor
failure identification and accommodation could be done in 94.18% of accuracy over the testing period.
This validates that our proposal using AHN can be used as an SFDIA over WSN.

For future work, we are considering extending our proposal for more sensors in the network as
well as to provide real-time execution of the SFDIA based on AHN. We are also implementing this
system in a real-world application for better analysis of our proposed SFDIA system. To this end, a
study on obtaining the threshold parameter α is also required.
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