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Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic
geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies
in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis.
Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; 𝑛 = 728). Genetic heterogeneity was evaluated
with observed heterozygosity (𝐻

𝑂
). Best-fitting spatial autoregressivemodels were identified, using socio-demographic variables as

covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy
was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern
suburban areas showed higher𝐻

𝑂
values.The selectedmodel gave best predictions in suburban areas. Fine-scale patterns of genetic

heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach
showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number
of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying
genetic history that is, at least partially, embedded in geographic data.
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1. Introduction

Accurate assessment of genetic heterogeneity is relevant to
manifold fields, ranging from clinical research, pharma-
cogenetics, and statistical genetics, over forensic sciences
up to evolution (for a review, cf. [1]). In planning genetic
epidemiological studies or the collection of control cohorts
for prospective studies it is crucial to prevent confounding
effects due to undetected or disregarded population structure
[2, 3]. Population-based association studies of unrelated
individuals, involving case-control and cohort studies, are
prone to population structure, which may lead to false
positive results or to failure to reveal genuine associations
[4, 5]. In family-based linkage analysis unknown population
stratification may lower statistical power [6].

Uncovering the genetic basis of complex traits remains
an immense and urgent challenge in genetic epidemiological
research. Great efforts are set to establish well-designed
cohorts and large control samples, intended to serve as
basis for genetic epidemiological studies. Besides restricting
recruitment to individuals of uniform ancestry, a common
strategy applied to efficiently gain a representative sample
of the inspected population and to control for potential
unknown population substructure is to collect samples in
smaller geographical areas, usually in medium to large urban
centers (e.g., [7–9]).

Even well-characterized or supposedly homogeneous
regions may still account for subtle genetic structure with
potential geographical components [3, 10]. Sloan et al.
[3] shortly reviewed studies related to geographic genetic
structure of human populations and pointed out clear lack
of research focusing on genetic heterogeneity of smaller
geographic regions or those focused on more urban, highly
admixed populations.

Most available well-standardized methods in geographi-
cal genetics [11] were developed for other research areas and
may not be suited for assessing subtle genetic heterogeneity
of modern populations inhabiting geographically restricted
areas. Modern humans account per se for the lowest species
genetic diversity among primates [12]. A typical western
population inhabiting a geographically restricted area sets
additional difficulties. Such populations are typically outbred
and account for a large degree of admixture, product of older
and recent regional, interregional, and even international
migration. It is to expect that genetic evolutionary forces,
such as selection, mutation, drift, or barriers to gene flow,
would play a relatively insignificant role in modeling fine-
scale variation of genetic heterogeneity. At this geographical
scale, it is more likely that neighborhood preferences and
modern mating behavior would have a central role in model-
ing recent admixture, consequently, having strong influence
on the observed pattern of genetic variation of modern small
areas (i.e., [13]). In other words, within modern western
circumscribed areas, socio-demographic factors would prob-
ably explain a large proportion of the observed pattern of
genetic heterogeneity.

With the aim of unveiling modest amounts of population
substructure in a small, admixed area we (a) searched for sub-
tle patters of genetic heterogeneity and (b) explored potential

predictors of the observed patterns. To this end, we combined
statistical genetics with spatial statistics (geostatistics) within
the framework of a Geographic Information System (GIS).
A GIS provides a computational environment designed for
spatial analysis of geographic data, therefore themost suitable
framework to detect, to model, and to analyze the geographic
variation of genetic diversity.

We analyzed a well-characterized cohort collected for
prospective studies in a small area of southern Germany.
The sampling area included the middle-size city of Augs-
burg, the surrounding suburban area, and the neighboring
countryside. As previously reported by Steffens et al. [14],
the KORA S4 sample shows a minimal but measurable
increase of the inbreeding factor (8.4𝐸 − 5% heterozygotes
deficit) measured in terms of 𝐹IS values [15], that is, within-
group deviation from expected heterozygosity but no indica-
tion of population substructure. Despite extensive search of
potential population stratification with the software package
STRUCTURE [16], in this cohort no signals could be detected
[14]. The STRUCTURE program implements a model-based
clustering method. It estimates the proportion of individuals’
genome that may originate from differential populations, the
probability that an individual belongs to a certain population
as well as allele frequency differences in terms of Wright’s
𝐹ST statistics [17]. Regardless of intensive computations under
several models, STRUCTURE results did not provide any
indication of a potential pattern of genetic heterogeneity in
the KORA S4 survey [14].

2. Material and Methods

2.1. Subjects and Genotypes. Our analysis is based on a subset
of the KORA cohort (Kooperative Gesundheitsforschung
in der Region Augsburg; in English: Cooperative Health
Research in the Region of Augsburg; [7, 9]). The KORA
survey is an ongoing study, which takes place in a circum-
scribed region of southern Germany: Augsburg City and the
two neighboring districts. The KORA cohort was recruited
for prospective studies. In 4 surveys (S1–S4), a total of
18,000 participants were randomly selected from the adult
population of resident German citizens (25–74 years) [7,
9]. Phenotypic, socio-economic information, and residence
locality were gathered. The KORA cohort is a sample of the
extant German population in the region.

The analysis was conducted on a random set of the KORA
S4 survey (𝑛 = 4261), recruited in the period between the
years 1999 and 2001 [7, 9]. The data set consisted of 728
unrelated healthy German citizens, which included subjects
born within and outside of Germany as well. The graphical
method GRR (Graphical Representation of Relationships;
[18]) was used to exclude the presence of biological relation-
ship of individuals based on genetic data (see Supplement
7). In this paper we distinguished the portion of Germans
citizens born outside of Germany as “immigrants” and those
born in Germany as “natives.” The immigrant group (𝑛 =
179) included subjects born in twenty worldwide distributed
countries, half of these countries represented only once. Four
countries, Czech Republic, Romania, Poland, and Ukraine,
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corresponded to the land of birth of 82 percent of all
immigrants. The group of subjects born in one of these
four countries was classified as “major immigrant group.”
Based on the information “land of birth” we differentiated
between data sets: (a) ALL: the complete data set of 728
subjects (resident German citizens), (b) GER: the total set
of 549 natives, and (c) MAIN IMG: the subset of 146 immi-
grants, born in either Czech Republic, Romania, Poland, or
Ukraine.

The KORA S4 sample was genotyped for 212 single
nucleotide polymorphisms (SNPs) (Supplementary Table S6
in supplementary material available online at http://dx.doi
.org/10.1155/2015/693193) [14]. These SNPs can be differenti-
ated in two sets.The first set includes 68 coding SNPs located
in exons of functional genes. These SNPs either cause an
amino acid exchange or an effective promotor alteration in
respect to the resulting protein. Assuming evolutionary times
these SNPs may be subject to selective forces. The second
set comprises 144 neutral SNPs. These loci were chosen
at random throughout the genome in putative “genomic
deserts,” pursuing to achieve uniform distribution across
the genome (setting a minimum of 500Kbp intermarker
distance). For this selection only SNPs presenting a minor
allele frequency between 10 and 50% in Caucasians were
considered. The markers included in the final intergenic set
were uniformly spaced and located >100Kbp apart from
any known genes and >1Mbp apart from centromeres and
telomeres. This procedure followed the set of rules proposed
by Devlin and Roeder for genomic control markers [19].
Accordingly, these intergenic SNPs are assumed to be neutral
to selection forces in the absence of any specific information.
In this sense, these loci are expected to reflect the effects
of demographic processes involving migration (gene flow)
and even drift, if evolutionary times are considered. Steffens
et al. [14] undertook an extensive quality assessment to this
data set. The averaged call rate over all samples was 97.3%;
intragenic SNPs achieved an average call rate of 96.2% and
intergenic SNPs, an average call rate of 97.9% [14]. Details of
the genetic properties of the full set of 212 SNPs are listed in
Supplementary Table S6.

2.2. Study Area. The study area comprised three adminis-
trative regions: the municipality of Augsburg City and its
two neighboring districts, Aichach-Friedberg District and
Augsburg District (Figure 1). It covered an area of approx-
imately 2,970 km2. This is a surface comparable with the
Grand Duchy of Luxembourg (Figure 1). The area is located
in the Swabia administrative region of Bavaria, south-
ern Germany, between the coordinates 10.491∘E/48.091∘N
and 11.310∘E/48.642∘N. The population had approximately
630,000 members in 2004. The mean population density
is 212 inhabitants/km2, a figure that is comparable with the
German average.

Augsburg City is a typical middle-size German urban
area. The Aichach-Friedberg and Augsburg Districts include
a suburban area neighboring Augsburg City and a periurban
area, a patchy pattern of smaller cities and villages widespread
across a rural landscape.

Sample count <20
Sample count <50
Sample count >50

Figure 1: Study area. Land units: (1) Augsburg; (2) Aichach; (3)
Eurasburg; (4) Friedberg; (5) Pöttmes; (6) Rehling; (7) Bobin-
gen; (8) Königsbrunn; (9) Langweid (Meitingen); (10) Neusäß
(Gersthofen; Stadtbergen); (11) Altenmünster; (12) Aystetten; (13)
Schwabmünchen. Location of the study area within Germany is
indicated in the inset in black; German boundaries are displayed
with a black line, neighboring-country boundaries are displayed
with a gray line; Luxembourg, a country covering an extension
similar to the study area, located on the western boundary of
Germany, is displayed in gray.

2.3. Regionalization Methods. The spatial analysis required
diverse types of regionalization of the study area. Three
regionalization methods were applied: (a) a subdivision of
the total study area into minimal representative spatial units
of analysis; (b) a subdivision of the total study area into
contiguous sampled units using a polygon-based method;
and (c) modification of the first regionalization in order
to achieve a set of contiguous spatial analytical units while
retaining the original geometry defined in (a).

2.3.1. Land Units. Genetic landscapes, in this work referred
to matricial representations of genetic variation in the geo-
graphic space, were created with geostatistic methods of
surface interpolation (see Section 2.7.1). For this objective,
it is convenient to define a minimal spatial unit of analysis
which is representative of data coverage and it covers a spatial
surface much smaller that the phenomenon of interest.

The basic spatial unit of analysis of the genetic landscapes
was the postal area. The postal area corresponds to the
smallest district or region defined by the German postal
system (the German postal system divides Germany in ca
28.700 postal areas). We considered this an appropriate
analytical area because the German postal system divides
the territory into spatial units with a similar number of
inhabitants, independent of the extension of the spatial unit.
Similar population size among land units allows adequate
comparisons from socio-demographic perspective. Postal
areas include aswell a population size large enough in order to
guarantee subjects’ anonymity. A finer geographical reference
of subjects, that is, postal address, was not available and it
would not be in agreement with local official restrictions in
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Table 1: Description of LUs and sampling locations, total count of samples, natives, immigrants, MAIN IMG (subset of German citizens
born in either Czech Republic, Romania, Poland, or Ukraine), and values of MAIN IMP (percentage of individuals out of the total count
of immigrants per land unit corresponding to the major immigrant group). Sampling locations with a low number of samples, which were
aggregated to a contiguous sampled unit, are indicated in square brackets.

LU-ID LU/sampling location All (n) Natives (n) Immigrants (n) MAIN IMG (𝑛) MAIN IMP (%)
1 Augsburg 359 258 101 79 78
2 Aichach 23 18 5 3 60
3 Eurasburg 9 9 0 0 0
4 Friedberg 25 21 4 2 50
5 Pöttmes 12 12 0 0 0
6 Rehling 13 12 1 1 100
7 Bobingen 51 36 15 13 87
8 Königsbrunn 42 24 18 17 94

9 Langweid 34 22 12 9 75
[Meitingen]

10
Neusäß

60 52 8 8 100[Gersthofen]
[Stadtbergen]

11 Altenmünster 53 48 5 5 100
12 Aystetten 31 23 8 7 88
13 Schwabmünchen 16 14 2 2 100

respect to personal anonymity. We considered the subdivi-
sion of the study area into postal areas adequate to identify
and to analyze fine-scale patterns of genetic variation. The
study area included a total of 64 postal areas. The spatial
extension of the postal areas ranged from 1.8 km2 to 93 km2,
with an average of 26 km2.

The sampled area covered about 20% of the total study
area, that is, approximately 600 km2 (Figure 1). It included
Augsburg City and 15 settlements located in Aichach-
Friedberg District and Augsburg District. Each sampled
settlement corresponded to one postal area, except for Augs-
burg City. Augsburg City itself contains 14 postal areas. In
summary, out of a total of 64 postal areas, data was available
in Augsburg City (including 14 postal areas) and in another 15
postal areas. Augsburg City samples were pooled together for
frequency computations, since no information about postal
area of residence was available for residents in this city.
A subdivision of Augsburg City into postal areas was only
considered in the step of spatial interpolation to improve
interpolation results (see Section 2.7.1). Postal areas with a
very low number of samples were aggregated to neighboring
sampled areas in order to exclude bias due to low number
of samples per land unit. Explicitly, the quarters Stadtbergen
(𝑛 = 7) and Gersthofen (𝑛 = 6) were aggregated to Neusäß
(𝑛 = 47); Meitingen (𝑛 = 12) was aggregated to Langweid
(𝑛 = 22) (Figure 1). In the final geostatistical analysis the
sampled area included 13 analytical land units. In this
work analytical land units (areal representing sampled data)
defined on the basis of the geographical coverage of postal
areas are further referred to as land unit (LU). LUs were
labeled with the sampling-location name; aggregated LUs
were labeled with the name of the location accounting for
the largest number of samples. Augsburg City included the

maximum number of samples (𝑛 = 359). The remaining 15
sampled postal areas (aggregated into 12 LUs) included a total
of 369 samples. Letting aside Augsburg City, sample size per
LU ranged between 𝑛 = 9 samples (Eurasburg) and 𝑛 = 60
samples (Neusäß).Themean sample size per LUwas 30.8 and
the standard deviation was 17.4 (Table 1).

2.3.2. Polygon-Based Regionalization. The implementation of
the spatial autocorrelation tests performed in this study (see
Section 2.7.2) required to count with a set of adjacent spatial
analytical units.Thismeans that only spatial unitswith at least
one contiguous neighbor could be included in the analysis.

The total study area was divided into 13Thiessen polygons
(designation given to Voronoi diagrams used to analyze spa-
tially distributed data) [20]. Each polygon corresponded to
one LU defined in the first regionalization (see Section 2.3.1).
We chose this simple type of regionalization since many
natural patterns may be closely approximated to this type of
areal structure. Thiessen polygons were delimited based on
the centroids (polygon geometrical center) of the 13 sampled
land units (Figure 2(a)). The Voronoi tessellation was created
with the method v.voronoi of the open-source software
package GRASS 6.4 (Geographic Resources Analysis Support
System, http://grass.osgeo.org/).

2.3.3. Net of Contiguous Sampled Units. The implementation
of the algorithms used in this study to search for best pre-
dictors of spatial variation fitting the data (see Section 2.7.3)
required as well contiguous analytical units. For such more
complex analysis, the coverage of each LU was retained.
In this case the first step was to verify the presence of
direct neighbors for all LUs. Four LUs did not account for
contiguous neighbors: Aichach, Pöttmes, Schwabmünchen,
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(a) (b)

Figure 2: (a) Regionalization of the study area in 13Thiessen polygons; each polygon represents a LU. LU centroids were used to delimit the
Thiessen polygons; (b) net of contiguous LUs; three LUs were spatially connected to the next sampled LU performing a geometrical correction
of LUs’ boundaries: Schwabmünchen was connected to Bobingen, Aichach to Friedberg, and Pöttmes to Aichach; vectors show pairs of LU
assigned a spatial weight equal to unity in the matrix of spatial weights; pairs of LUs not connected with vectors received a value equal to zero
in this matrix.

and Altenmünster (Figure 1). Of these, the first four LUs
were not further than 5 km away from the next closest LU
border. This geographical distance was considered negligible
in the context of connectivity and human interaction between
modern settlements. In order to get maximal information of
the available data we modified slightly the geometry of these
four LUs and of their closest neighbors in order to meet the
contiguity condition for at least 12 LUs. Schwabmünchen was
connected to Bobingen, Aichach to Friedberg, and Pöttmes
to Aichach (Figure 2(b)). With this step, 12 LUs conformed a
continuous geographical space.Themost peripheral sampled
land unit, Altenmünster, without a close sampled contiguous
neighbors (distance to the closest LU > 10 km), was not
included in the computations (Figure 2(b)).

2.3.4. Matrix of Spatial Weights. Both implementations of
spatial dependence analysis performed in this study required
the definition of a matrix of spatial weights representing the
interaction between LUs (see Sections 2.7.2 and 2.7.3).

On the basis of the previously defined regionalization,
either the Thiessen polygons (Figure 2(a)) or the geometri-
cally modified LUs, for each analytical unit the geograph-
ical central point (the centroid), were specified. These two
tests were performed in this study based on a binary rep-
resentation of the spatial weight matrix, which assigned
a weight of unity for neighbors, and zero otherwise. A
binary encoding was chosen since not enough informa-
tion was available to set assumptions about the assumed
spatial process. The function poly2nb was used to con-
struct the neighbor list with default parameters and the
function nb2listw to construct the weight matrix, setting
the function parameter style = B for a binary system. Pairs
of LUs assigned a spatial weight equal to unity are indicated
in Figure 2 with a vector net. All other pairwise combinations
of LUs received a spatial weight equal to zero.

2.4. Socio-Demographic Parameters. Socio-demographic in-
formation collected during recruitment included age, educa-
tion years, degree of professional training and education, and
place of birth. Age ranged between 25 and 74 years. Education

years ranged between 8 and 17 years old.Detailed descriptions
of demographic features are provided in Supplementary
Table S1.

As described in the Introduction the KORA S4 survey
mirrors the case of plenty of study designs in human genetic
research, in which control cohorts are used for population
studies. In the context of these studies it could be crucial to
assume genetic homogeneity of controls. One strategy is to
collect samples in small areas and to restrict recruitment to
individuals of same ancestry (see Section 1). In the concrete
case of the KORA S4 it could be verified that the presence
of immigrants introduced a small but significant effect on
the total amount of genetic variation (see Supplement 4). In
this paper we focus on the case of a population that may
be considered a priori to be genetically homogeneous and
may account for subtle genetic substructure and if this is
the case, which factors may be regarded as best predictors.
To perform our study in accordance with these objectives
and assumptions we worked with the two data sets. We first
considered the total sample (ALL). We used this set with
the purpose of inspecting the effect of immigrants on the
total genetic variation among other factors. On the other side
we excluded immigrants and analyzed the subset of natives
(GER). This analysis is intended to specify best predictors
of sublet genetic substructure and to estimate their effect
in an admixed modern small population. The total set of
immigrants did not include enough individuals of similar
ancestry to perform further separated geostatistical analysis.
Therefore no further group with homogeneous ancestry
could be identified.

Measures related to age, education years, and education
level were computed only on the native GER data set.
Variables related to immigrant representation in the total
sample were computed for the total data set (ALL). All
measures were computed per land unit.

(I) Variables related to age, education years, and educa-
tion level, computed only for the GER data set:

AGE25 39: percentage of subjects in the age category
of 25 to 39 years;
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AGE40 54: percentage of subjects in the age category
of 40 to 54 years;

AGE55 74: percentage of subjects in the age category
of 55 to 74 years;

AGE MEAN: mean age;

EY8 11: percentage of subjects achieving a maximum
of 11 school years; this variable indicates the fraction
of the sample which did not achieve the education
level required to access to academic studies;

EY MEAN: mean years of school attendance;

EDU MEAN:mean education level, scored according
to the degree of professional training and education,
ranging from 0 = no school degree up to 9 = graduate
degree (M.S. equivalent or higher).

(II) In order to inspect the effect of immigrant represen-
tation on total population from amodel building perspective,
variables related to birth land were included; these variables
were computed for the ALL data set.

The representation of the total immigrant fraction in
relation to the total sample was modeled with the variable:

GER P: percentage of natives over all subjects.

(III) on the same line and for purpose of ascertaining a
potential effect related to the presence of major fraction of
immigrants incoming from a reduced number of countries,
which could be acting as a differentiated population within
the migrant group, a further variable was included:

MAIN IMP: percentage of the major group of immi-
grants (subjects born in Czech Republic, Romania,
Poland, or Ukraine) over all immigrants (German
citizens born outside of Germany).

2.5. Measure of Genetic Diversity per Land Unit. We attempt-
ed to achieve a reduction in form of genetic landscapes
of the complex georeferenced data available for this cohort
(genotype per SNP and sample and geocoordinates of LUs).
These genetic landscapes should allow visualization of the
estimated distribution of genetic diversity across geographic
space and further assessment of associations between spatial
patterns of genetic diversity and other georeferenced data, for
example, average socio-demographic characteristics per LU.

We chose to create maps based on indices calculated per
LU. The reason for this is that we considered these types
of genetic landscapes easier to interpret than those based
on relative measures, for instance, the genetic differences
between LUs. For this step it was necessary to select a genetic
measure of diversity referred to each single LU, in opposition
to relative measures such as Wright’s 𝐹ST [17] or alike, which
would characterize variation of genetic diversity in terms of
pair of LUs.

The average heterozygosity is a usual measure of the
genetic variability of a group [21]. We chose this simple
measure of genetic diversity, the observed heterozygosity
(𝐻
𝑂
) [22], to summarize sample genetic attributes of each LU.

𝐻
𝑂
, the observed frequency of heterozygotes averaged over

loci, was estimated using

𝐻
𝑂
=

∑
𝑙

𝑗
ℎ𝑗

𝑙

,
(1)

where 𝑙 is the number of loci and ℎ
𝑗
indicates the proportion

of heterozygote individuals per locus 𝑗th [22]. Observed
heterozygosity was computed separately for each land unit
with the total data set (𝐻

𝑂
(ALL)) and with the subset of

natives (𝐻
𝑂
(GER)).

2.6. Multivariate Analysis of Spatial Population Structure.
In an attempt to frame the challenge embedded in this
sample, further genetic measures were computed with well-
standardized tools for detecting population structure. First
exploratory analysis with geostatistical methods indicated a
potential differentiation of the periurban areas from Augs-
burg city and its periphery (see Supplement 2). Potentially, the
fine-scale patterns of genetic diversity observed in these first
exploratory evaluations could be explained by various simple
models of spatial variation. For instance, the observed pattern
(Supplementary Figure S2a-b) may be the result of a simple
process of isolation by distance. As a result, genetic diversity
would follow a pattern of gradual variation (e.g., gradients
of allele or genotype frequencies). It must be noted that in
such case, the observed pattern would correspond to a small
fraction of the geographical landscape where the process
occurs. This is so because both geographic extension of the
study area and evolutionary times of the study population
(here it refers to the number of generations necessary to fix
the effects of any gene-flow process [23, 24]) are jointly, most
probably, not large enough to have generated a local process
of fixation of gradual variation of genetic features. Spatial
correlationmethods (e.g., spatial autocorrelation) andMantel
tests would be the first methods of choice to detect spatial
correlations of genetic distance with geographic distance.

The observed pattern (Supplementary Figure S2a-b)
could as well be the product of undetected population
clustering. In this case, individuals of similar genetic features
tend to reside in distinct areas than individuals less similar.
Clustering would also require that individuals of distinct
groups present reduced interaction with individuals of other
groups. At larger geographical scales this could be observed
when cultural, linguistic, or political limits set a barrier
to gene flow. It is important to note that this scenario is
less probable. For instance, it is improbable that a modern
western population inhabiting such a small area would be
composed of several groups with reduced exchange (low
migration rates among the subareas and low predisposition to
mate with individuals of other groups). This situation is even
less probable if considered that spatial patterns of genetic
variation were even detected within the group of natives.The
result is supported by previous analysis undertaken with this
sample: an exhaustive evaluation of population clusteringwas
conducted by Steffens et al. [14] with the well-known software
STRUCTURE [16]. Despite the large number of runs with
varying models and parameters there was no indication of
any population substructure. Results indicated that themodel
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assuming a number of populations equal to unity (𝐾 = 1)
showed the highest posterior probability for the KORA S4
data.

The following software packageswere used in this step: (a)
GENELAND [20, 25]; (b) EIGENSTRAT | EIGENSOFT [26,
27]; (c) PLINK, version v0.99s (http://pngu.mgh.harvard.edu/
purcell/plink; [28]), with additional multidimensional scal-
ing using the R software package, version 2.12.1 (R Foun-
dation for Statistical Computing, 2010); (d) SPAGeDI [29].
The wide-spread used software STRUCTURE [16] was not
considered, since in a previous study [14] no evidence for
genetic substructure was found with this tool. Methods (a)
to (c), as well as STRUCTURE, share the possibility to
search for groups of genetically similar individuals. SPAGeDI
(d) is a tool for detecting dependency between genetic
and geographic distances among individuals or populations.
GENELAND (b) and SPAGeDI (d) are individual-based
methods and require including in the computation the
geographic reference of each individual. As mentioned above
(see Section 2.3.1), available data and anonymity restrictions
did not allow a more precise georeference of subjects than
sampling location. For these reasons, all individuals sampled
in one location were georeferenced to the same geographical
coordinates. This data aggregation consequently involves
loss of power when applying these methods. Therefore, in
our case and as it most probably would occur in this type
of human genetic studies, the full capabilities of software
making use of individual geographical coordinates could not
be exploited.

With each tool (a–d), several exploratory runs were
performed. In each case runs were started with default
parameters and recommended model assumptions. Follow-
ing, multiple runs with varied parameter values and model
assumptions were conducted. For computations demanding
a priori definition of an assumed number of subpopulations,
runs were repeated for incremental number of subpopula-
tions not larger than ten.

2.7. Geostatistical Analysis. Geostatistical analysis was con-
ducted using the open-source software package GRASS 6.4
and spatial packages contributed to R software package,
version. 2.12.1 (R Foundation for Statistical Computing, 2010)
within the GRASS environment.

2.7.1. Generation of Genetic Landscapes. In this framework,
genetic landscapes were defined as matrix representations of
genetic variation in the geographic space. Spatial matrices
were created by the transformation of sampling-point data
to an elevation surface by spatial interpolation. An elevation
surface is a 3D layer of continuous data (grid or raster
layer) with elevation information at each point of the area.
GRASS defines this type of spatial object as 2.5 dimensions
(2.5D). As a simplification, the usual denomination for this
type of spatial object: “3 dimensions (3D)” is adopted. The
elevation parameter characterizes the estimated statistic. We
decided to perform interpolation based on spline function.
Interpolation based on splines proved to be a better choice for
phenomena which combine a random component as well as

processes which minimize energy, as it could be considered
socio-demographic processes [30]. We chose the function
“regularized splinewith tension” implemented in theGRASS-
method v.surf.rst [31]. This method computes the con-
tinuous 3D layer (raster data) simulating a thin flexible plate
passing through or close to the measured data points; it is
the most general and accurate method available in GRASS
[30].

In order to run v.surf.rst, point-data layers are
required. For each LU, we first specified its geometrical center
(centroid) with a GRASS basic module. Statistic values were
linked to the centroids. We obtained one point-data layer
for each measured statistic. In case of Augsburg City, which
contains 14 postal areas and covers a disproportionately large
area, centroids of all postal areas were used. Computed values
for Augsburg City data were assigned to all its 14 centroids.
With this step, we smoothed spatial interpolation results in
the area of Augsburg City and surroundings, while avoiding
interpolation artifacts. Wemodeled genetic landscapes based
on tuned values of v.surf.rst parameters. In order to
be able to adequately execute the v.surf.rst procedure
the 𝐻𝑂 values computed using the raw data (𝐻

𝑂 raw) were
transformed into percentage as follows:

𝐻
𝑂 raw ⋅ 100 = 𝐻𝑂, (2)

where𝐻
𝑂 raw ∈ [0, 1],𝐻𝑂 ∈ [0, 100].

Interpolation surfaces based on 𝐻𝑂 values were created
for the following data sets: 𝐻

𝑂
(ALL), and 𝐻

𝑂
(GER). Inter-

estingly, since the KORA S4 genotypes conform a control
population pool for genetic studies [7, 9],𝐻

𝑂
(ALL) landscape

may be examined as a representative estimation of the spatial
variation of genetic diversity of the extant population and
𝐻
𝑂
(GER) landscape of the native fraction in the region of

Augsburg.

2.7.2. Spatial Autocorrelation. Thepresence of simple associa-
tion between the variability of an attribute and the geograph-
ical space was tested by means of spatial autocorrelation. In
this case, the null hypothesis is that the feature of interest is
spatially distributed at random among other attributes within
the study area. This analysis was based on the Moran’s 𝐼 tests.
Spatial correlationmeasuredwith the test statisticMoran’s 𝐼 is
inferential, which implies that results must be interpreted in
dependence of the null hypothesis. For this analysis we used
a Global Moran’s 𝐼 statistic, which means that we tested for
spatial autocorrelation in the study area as a whole, assuming
that the spatial process is the same everywhere.

Spatial autocorrelation of each of the genetic and socio-
demographic variables defined in this study was tested with
the R package spdep [32].

Moran’s 𝐼 tests were performed using the function imple-
mentations moran.test and moran.mc. Accounting for
normality deviation of the data, moran.testwas run under
the specification of randomization assumption in computing
the variance of the statistic. This test specification allows
relaxing the simpler normality assumption by introducing
a correction term based on the kurtosis of the inspected
variable.
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The second implementation, moran.mc, is a per-
mutation-based test. With this implementation spatial
autocorrelation is evaluated independently of normality and
randomization assumptions. The function moran.mc uses
a Monte Carlo test, based on a permutation bootstrap.
Observed values are randomly assigned to areal entities, and
the value of the observed Moran’s 𝐼 is computed nsim times
[33]. We set nsim = 10 000. These tests were run using a
binary matrix of spatial weights (see Section 2.3.4).

Both implementations, moran.test and moran.mc,
were used to test for spatial autocorrelation in measures
of genetic variation: (𝐻𝑂(ALL), 𝐻𝑂(GER)), as well as on
the socio-demographic variables: GER P, MAIN IMP,
AGE25 39, AGE40 54, EA55 74, AGE MEAN, EY8 11,
EY MEAN, and EDU MEAN.

2.7.3. Search of Best Predictors. Socio-demographic measures
were inspected as predictors of the observed pattern of
𝐻𝑂(GER) under the assumption that socio-demography
would provide useful indication of spatial arrangement of
recent migration processes, specially regional and national
migration, which we assumed that it must have had a strong
influence on fine-scale genetic variation. The contribution
of socio-demographic factors to explain the observed spatial
pattern was analyzed under the assumption of spatial depen-
dence. Best-fit spatial autoregressivemodels (SAR) predicting
heterozygosity (𝐻

𝑚
) were selected. A stepwise forward search

was conducted using the function spautolm of the package
R spdep [32].The function spautolm computes a regression
on the values from the other areas to estimate the spatial
dependence of the residuals of the specified linear predictor.
The spatial dependence is estimated with a maximum likeli-
hood test, computing a spatial autocorrelation parameter, 𝜆.
The 𝑝 value of the likelihood ratio test compares the model
with no spatial autocorrelation (𝜆 = 0) to the one which
allows for it [33]. A binary matrix of spatial weights was used
for this analysis (see Section 2.3.4).

Model selection was started with following parame-
ters: GER P, AGE25 39, AGE40 54, EA55 74, AGE MEAN,
EY8 11, EY MEAN, and EDU MEAN. In order to test
if the spatial distribution of the major immigrant group
(MAIN IMG) improves model prediction, the influence
of the parameter MAIN IMP on the selected model was
tested.

A set of models best fitting the data were selected
according to the 𝑝 values of the covariates (𝑝 value < 0.05).

2.7.4. Evaluation of Model Accuracy. Finally, the goodness
of fit of the selected SAR models was analyzed. In this
step, the pixelwise divergence between predicted (𝐻𝑚) and
observed values (𝐻𝑂) was quantified. Interpolation surfaces
were created based on the predicted values (𝐻𝑚) by each
selected model. The pixelwise divergence in absolute values
of these interpolation surfaces from the𝐻

𝑂
(𝐺𝐸𝑅) landscape

was used to compare prediction accuracy among the selected
SARmodels. In order to facilitate comparison amongmodels,
a standardized difference was computed.The standardization
was performed based on the maximal range of pixel values

(max rgGER) measured in the 𝐻
𝑂
(𝐺𝐸𝑅) landscape. The

parameter max rgGER was computed as follows:

max rgGER = 𝑧max intGER − 𝑧min intGER, (3)

where 𝑧max intGER is the maximal value measured in the
𝐻
𝑂
(GER) landscape and 𝑧min intGER the minimal value.
For each SAR model, a new elevation surface (raster

layer) storing the respective pixelwise difference was created.
Following pixelwise computation was performed with the
GRASS basic module r.mapcalc:

(

abs [𝐻𝑂 (GER) − 𝐻 (𝑚𝑛)]
max rgGER

) 100, (4)

where abs implies absolute value,𝐻
𝑂(GER) refers to the pixel

values of the 𝐻
𝑂
(GER) landscape, 𝐻(𝑚

𝑛
) refers to the pixel

values of the interpolated surface created on the bases of the
predicted𝐻 values of the𝑚

𝑛
SAR model, and the parameter

max rgGER = 1.64 (𝑧min int = 43.36; 𝑧max int = 45.00).
For each one of these elevation surfaces, spatial global

statistics were computed. For this purpose, elevation surfaces
were imported into the spatial R environment provided by the
packages sp, rgdal, spdep, and spgrass6 (R Founda-
tion for Statistical Computing, 2010, http://www.r-project
.org/foundation/). Mean, standard deviation (sd), median,
minimum (min), and maximal values (max) of the elevation
surfaces were computed with the R function summary().
These statistics were applied as global quantitative measures
of prediction goodness of each selected SAR model and were
used to select the model best fitting the data.

The model with the lowest global difference between
observed and predicted 𝐻 values was selected as the one
best fitting the data. Based on this model, maps representing
the spatial variation of predicted𝐻 values and the estimated
divergence between observed and predicted 𝐻 values were
created.The formermap represents the estimated variation in
heterozygosity according to predictions obtained by the SAR
model best fitting the data. The latter maps allows a visual
estimation of the agreement between observed and predicted
heterozygosity in each land unit as well as the estimated
spatial variation of divergence in the total study area.

3. Results

Descriptive statistics of all measures, including mean, stan-
dard deviation, median, minimum value, and maximum
value, are presented in Table 2.

3.1. Spatial Variation of Socio-Demographic Factors. Age-
related parameters showed a heterogeneous spatial distribu-
tion (Figure 3). Younger individuals (25 to 39 years old) com-
prisedmore than 30 percent of the GER sample in the eastern
sector and reached a proportion of 45 percent in Pöttmes
(Figure 3(a)). Subjects corresponding to the intermediate age
category (40 to 54 years old) showed a lower proportion (less
than 30 percent) in LUs contiguous to Augsburg City in the
South and in the East (Figure 3(b)). The upper age category
(55 to 74 years old) accounted for more than 50 percent in
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Figure 3: Values of age-related parameters; values refer only to German native subjects. (a) Percentage of subjects in the age category: 25–39
years (AGE25 39); (b) percentage of subjects in the age category: 40–54 years (AGE40 54); (c) percentage of subjects in the age category:
55–74 years (AGE55 74); (d) mean age per land unit (AGE MEAN).

Table 2: Descriptive statistics of genetic diversity and socio-
demographic measures per LU (mean, standard deviation, median,
minimum value, and maximum value).

Variable Mean SD Median Min Max
𝐻
𝑂
(ALL) 43.76 0.54 43.70 42.96 45.02
𝐻
𝑂
(GER) 43.84 0.49 43.68 43.36 45.02

GER P 81.5 13.2 84.0 57.0 100.0
MAIN IMP 71.7 35.5 87.0 0.0 100.0
AGE25 391 26.9 11.3 22.7 12.5 44.4
AGE40 541 21.3 8.5 21.4 9.5 33.3
AGE55 741 51.8 13.1 52.4 25.0 75.0
AGE MEAN1 52.0 3.6 53.2 44.8 55.5
EY8 111 66.0 10.6 65.2 50.0 83.3
EY MEAN1 11.3 0.7 11.7 10.1 12.1
EDU MEAN1 4.3 0.6 4.6 3.2 4.8
1Age and education-related variables refer only to the native group (GER).

eight of the 13 LUs, presenting the higher proportions (>70%)
southern from Augsburg City (Figure 3(c)). The lowest mean
age values were recorded in Pöttmes, Rehling, and Neusäß
(Figure 3(d)). The percentage of individuals of the interme-
diate and the upper age category (AGE40 54, AGE55 74)
showed a deviation of the expectedMoran’s 𝐼 value with both
tests (moran.test, moran.mc) on a significance level of

𝛼 = 0.05. The percentage of individuals of the lower age
category (AGE25 39) showed a significant deviation of the
expectedMoran’s 𝐼 valuewith moran.test, but with theM-
C permutation bootstrap test did not reach a significance at
𝛼 = 0.05 (Table 3).Themean age (AGE MEAN) did not show
any indication of spatial dependence with either of both tests
(Table 3).

With regard to the spatial distribution of education level
in the study area, the largest values of education years,
that is, lower values of EY8 11, were observed in Augsburg
City and in neighboring LUs in the East (Friedberg) and
in the West (Aystetten, Neusäß), as well as in the southern
LU of Schwabmünchen (Figure 4(a)). Both mean variables,
means of education years and education level (EY MEAN,
EDU MEAN), showed the largest values in the center and in
the South of the study area, while the peripheral LUs Aichach
and Altenmünster showed the lowest values (Figures 4(b)
and 4(c)). Whereas education level (EDU MEAN) showed
a significant deviation from the expected Moran’s 𝐼 value
with both tests (moran.test, moran.mc) at 𝛼 = 0.05, the
education years (EY MEAN) presented just an indication
of potential spatial dependency at this significance level
(Table 3).

The percentage of natives (GER P) showed a complex
pattern (Figure 5(a)). Considering LUs with an intermediate
number of samples, the percentage of natives decreased
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Figure 4: Values of education-related parameters; values refer only to German native subjects. (a) Percentage of subjects achieving a
maximum of 11 school years, where the maximum in the sample is 17 school years (EY8 11); (b) mean years of school attendance per LU
(EY MEAN); (c) mean score of the education level per LU, ranging from 0 = no school degree up to 9 = graduate degree (M.S. equivalent or
higher).
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Figure 5: Spatial distribution of samples according to land of birth. (a) Spatial distribution of GER P; (b) spatial distribution of MAIN IMP.

Table 3: Estimated Moran’s 𝐼 values and 𝑝 values of two Moran’s 𝐼
tests for spatial autocorrelation computed for all defined variables.

Measure Moran’s I 𝑝 value1 𝑝 value (MC)2

𝐻
𝑂
(ALL) 0.1132 0.074 0.090
𝐻
𝑂
(GER) 0.2095 0.015 0.024

AGE25 39 0.1823 0.039 0.054
AGE40 54 0.3220 0.004 0.010
AGE55 74 0.2326 0.013 0.020
AGE MEAN −0.1092 0.571 0.550
EY8 11 0.0624 0.164 0.159
EY MEAN 0.1425 0.066 0.075
EDU MEAN 0.2509 0.013 0.029
GER P −0.1945 0.775 0.762
MAIN IMP 0.1194 0.072 0.091
1Computed using the R package spdep moran.test based on a randomi-
sation assumption.
2Computed using the R package spdep moran.mc, consisting of a Monte
Carlo test, based on a permutation bootstrap test; 𝑝 values were obtained on
10 000 runs.

with an increase of the absolute number of samples per
land unit with the exception of Altenmünster and Neusäß
(Table 1). In Augsburg City, with a quite larger number of

samples in comparison with all other LUs (Table 1), natives
composed ca. 70 percent of the total samples (Figure 5(a)).
The lowest percentages were measured around Augsburg
City, in Königsbrunn, followed by Langweid. Bobingen,
contiguous to Augsburg City on the South, andAystetten, rel-
atively peripheral to Augsburg City, presented the next lower
frequencies of natives (Figure 5(a)). Samples included only
natives in the eastern peripheral LUs, Pöttmes and Eurasburg
(Figure 5(a)), both accounting for the lowest sample counts
as well (Table 1).The distribution of the proportion of natives
(GER P) did not show any indication of a potential spatial
dependency (Table 3).

The major group of immigrants (MAIN IMG) showed
a higher ratio in the western LUs (Figure 5(b)). More than
half of the units showed values of MAIN IMP larger than 80
percent. In Augsburg City, where a considerably larger total
number of immigrants were sampled, the major immigrant
group composed 78 percent of the total immigrant data set
(Table 1). The results of both Moran’s 𝐼 tests of spatial auto-
correlation (moran.test, moran.mc) pointed to a potential
simple spatial dependency of the parameter MAIN IMP,
which however did not reach a significance level of 𝛼 = 0.05
(Table 3).
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Table 4: Best spatial autoregressivemodels fitting the data.The spatial autocorrelation left in the residuals (𝜆) and the p value of the likelihood
ratio test, comparing the residuals of the fitted model with the one with no spatial autocorrelation (i.e., 𝜆 = 0), are indicated for each model.
In order to compare these four models, landscapes were created as the pixelwise difference between the observed and the predicted genetic
landscape for each 𝑛model (𝐻

𝑂
(GER) −𝐻 (𝑚

𝑛
)). Differences were computed in percentage to the maximal range of values of the𝐻

𝑂
(GER)

landscape. Mean, standard deviation (SD), and maximal values (Max) of the differences are indicated.

Model 𝜆 𝑝 value Mean SD Max

𝑚
1

40.768 + GER P (0.014) + AGE40 54 (0.031) +
EY8 11 (0.021) 0.203 0.449 17.0 14.9 70.6

𝑚
2

48.903 + AGE25 39 (0.028) +
EY8 11 (−0.036) + BILD MN (−0.802) −0.309 0.018 10.0 7.6 36.6

𝑚
3

38.897 + GER P (0.014) + EA55 74 (−0.013) +
EY MN (0.881) + BILD MN (−1.293) 0.130 0.590 13.2 8.4 38.4

𝑚
4

52.457 + EA55 74 (−0.031) + AGE MN (0.090) +
EY MN (−0.811) + EY8 11 (−0.038) −0.159 0.451 11.8 8.2 39.9
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Figure 6: Landscapes estimating the genetic variation in the study area (a)𝐻
𝑂
(ALL): observed heterozygosity of the total sample (officially

registered German citizens); (b) 𝐻
𝑂
(GER) observed heterozygosity of the native data set (individuals born in Germany); (c) predicted

heterozygosity according to the best-fit spatial autoregressive model (Table 4).

3.2. Geographic Variation of Genetic Diversity. The search
for indications of spatial patterns of genetic heterogeneity
with well-established procedures did not provide any positive
results. Although a high number of different explorative runs
with different parameters were performed, tests based either
on EIGENSTRAT | EIGENSOFT, PLINK, GENELAND, or
SPAGeDI did not provide any indication of a potential
geographic variation of genetic heterogeneity in the study
area. A brief summary of a representative extract of these
computations is presented in Supplement 5.

Geostatistical analysis based on the statistic observed
heterozygosity (𝐻

𝑂
) [22] provided indication of spatial

patterning. Table 3 presents results of the spatial
autocorrelation analysis performed with test statistic
Moran’s 𝐼. On the one side, the variable 𝐻

𝑂
(ALL) showed

an indication of association between genetic variation
and geographic coordinates. On the other, in the native
sample, tests of global spatial autocorrelation showed a
significant deviation (on a significance level of 𝛼 = 0.05)
of a random spatial distribution of 𝐻

𝑂
(GER) values

(Table 3). This result was obtained with both function
implementations moran.test and moran.mc. Significant
results obtained in the native sample may indicate that the
additional genetic variability contributed by the immigrant
fraction of the sample could introduce noise, which diluted a
subtle patterning of the genetic attributes of the native sample.
𝐻𝑂(ALL) landscape, which estimates the variation of the

genetic heterogeneity of the extant German population in

the study area, presented a marked depression in the East
(Figure 6(a)). The highest 𝐻

𝑂
values were measured in the

eastern area. Intermediate 𝐻𝑂 values covered the central-
northern sectors, including some areas of Aichach-Friedberg
District, Langweid, Augsburg City, and Schwabmünchen.
The lowest𝐻𝑂 values were observed in the western area. The
minimum values were found in Neusäß and Königsbrunn.

The𝐻𝑂(GER) landscape, estimating the spatial variation
of genetic heterogeneity of the native population, showed
similar values to the𝐻𝑂(ALL) landscape in thewestern and in
the eastern periphery. In the central belt, running across the
study area in north-south direction, this landscape showed
higher values than the𝐻

𝑂
(ALL) landscape (Figure 6(b)).

Four spatial autoregressive models were selected accord-
ing to the 𝑝 value (𝑝 value < 0.05) of the covariates (Table 4).
The four models included as covariates variables related to
age and education; two models (𝑚

1
, 𝑚
3
) included as well

the proportion of natives per LU (GER P), which is at the
same time an indication of the proportion of immigrants
per LU. The inclusion of the variable MAIN IMP, which
involves a differentiation of subgroups of immigrants, did
not improve any of the selected models. Out of these four
selected models 𝑚

2
showed a significant 𝑝 value when

the likelihood ratio of 𝜆 was tested, indicating left spatial
correlation in the residuals (𝑝 value = 0.018). The 𝐻(𝑚

2
)

landscape (Figure 6(c)) showed as well the lowest mean and
standard deviation of pixelwise difference to the 𝐻𝑂(GER)
landscape (Table 4), which we used as indicators of model
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Figure 7: Difference between the interpolated surfaces of the
observed and the predicted heterozygosity of the native subset
(𝐻
𝑂
(GER) − 𝐻(𝑚

2
)).

goodness. The pixelwise difference between 𝐻
𝑂
(GER) and

𝐻(𝑚
2
) surfaces showed a good agreement over a large area

as well. Areas where both surfaces showed very similar
values are indicated in Figure 7 with a white or light grey
and correspond to a pixelwise 𝐻 difference close to zero.
The maximal differences were measured in Augsburg City
and in Rehling, a small residential area in the country side.
Best fitting was obtained in the peripheral ring surrounding
Augsburg City (Figure 7).

4. Discussion and Conclusions

Fine-scale variation of genetic heterogeneity within a small
region was detected and analyzed applying a geographic
perspective. Population genetics and geostatistics were com-
bined with the open-source geographic information system
GRASS. The capabilities of this approach were tested on a
subset of the KORA S4 survey [7, 9], collected in southern
Germany for prospective studies. Tests on this data set with
the well-known software STRUCTURE previously reported
by others [14] did not provide evidence for population
substructure. We assumed that within small urbanized areas
of modern western countries, as is the case in Germany,
genetic composition may be strongly affected by migratory
movements of the last half century, which may be still
estimated by means of socio-demographic measures.

Genotypes (212 autosomal SNPs) and socio-demographic
information (age, education, place of residence, and birth
land) of 728 healthy German citizens were analyzed.

Socio-demographic and genetic measures showed het-
erogeneous distribution across the study area. The estimated
values of the observed heterozygosity showed to some extent
a cline of decreasing values from east to west. In a first
step to analyze spatial processes controlling the observed
patterns, Moran’s 𝐼 tests for spatial autocorrelation were
performed for all available parameters. Indications of global
spatial dependencies were observed in socio-demographic
variables related to age categories and education level. While
significant deviation of the expected Moran’s 𝐼 was obtained
with the observed heterozygosity of the native subset (GER),
the observed heterozygosity of the total data set showed
just an indication of a potential deviation of the expected
Moran’s 𝐼. In other words, these results could be interpreted

as an indication that heterozygosity values of this small
area may be regulated by a global spatial process, but such
subtle process could only be observed when the subset of
native Germans is considered. This is consistent with the
elemental assumption that because immigrants may differ
to some extent in their genetic background, and this would
be reflected in their observed heterozygosity, they would
introduce additional variability which hinders detection of
spatial variability pattern of the most frequent group, the
German natives.

Spatial dependencies of socio-demographic variables at
this local level could be axiomatically interpreted as a result of
neighborhood preferences of recent local and regionalmigra-
tory processes. It is to expect that social preferences affecting
recent migration, such as regional and international migra-
tory movements of the last half century, may be reflected
by socio-demographic parameters. Individuals would not
choose new residence randomly and this may be reflected
in similar socio-demographic attributes of contiguous neigh-
borhoods. This expectation, which goes along with common
sense, would also be in agreement with the fact that the level
of admixture would associate to some extension with socio-
demographic attributes of the location. This would be the
result of new and recurrent resettlement of some areas or that
inhabitants of areas presenting certain socio-demographic
features would show higher predisposition to admixture.
Indeed, the fact that patterns of socio-demographic structure
and genetic admixture account for spatial autocorrelation
could indicate the occurrence of further unobserved phe-
nomena influencing both, as it could be “social preferences”
or “official urban planning.” Nevertheless, it went beyond the
scope of this work to search for such unobserved processes.

Spatial autoregressive models (SAR) fitting the data were
selected by a forward search. The four best-fit SAR models
contained as covariates socio-demographic measures related
to age, school-attendance years, and education level. Two
of the four selected models included as well the percentage
of natives per unit. This parameter directly accounts for
degree of demographic admixture in sense of proportion of
immigrants asmeasured by the parameter “land of birth.”The
prediction strength of the selected model was estimated with
quantitative comparisons between the genetic landscapes cre-
ated on basis of observed and predictedmeasures of heterozy-
gosity. We found a good agreement between the predicted
and the observed patterns, which supports the assumption
of a certain relationship between genetic admixture degree
and socio-demographic structure. Predicted and observed
values showed the highest agreement in the surrounding belt
of Augsburg City. The largest deviations were measured in
Augsburg City itself and in two small residential areas in the
eastern countryside. The differentiation of Augsburg City to
the countryside (see Supplement 3) may be interpreted as
the expected divergence of middle-size industrial settlements
and countryside [34]. This effect could still be detected
even after excluding immigrants, subjects born outside of
Germany. This expected differentiation between urban and
countryside areas in relation to genetic heterozygosity may
be considered as a confirmation that the observed patterns
are not artifacts.
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The differentiated area in the countryside, Rehling, cor-
responded to a land unit with relatively low number of
samples. The lower predictive capability of the best-fit model
could be attributed to sampling bias. A replication would be
necessary to verify this conjecture. A further possibility could
be that this settlement offers an attractive residential area
for individuals working in any of the larger urban centers
located eastern from Augsburg, as it could be Ingolstadt or
Munich. Both urban centers offer highly profitable working
alternatives, in sense of carrier opportunities and higher
income, and act as an attraction pole for domestic and foreign
migration. As well, both cities are also among the ones with
the most expensive living costs. Rehling showed also the
largest proportion of younger adults. This may reinforce the
idea that this location may be attractive for newly settled
workers willing to commute between their working place
and a less expensive residential area, relatively close to a
middle-size urban center as Augsburg. If this would be the
case, the inclusion of distance and accessibility to attractive
urban centers could considerably improve model prediction.
Further studies could test this possibility.

The exclusion of immigrants increased the global mean
of observed heterozygosity. This effect was especially strong
in areas accounting for the largest proportion of immigrants.
About 15 percent of the samples were immigrants, born
worldwide. Remarkably, almost 80 percent of them corre-
sponded to individuals born either in Czech Republic, Roma-
nia, Poland, or Ukraine. Some areas situated in the periphery
of Augsburg City showed a stronger component of immi-
grants, mostly or totally represented by this major immigrant
group. Although this group involved four birth lands, it may
be speculated that the concentration of these individuals is
not casual. It could be expected that, within each provenance
group, individuals could be originals of nearby regions or
belonging to large related families. In total, a concentration
of small groups, each one showing a higher degree of
homozygosity, would stand out over a much more admixed
group, as it is expected for the native German population.

Our additional analysis with vastly cited multivari-
ate methods, GENELAND, EIGENSTRAT | EIGENSOFT,
PLINK, and SPAGeDI, did not also submit indication of
population stratification in the study area. This outcome
is consistent with our expectations. These tools proved to
be successful in studies of groups with considerably larger
genetic differences, significantly more polymorphic loci, or
much larger number of loci than in the present work. The
KORA study was carefully designed for prospective studies
aiming to reduce any type of genetic structuring. Following
this objective, only German citizens were included in the
sample. The sampling area was kept very circumscribed as
well. Consequently, the genetic differentiation of this subset
of the KORA cohort is expected to be considerably lower
than in humans studies conducted at broader geographical
scales or in further studies acknowledging larger evolutionary
histories and dimensions (i.e., nonhuman species or samples
with large population differences). A further aspect to be
considered is the population informativeness of the available
SNPs. These loci [14] were not specifically selected by their
informativeness for distinguishing among major regional

groups (i.e., [35, 36]). For this reason, the number of available
SNPs was probably too low for detecting fine-scale popula-
tion differences with these standard tools.

Using full capabilities of tools such as SPAGeDI or
GENELAND, both offering individual-based analysis tools,
was not possible either since the search of patterns of varia-
tion of genetic heterogeneity of the KORA sample cannot be
carried out on an individualized geographical basis.

Data of human genetic studies would most probably
not include an individualized geographical reference. Official
restrictions concerning personal anonymity forbid the use
of data which could individualize a subject, such as postal
address or any other precise geographical reference. There-
fore, for human studies, precision of geographic references
must be kept low with the consequence that data might
be spatially aggregated. In opposite to studies analyzing
other species with a continuous geographical distribution,
the identification of spatial structures of humans inhabiting
small areas may not be carried out on an individual basis.
Such an approach would jeopardize personal anonymity
and would go against most official restrictions of human
studies. Accordingly, it is not surprising that well-established
tools to detect human population stratification on a broader
level or those which make use of geographic references on
an individual basis (mostly developed for studies of other
species)maynot detect fine-scale patterns of genetic variation
in small areas.

Most genetic studies on modern human groups address
recruitment of control samples on extant populations or
make use of available control cohorts. These samples may
present some degree of heterogeneity even if recruitment was
restricted to small areas, by citizenship, or in combination
with homogeneous place of birth. The degree of spatial
heterogeneity of small geographic areas, frequently assumed
to be neglectful in the context of genetic studies of modern
human groups, should be evaluated on a case-by-case basis.
Based on our outcomes, it could be stated that genetic
heterogeneity could not be automatically assumed to be
negligible. These results support the elemental assumption
that within multiethnic, urban, and suburban groups, as
found in medium-sized German cities and surroundings,
the socio-economic parameter “birth land” allows a first
reduction of genetic heterogeneity.

As it was presented in this study (see Supplement 2), even
after removing immigrants from the KORA S4 data set, the
degree of genetic differentiation in natives still overlapped
with the spatial frequency distribution of immigrants. If
future studies verify our exploratory results obtained with
visual examination of genetic landscapes based on 𝐹ST analo-
gous Reynolds’𝑅 genetic distance, potentially, the proportion
of immigrants may be used as subrogate of degree of natives’
admixture, which could actually reflect native’s behavior
in regard to choice of area of residence and tolerance or
predisposition to admix.

Our results about a differentiation among urban, sub-
urban, and periurban population are a suggestion of a true
effect in the sense of subtle population differentiation (cf.
[34]). As mentioned above in this section, it is to assume that
such differentiation would not result from isolation between
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neighboring areas in the sense of evolutionary processes,
but from differences in regard to the degree of migration,
residential preferences and willingness to intermix.

However, it must be stressed that our analysis is pre-
liminary and it is predominantly aimed at a methodological
evaluation. In particular, the coverage of the area is patchy
and far from complete. In order to make use of these results
for further genetic studies, first, the postulated fine-scale
variation of genetic heterogeneity should be confirmedwith a
larger data set. Second, the magnitude of the detected bias for
the corresponding analysis should be evaluated. A compre-
hensive analysis on an augmented data set is in preparation.

Knowledge of fine-scale patterns of genetic variation
could provide information about areas where expected
genetic heterogeneity could introduce undesired bias. Areas
with an observed higher genetic heterogeneity than tolerable
could be avoided. In case that spatial heterogeneity would
be assessed after recruitment, examining the spatial pattern
of genetic heterogeneity could serve as a basis to decide
about a stratified analysis (e.g., grouping samples according
to residence or any other relevant spatial reference) or to
correct for population stratification (cf. [26, 27]). Our vision
is to further develop our approach in order to be capable of
testing as well as detecting and correcting, if it is applicable,
for spatial patterns of genetic heterogeneity within the study
sample (cf. [26, 27]). In contrast to the method implemented
in EIGENSOFT | EIGENSTRAT [26, 27], which infers strata
based on genetic data alone, such approach would make
use of information on subject area membership to define
the strata. This usage of additional a priori information
potentially leads to improve strata definition (cf. [37]).

Taking these findings of the KORA S4 sample altogether
we can state that fine-scale spatial genetic variation may
be assumed in the study area. Our results indicate that
patterns of genetic heterogeneity can be present in small
regions within Germany. In conclusion, it may be stated
that the presented genetic geostatistical approach has the
potential of being a powerful tool for detecting, modeling,
and analyzing spatial patterns of genetic heterogeneity even
within populations inhabiting small regions.
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