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Abstract

Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However,

dynamic inference of an evolving cell population from time series scRNA-seq data is chal-

lenging owing to the stochasticity and nonlinearity of the underlying biological processes.

This calls for the development of mathematical models and methods capable of reconstruct-

ing cellular dynamic transition processes and uncovering the nonlinear cell-cell interactions.

In this study, we present GraphFP, a nonlinear Fokker-Planck equation on graph based

model and dynamic inference framework, with the aim of reconstructing the cell state-transi-

tion complex potential energy landscape from time series single-cell transcriptomic data.

The free energy of our model explicitly takes into account of the cell-cell interactions in a

nonlinear quadratic term. We then recast the model inference problem in the form of a

dynamic optimal transport framework and solve it efficiently with the adjoint method of opti-

mal control. We evaluated GraphFP on the time series scRNA-seq data set of embryonic

murine cerebral cortex development. We illustrated that it 1) reconstructs cell state potential

energy, which is a measure of cellular differentiation potency, 2) faithfully charts the proba-

bility flows between paired cell states over the dynamic processes of cell differentiation, and

3) accurately quantifies the stochastic dynamics of cell type frequencies on probability sim-

plex in continuous time. We also illustrated that GraphFP is robust in terms of cluster label-

ling with different resolutions, as well as parameter choices. Meanwhile, GraphFP provides

a model-based approach to delineate the cell-cell interactions that drive cell differentiation.

GraphFP software is available at https://github.com/QiJiang-QJ/GraphFP.

Author summary

Dynamic inference of cell development processes from time series scRNA-seq data is a

major challenge. Here, we present GraphFP, a coherent computational framework that

simultaneously reconstructs the cell state-transition complex potential energy landscape

and infers cell-cell interactions from time series single-cell transcriptomic data. Based on

the mathematical framework of nonlinear Fokker-Planck equation on graph, GraphFP
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models the stochastic dynamics of the cell state/type frequencies on probability simplex in

continuous time, where the free energy with a nonlinear quadratic interaction term is

employed to characterize cell-cell interactions. We formulate the model inference prob-

lem in the form of a dynamic optimal transport framework and solve it efficiently with the

celebrated adjoint method. GraphFP allows for 1) reconstructing cell state potential

energy, which is a measure of cellular differentiation potency, 2) charting the probability

flows between paired cell states over dynamic processes, 3) quantifying the stochastic

dynamics of cell type frequencies on probability simplex in continuous time, and 4) delin-

eating cell-cell interactions that drive cell differentiation. We show how GraphFP can be

used to faithfully reveal and accurately quantify the cell development processes using the

embryonic murine cerebral cortex development time series scRNA-seq dataset.

Introduction

The dynamics of cell developmental processes (e.g., cell differentiation and tumorigenesis) are

highly complex. Advances in single-cell RNA sequencing (scRNA-seq) technologies enable

cell-resolved investigation of heterogeneous cell populations, offering a systematic approach to

reveal underlying developmental dynamics, cell communication, and gene regulation [1]. The

dynamic inferences of cell development from scRNA-seq transcriptomic profiles draw heavily

on advances in computational and systems biology. Many efforts have been advanced to

reconstruct cell developmental trajectories and pseudo-time from the single-cell snapshot pro-

file sampled from an evolving cell population [2]. Methods have also been developed to quan-

tify cell developmental landscape [3–6]. However, state-of-the-art dynamic inference methods

based on the static single-cell snapshot profile alone may lack identifiability of complex

dynamic processes [7].

Recently, time series scRNA-seq data profiled from cells sampled at multiple physical time

stages have been accumulating, accounting for additional temporal dimension. The wider

dynamic ranges enriched by the temporal dimension show great promise in overcoming the

difficulties that arise during the inferences from static single-cell snapshot profiling. Computa-

tional methods that explicitly incorporate temporal information have been developed. TASIC

determined the temporal trajectories based on the probabilistic graphical model to integrate

expression and time information [8], while CSHMM developed a continuous state hidden

Markov model to infer trajectory structure and assigned cells to paths [9]. TSEE incorporated

temporal information into a nonlinear dimensionality reduction algorithm of elastic embed-

ding to visualize dynamic gene expression patterns, offering enhanced temporal resolution

[10]. ScPADGRN reconstructed the dynamic gene regulatory network with a preconditioned

ADMM optimization method [11]. Tempora incorporated biological pathway information to

accurately identify cell types and then incorporated the time information to infer evolving cell-

type trajectories [12].

An emerging number of methods are being developed to reconstruct cell developmental

energy landscape from time series single-cell data using the mathematical framework of opti-

mal transport. Optimal transport has received considerable attention in recent years for vari-

ous disciplines such as machine learning and statistical data analysis, as it has been proven to

be a powerful tool in the analysis of complex data [13]. The core concept of optimal transport,

Wasserstein distance between two probability distributions, quantifies an optimal cost of

transporting one data distribution to the other. As a remarkably rich and fruitful concept,

Wasserstein distance “enables a mechanism transforming the probability space into a
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Riemannian manifold (known as a Wasserstein manifold), so that geometric structures and

partial differential equation (PDE) techniques can be established and analyzed” [14]. Amongst

existing methods, Waddington-OT [15] reported landmark work that developed an unbal-

anced optimal transport framework to reconstruct the cell developmental landscape by infer-

ring cell-cell probabilistic couplings based on the distributions between adjacent time points

[15]; TrajectoryNet set up a dynamic optimal transport neural network framework to recon-

struct the continuous normalizing flows of evolving cell populations on the continuous state

space [16]; PRESCIENT modelled cell differentiation as a diffusion process over a potential

energy landscape learned by the neural network framework [17]. However, the computation

of optimal transport is still a bottleneck when processing large-scale data [13].

In this study, we present GraphFP, a nonlinear Fokker-Planck equation on graph based

model and dynamic inference framework, with the aim of reconstructing the cell state-transi-

tion complex potential energy landscape from time series single-cell transcriptomic data. The

Fokker-Planck equation (FPE) is ubiquitously applied in the modelling of statistical physics

and biological systems, including single-cell data analysis [5, 7, 18]. GraphFP is built on the

mathematical framework established by the FPE on finite graph originally introduced by

Chow et al. [19, 20] and Li [21] (see [14] for a recent survey). Building upon the fundamental

form of optimal transport, GraphFP learns the complex geometry of data, as well as provides a

novel way to quantify cell-cell interactions during cell development. It models the cell develop-

mental process as stochastic dynamics of the cell state/type frequencies on probability simplex

in continuous time. The discrete Wasserstein distance is introduced to transform the probabil-

ity simplex into a Riemannian manifold, called discrete Wasserstein manifold. The FPE is

proven to be the gradient flow of the free energy on the discrete Wasserstein manifold. The

free energy of our model consists of a static linear potential energy term and a nonlinear qua-

dratic interaction energy term that characterizes cell-cell interactions [22, 23]. To estimate the

parameters which represent the linear potential energy and cell-cell interaction strengths, we

recast the model inference problem in the form of a dynamic optimal transport framework

and solve it efficiently with the celebrated adjoint method of optimal control [24]. The adjoint

method also played a central role in the development of the well-known neural network algo-

rithm NeuralODE [25].

We evaluated GraphFP on the time series scRNA-seq dataset of embryonic murine cerebral

cortex development [26]. GraphFP reconstructed the cell state potential energy, which is a

measure of cellular differentiation potency from both static and dynamic points of view. It

faithfully charted the probability flows of cell state-transitions, consistent with the gold stan-

dard benchmarks. It also accurately quantified the stochastic dynamics of cell type frequencies

on probability simplex in continuous time. GraphFP delineated cell-cell interactions that drive

cell development in a model-based fashion. We tested the cell-cell interaction term of GraphFP

by illustrating its ability to fit the nonlinear curves of experimental data and recover held-out

time points. We illustrated that GraphFP is robust in terms of cluster labelling with different

resolutions, as well as parameter choices. We compared GraphFP with state-of-the-art cell

developmental energy landscape reconstruction methods in Discussion.

Methods

GraphFP is a coherent computational framework that simultaneously reconstructs the cell

state-transition complex potential energy landscape and infers cell-cell interactions from time

series single-cell transcriptomic data (Fig 1). It models cell state-transition dynamics with cell-

cell interactions based on the mathematical framework introduced by Chow et al. [19, 20] and

Li [21].
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GraphFP allows for reconstructing cell state potential energy, charting the probability flows

between paired cell states over dynamic process, quantifying the stochastic dynamics of cell

type frequencies on probability simplex in continuous time, and delineating cell-cell interac-

tions that drive cell differentiation [22]. The main steps for GraphFP are organized in the fol-

lowing subsections.

Identifying cell states/types

Given the time series scRNA-seq data, the single-cell samples are collected at f time stages {t1,

t2, . . ., tf}, and for each time stage tl(1� l� f), a number ofml single cells are sequenced with

the corresponding gene expression vectors xðtlÞ1 ; . . . ; xðtlÞml 2 R
D

, where D is the number of genes

for single cells. Thus, the single cell gene expression profile of a total number ofM ¼
Pf

l¼1
ml

cells is contained in the data matrix

XD�M ¼ ðx
ðt1Þ
1 ; . . . ; xðt1Þm1

; . . . ; . . . ; xðtf Þ1 ; � � � ; xðtf Þmf Þ:

Suppose that the total number ofM cells forms n cell states corresponding to n cell types.

When the cells are already annotated or clustered, GraphFP directly utilizes the prior informa-

tion of cell types. When cell type information is not available, GraphFP will apply state-of-the-

art single-cell clustering and annotation methods (e.g., Louvain-Jaccard algorithm [27], the

single-cell data analysis platform Seurat [28], and the single cell deep generative method

scDEC [29]) to cluster cells into n clusters as the cell states/types.

Constructing the cell state-transition graph

The cell state-transition graph G = (V, E) is an undirected graph, where each vertex i in V rep-

resents a cell state/type and each edge {i, j} in E represents that cell state i can directly transit to

Fig 1. Overview of GraphFP algorithm. GraphFP takes the input of time series single-cell transcriptomic data incorporated with

experimental temporal information. It identifies cell states/types, estimates the cell type frequencies at each time point, estimates the

linear potential energy Φ and the cell-cell interaction matrix W based on the adjoint method. GraphFP outputs the stochastic dynamics

of cell type frequencies p(t) on probability simplex in continuous time, the cell state transition potential energy, and the probability flows

of cell state-transitions underlying the evolving cell population.

https://doi.org/10.1371/journal.pcbi.1009821.g001
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cell state j or vice versa. In this study, with no inherent reliance on any prior information, we

construct the cell state-transition graph G as a complete graph supported on all cell types.

However, we can also incorporate prior information of cell state-transition into graph G when

available.

Modelling cell state-transition dynamics with the nonlinear FPE on graph

equipped with discrete L2-Wasserstein distance

GraphFP models the stochastic dynamics of cell state/type frequencies in the evolving cell pop-

ulation with the nonlinear FPE on graph. The underlying assumption of this model is that cell

state-transitions follow the minimum total kinetic energy path during cell differentiation,

which can be measured by the discrete L2-Wasserstein distance on graph. To estimate the

parameters in the nonlinear FPE of GraphFP, we propose a gradient method to find the

parameters that minimize the discrete L2-Wasserstein distance.

We use discrete probability distributions supported on the vertices of cell state-transition

graph G to represent the state of the system at time t. Suppose the number of vertices of G is n,

the set of system states is the probability simplex supported on all vertices of G:

PðGÞ ¼ p ¼ pðtÞ ¼ ðpiðtÞÞ
n
i¼1

�
�
�
�

Xn

i¼1

piðtÞ ¼ 1; piðtÞ � 0

( )

:

The cell-state frequencies or probabilities are estimated for each time point separately,

resulting in p̂ðt1Þ ¼ p1; p̂ðt2Þ ¼ p2; � � � ; p̂ðtf Þ ¼ pf .
Here, we mainly follow the setups in Chow et al. [20]; Li [21], and define the discrete non-

linear free energy F : PðGÞ ! R of the cell-state system as follows:

FðpjΦ;WÞ ¼ VðpÞ þWðpÞ þ bHðpÞ;

¼
Xn

i¼1

Fipi þ
1

2

Xn

i¼1

Xn

j¼1

wijpipj þ b
Xn

i¼1

pi log pi;

¼ pTΦþ
1

2
pTWpþ b

Xn

i¼1

pi log pi;

ð1Þ

where V, W, and H represent the static linear potential energy parametrized by vector

Φ ¼ ðFiÞ
n
i¼1

, the quadratic interaction energy of paired cell states parametrized by matrix

W = (wij)1�i, j � n, and Boltzmann entropy with a hyper-parameter β� 0, respectively. In gen-

eral, the interaction matrix W is asymmetry, with its element wij representing the interaction

strength from cell state j (as a signalling sender) to cell state i (as a signalling receiver) (see Eq

(9) and section “Reconstruction of cell developmental energy landscape and modelling of

cell-cell interactions” for further discussion). We hereinafter denote the parameters of the

free energy as θ� {Φ, W}.

Based on the specific form of free energy F , the corresponding FPE on G is defined as fol-

lows: for any i 2 V,

dpiðtÞ
dt
¼
X

j2NðiÞ

ðFjðpðtÞÞ � FiðpðtÞÞÞgijðpðtÞÞ; ð2Þ

where FiðpðtÞÞ �
@FðpðtÞÞ
@pi

, N(i) = {j 2 V|{i, j} 2 E} is the adjacency set of vertex i 2 V, and
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gij(p(t)) is defined as

gij p tð Þð Þ ¼

pjðtÞ if FjðpðtÞÞ > FiðpðtÞÞ; j 2 NðiÞ;

piðtÞ if FjðpðtÞÞ < FiðpðtÞÞ; j 2 NðiÞ;

pjðtÞ þ piðtÞ
2

if FjðpðtÞÞ ¼ FiðpðtÞÞ; j 2 NðiÞ:

;

8
>>>>><

>>>>>:

ð3Þ

Chow et al. [20] and Li [21] proved that, the dynamics of p(t) is evolving along the gradient

of free energy (Eq (1)) when PðGÞ is equipped with the discrete L2-Wasserstein distance on

graph G: for any p1; pf 2 PðGÞ,

W2

2;F p1; pfð Þ ¼ inf
Z tf

t1

1

2

X

fi;jg2E
ðFjðpðtÞÞ � FiðpðtÞÞÞ

2
� gijðpðtÞÞdt;

where the infimum is taken over C ¼ fpðtÞ 2 PðGÞ is a piecewise C1 curve that satisfies the

FPE of Eq (2), p(t1) = p1 and p(tf) = pf}. Intuitively, the discrete L2-Wasserstein distance can be

understood as the total work for transporting p1 to pf on PðGÞ, which is the summation of the

kinetic energies of the flows (mass×squared velocity) on the edges of graph G during the time

period [t1, tf].

Parameter estimation and model optimization

To estimate the parameters θ = {Φ, W} of the free energy using all time series scRNA-seq data

collected at time points {t1, t2, � � �, tf} (assume that θ is constant over the entire time period),

we formulate the estimation problem as a minimization problem of the discrete L2-Wasser-

stein distance:

θ� ¼ argmin
θ

Z tf

t1

1

2

X

fi;jg2E
ðFiðpðtÞÞ � FjðpðtÞÞÞ

2
� gijðpðtÞÞdt;

subject to the constraints

dpðtÞ
dt

¼
X

j2NðiÞ

ðFjðpðtÞÞ � FiðpðtÞÞÞgijðpðtÞÞ

 !n

i¼1

;

pðtlÞ ¼ pl; l ¼ 1; 2; . . . ; f ;

ð4Þ

where n is the size of vertex set V. However, the dynamic optimization problem with con-

strains of multiple fixed points at p(tl)s in Eq (4) is extremely difficult, and maybe even

unsolvable.

In this study, to estimate parameters θ�, we follow TrajectoryNet [16] and relax the con-

straints of ps at time points {t2, � � �, tf} by moving them into the object function as follows

θ� ¼ arg min
θ

Z tf

t1

1

2

X

fi;jg2E

ðFiðpðtÞÞ � FjðpðtÞÞÞ
2
� gijðpðtÞÞdt þ

Xf

l¼2

llKL ðpðtlÞ k p
lÞ

" #

; ð5Þ

PLOS COMPUTATIONAL BIOLOGY GraphFP: Dynamic inference for time series single-cell transcriptomic data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009821 January 24, 2022 6 / 22

https://doi.org/10.1371/journal.pcbi.1009821


subject to the constraints

dpðtÞ
dt

¼
X

j2NðiÞ

ðFjðpðtÞÞ � FiðpðtÞÞÞgijðpðtÞÞ

 !n

i¼1

; ð6Þ

pðt1Þ ¼ p1; ð7Þ

where λl� 0 is a constant regularization parameter, n is the size of vertex set V, and

KL p k qð Þ �
Xn

i¼1

pi log
pi
qi

is the Kullback-Leibler divergence between the probability distribu-

tions p and q.

The optimization problem of Eq (5) can be interpreted as an optimal control problem with

fixed initial point and the parameters θ can be regarded as the control. We therefore propose a

gradient method to estimate θ� based on the Pontryagin’s Maximum Principle (also known as

the adjoint method) [24] to solve the optimal control problem of Eq (5). In our implementa-

tion, we treat the integral part and the KL divergence part in Eq (5) separately, solve each of

them using the adjoint method, and then combine them together through the tradeoff parame-

ters λls. See the details and the pseudocode of GraphFP algorithm in S1 Text.

In our implementation, we centralize both Φ and W such that

Xn

i¼1

Fi ¼ 0;
Xn

i;j¼1

wij ¼ 0:

Therefore, in our study, wij with a high absolute value indicates strong interaction from cell

state j to cell state i (see the following section for further discussion).

Reconstruction of cell developmental energy landscape and modelling of

cell-cell interactions

Following Chow et al. [20] and Li [21], we define the dynamic potential energy of cell type i as

follows:

CiðtÞ � FiðpðtÞÞ ¼ Fi þ
Xn

k¼1

wikpkðtÞ þ b log piðtÞ; ð8Þ

which consists of three components: (1) a static linear potential energyFi that is time-indepen-

dent and measures the cell differentiation potency of cell type i; (2) an interaction potential

energy
Pn

k¼1
wikpkðtÞ that coordinates cell development through intercellular communication;

and (3) an entropy energy β log pi(t) which is an analog of the potential energy induced by

white noise in diffusion process [14].

Overall, theCi(t) depicts a dynamic potential energy landscape of cell type i at time t: cell

state i with a higher potential energy Ci(t) tends to transit to more stable states with lower

potential energies; while the Fi quantifies the cell differentiation potency of cell type i, as well

as a way to represent cell developmental time (see The linear potential energy Φ by GraphFP

quantifies cell differentiation potency in Results).

Cell development relies on the coordination of cellular activities based on temporal and

local cell-cell communication through molecular signalling events [22]. As a key component,

the interaction potential energy
Pn

k¼1
wikpkðtÞ in Eq (8) models and quantifies cell-cell interac-

tions that drive cell development, where wik is the interaction strength from cell type k (as a

signalling sender) to cell type i (as a signalling receiver): when wik> 0, cell type k will send
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signals to upgrade the potential energy of cell type i to a higher level, thus inhibiting the

decrease of potential energy of cell type i; when wik< 0, cell type k will send signals to down-

grade the potential energy of cell type i to a lower level, thus stimulating the decrease of poten-

tial energy of cell type i; when wik = 0 or wik� 0, cell type k will send no or weak signals to cell

type i, thus unable to alter the potential energy level of cell type i.

wik

> 0; k sends signals to upgrade the potential of i;
¼ 0= � 0; k sends no or weak signals to i; unable to alter its potential;

< 0; k sends signals to downgrade the potential of i:

8
><

>:
ð9Þ

We say that cell types i and k have no mutual interactions when both wik and wki are zero or

close to zero. Such modelling of the interaction matrix W is inspired and evidenced by our

increasing understanding that both positive and negative feedback circuits composed of stimu-

latory and inhibitory factors are involved in the regulation of precise coordination of cell fate

decisions through intercellular communication [22, 30].

Dynamic inference of cell developmental process

Once we estimate parameters θ� = {Φ�, W�}, we can quantify the stochastic dynamics of the

cell type frequencies p(t) on probability simplex in continuous time t(> t1), according to

Eq (2) given the initial point of probability p1 on probability simplex.

The potential energy difference between cell states i and j is

DijðtÞ ¼ CiðtÞ � CjðtÞ ¼ FiðpðtÞÞ � FjðpðtÞÞ

¼ ðFi � FjÞ þ
Xn

k¼1

ðwik � wjkÞpkðtÞ þ bðlog piðtÞ � log pjðtÞÞ:

We can draw the curves of the potential energy ΨðtÞ ¼ ðCiðtÞÞ
n
i¼1

of all cell states over time

to illustrate the cell state-transition potential energy landscape from a dynamic point of view.

Based on Eq (2) which is the gradient flow of free energy [20, 21], we define the probability

flow from vertex j into vertex i through edge {i, j} between time stages [tl, tl+1] as

Flowijðtl; tlþ1Þ �

Z tlþ1

tl

ðFjðpðtÞÞ � FiðpðtÞÞÞgijðpðtÞÞdt; ð10Þ

which measures the total probability mass transporting from vertex j into vertex i through

edge {i, j} between adjacent time stages [tl, tl+ 1]: a positive value indicates a probability mass

gain of vertex i resulted from the flow of cells transiting from state j into state i, while a negative

value indicates a probability mass loss of vertex i resulted from the flow of cells transiting from

state i into state j. If total probability mass is conservative (e.g., no cell proliferation is consid-

ered), we have

Flowijðtl; tlþ1Þ ¼ � Flowjiðtl; tlþ1Þ:

The intuition of the probability flow definition is that, when potential energy difference

Δji(t) = Fj(p(t)) − Fi(p(t)) > 0, cells tend to transit from a higher potential energy state j to a

lower potential energy state i, resulting in a probability mass gain of vertex i.

Results

GraphFP models and infers cell differentiation as a cell state-transition process described by

the nonlinear FPE on cell state-transition graph in continuous time (see Fig 1 and Methods for

details).
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In this study, we evaluated the performance of GraphFP using the time series scRNA-seq

dataset of embryonic murine cerebral cortex development [26]. This dataset was analyzed by

Tempora [12]. We downloaded the processed data, including the cell type annotations pro-

vided by Tempora [12]. The time series transcriptomic profile contains 6,316 cells collected at

embryonic day 11.5 (E11.5), E13.5, E15.5 and E17.5. Overall, these cells represent neuronal

development states from the early precursors (apical precursors (APs) and radial precursors

(RPs)) to intermediate progenitors (IPs) and differentiated cortical neurons. Fig 2a illustrates

the gold standard trajectory of the 4 major cell states curated by Tempora. Tempora identified

7 cell types by clustering and annotation methods: two AP/RP clusters denoted as “3-APs/

RPs” and “5-APs/RPs”, two IP clusters denoted as “4-IPs” and “7-IPs”, two young neuron clus-

ters denoted as “2-Young Neurons” and “6-Young Neurons”, and one neuron cluster denoted

as “1-Neurons” (Fig 2b).

GraphFP reconstructs the cell state-transition energy landscape

We applied GraphFP to the embryonic murine cerebral cortex development scRNA-seq data-

set based on the cell state/type labels of 7 clusters provided by Tempora. We estimated the

cell state frequencies of the 7 cell states for each of the 4 time points separately. GraphFP first

estimated parameters θ = {Φ, W} of the free energy based on the adjoint method (Fig 2c and

2d).

In general, the static landscape of the estimated linear potential energies Fs shows a

consistent understanding of the differentiation potencies of the 7 cell states. The early precur-

sors states of “5-APs/RPs” and “3-APs/RPs” that mostly comprise cells at E11.5 have the

highest two Fs of 0.059 and 0.054, respectively. The two IP clusters, “7-IPs” and “4-IPs”, and

one young neuron cluster, “6-Young Neurons”, have the three intermediate-valuedFs of

0.052, -0.051, and 0.035, respectively. The differentiated cortical neuron clusters “1-Neurons”

and “2-Young Neurons” have the lowest two Fs of -0.073 and -0.075, respectively (Fig 2c and

2e).

We modelled the cell state-transition energy landscape from a dynamical geometric point

of view. The dynamic potential energy Ψ(t) consists of not only the static linear part of Φ, but

also an interaction energy part as shown in Eq (8). It provides a global and holistic view of cell

development process. For example, when only looking at the static landscape of Φ, we found

that the linear potential energy of “1-Neurons” (F1 = −0.073) is slightly higher than that of

“2-Young Neurons” (F2 = −0.075). This is in conflict with our understanding that “1-Neu-

rons” should have the lowest potential since it is located at the terminal node of the cell lineage

(Fig 2a). However, when looking at the dynamic potential energy Ψ(t), we found that “1-Neu-

rons” has a strong inhibitory interaction over “2-Young Neurons” (w21 = 0.26 versus w12 =

0.04) which can upgrade the potential energy of “2-Young Neurons” during the process. The

resultant dynamic potential energy of “2-Young Neurons” (C2(t)) surpasses that of “1-Neu-

rons” (C1(t)) with higher value after time point E13 (Fig 2g and Left Panel of Fig 2h). The

potential energy difference (Δ21) between “2-Young Neurons” and “1-Neurons” diverges with

enlarging gaps as time evolves, especially in the latter time stages after time point E15.5 (Left

Panel of Fig 2h). This is well consistent with our understanding that: (1) “2-Young Neurons”

tends to transit to “1-Neurons” during cell development (Fig 2a), and (2) the transition from

“2-Young Neurons” to “1-Neurons” mainly occurs at the late neurogenesis between E15.5 and

E17.5 [26].

Further results on the linear potential energy, the cell-cell interactions and the dynamic

potential energy will be provided in the following two sections.

PLOS COMPUTATIONAL BIOLOGY GraphFP: Dynamic inference for time series single-cell transcriptomic data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009821 January 24, 2022 9 / 22

https://doi.org/10.1371/journal.pcbi.1009821


Fig 2. GraphFP accurately reconstructs the cell state-transition energy landscape of the murine cerebral cortex dataset. (a) The gold standard

trajectory of embryonic murine cerebral cortex development. (b) The t-SNE plot of cells from the murine cerebral cortex dataset, colored by their cell-

type labels. (c) GraphFP estimated the linear potential energy Φ. (d) GraphFP estimated the cell-cell interaction matrix W. (e) Static linear potential

energy landscape of cells on the t-SNE plot: cells are color-coded according to the linear potential energiesFs of their corresponding cell types. (f) The

free energy (Eq (1)) of the system decreased over time. (g) The reconstructed potential energy landscape Ψ(t) of cell types (colored curves) over time.

(h) The potential energies of the cell state pairs with the top 3 highest positive values of cell-cell interaction strengths wijs: “2-Young Neurons 

1-Neurons” (left panel), “6-Young Neurons 3-APs/RPs” (middle panel), and “4-IPs 1-Neurons” (right panel). (i) The potential energies of the cell

state pairs with the top 3 lowest negative values of cell-cell interaction strengths wijs: “6-Young Neurons 1-Neurons” (left panel), “4-IPs 3-APs/

RPs” (middle panel), and “2-Young Neurons 4-IPs” (right panel).

https://doi.org/10.1371/journal.pcbi.1009821.g002
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The linear potential energy Φ by GraphFP quantifies cell differentiation

potency

Computational quantification of cell differentiation potency (also known as cell stemness) is a

challenging issue [18]. The pioneer work by Shi et al. [5] established a rigorous mathematical

theory on quantifying cell stemness from scRNA-seq data based on continuous birth-death

process.

Here, we demonstrated that the linear potential Φ estimated by GraphFP can be used to

quantify the cell differentiation potency. In this study, each cell will be assigned the same linear

potential value as that of its corresponding cell type/state. Shi et al. [5] also quantified the cell

differentiation potency at the cluster level (e.g., cell state and cell type), which makes the results

more accurate and robust. Quantifying the cell differentiation potency at single-cell level is still

difficult, as the single-cell gene expression profiles are known to be error-prone due to various

technique issues [31].

Following the study in Shi et al. [5], we tested whether our linear potential energies for plu-

ripotent stem cells (at early time point) are higher than those for differentiated cells (at latter

time point). It is clearly shown that, cells from samples collected at earlier time stages tend to

have higher potential Φ and vice versa (Fig 3a). When using the one-sided Wilcoxon ranksum

statistic as applied by Shi et al. [5], we confirmed with highly statistically significant results that

the linear potential values of cells sampled at the earliest time stage E11.5 are higher than those

cells sampled at the subsequent time stages E13.5 (p< 1.554e − 07), E15.5 (p< 2.2e − 16), and

E17.5 (p< 2.2e − 16), respectively.

Next, we checked the linear potential energies of the cell types with their pseudo-time dur-

ing cell development process. Tempora [12] provided each cell type with a temporal score by

adjusting its cell composition from each time point such that a cell type containing more cells

from an early time point will have a lower score and vice versa. We therefore used the temporal

scores as the pseudo-time for the 7 cell types. It is clearly demonstrated that the addictive

inverse values of linear potential energy are strongly correlated with the temporal scores (Fig

3b, Pearson correlation coefficient = 0.91), further confirming that the linear potential energy

well quantifies cell stemness.

It is worth noting that the linear potential energy Φ (Fig 3c) is different from the stationary

distribution pss of cell types (Fig 3d). The stationary distribution pss, which is the cell type fre-

quencies or cell densities calculated using the merged data across all time points, is often used

to construct the stationary energy landscape Uss� −log pss in scRNA-seq data analysis [6].

However, as pointed out by Shi et al. [5], the stationary energy landscape Uss is the equilibrium

potential induced by diffusion without birth and death. In some extent, the linear potential

energy Φ by GraphFP is an analogy of the cell potential V(x) proposed by Shi et al. [5], which

was taken as their quantification of cell differentiation potency.

GraphFP delineates cell-cell interactions

We quantified the cell-cell interactions and intercellular communication during embryonic

murine cerebral cortex development using the cell-cell interaction matrix W estimated by

GraphFP. The W measures the cell-cell interaction strength between each pair of two cell

types/states, one as the signalling sender and the other as the signalling receiver (see Eq (9) and

section “Reconstruction of cell developmental energy landscape and modelling of cell-cell

interactions” in Methods for its biological interpretations).

The estimated W is a sparse matrix with most elements having values equal or close to zero

(Fig 2d), indicating a majority of the pairs having no or weak interactions. For example, the

cell types “5-APs/RPs” and “7-IPs” have no mutual interactions with w57 = 0 and w75 = −0.02
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(Fig 2d). Furthermore, the estimated cell-cell interaction strengths in the first row of W that

corresponds to “5-APs/RPs” are zero or close to zero with |wij|� 0.04, making the contribu-

tions from its interaction term in Eq (8) negligible. As such, the dynamic potential energy

C5(t) is dominated by its linear potential energy (F5) with a resultant flattening potential

energy curve (Fig 2g).

We also observed a number of strong cell-cell interactions with large wijs deviating from

zero. Cell states other than “5-APs/RPs” and “7-IPs” have at least one wij with strong interac-

tion strength (e.g., |wij|> 0.1), resulting in the deviation of their potential energies C(t)s from

their linear potential energies Fs largely driven by their interaction energies with sharpened

potential energy curves (Fig 2g).

Fig 3. The linear potential energy Φ quantifies cell differentiation potency. (a) Boxplot of the linear potential energies of cells

sampled different time stages of the embryonic murine cerebral cortex development. (b) Trend in the addictive inverse of linear

potential (circular points connected by black lines with y axis on left-hand side) and temporal score (triangle points connected by red

lines with y axis on right-hand side) across cell types. (c) The linear potential energy Φ estimated by GraphFP. (d) The stationary

probability distribution pss of the cell types.

https://doi.org/10.1371/journal.pcbi.1009821.g003
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We further examined cell state pairs with strong interactions.The pairs of “2-Young Neu-

rons 1-Neurons” (w21 = 0.26), “6-Young Neurons 3-APs/RPs” (w63 = 0.14) and “4-IPs

 1-Neurons” (w41 = 0.12) have the top 3 highest positive values of wijs (Fig 2d), indicating

that the sender cell types (“1-Neurons”, “3-APs/RPs” and “1-Neurons”) pass strong inhibitory

signalling to their corresponding receiver cell types (“2-Young Neurons”, “6-Young Neurons”

and “4-IPs”, respectively). Their potential energy differences (|Δij|s) diverge with enlarging

gaps as time evolves (Fig 2h), resulting in that cells tend to transit in one direction from the

cell state with higher potential energy to the cell state with lower potential energy, only rarely

transiting in the reverse direction.In particular, “2-Young Neurons” tends to transit to “1-Neu-

rons”, “3-APs/RPs” tends to transit to “6-Young Neurons”, “4-IPs” tends to transit to “1-Neu-

rons”. These results are consistent with our understanding of the cell development process

depicted in Fig 2a.

On the other hand, the pairs of “6-Young Neurons 1-Neurons” (w61 = −0.21), “4-IPs 

3-APs/RPs” (w43 = −0.15) and “2-Young Neurons 4-IPs” (w24 = −0.14) have the top 3 lowest

negative values of wijs, indicating that the sender cell types (“1-Neurons”, “3-APs/RPs” and

“4-IPs”) pass strong stimulatory signalling to their receiver cell types (“6-Young Neurons”,

“4-IPs” and “2-Young Neurons”, respectively).In particular, the potential energy differences

(|Δij|s) of the pair “6-Young Neurons: 1-Neurons” and the pair “3-APs/RPs: 4-IPs” converge

with shrinking gaps as time evolves (Fig 2i), making the transitions between the paired cell

states approaching to equilibrium in both directions. This result is consistent with our proba-

bility flow (Fig 4), where the net probability flows from “6-Young Neurons” to “1-Neurons” as

well as from “3-APs/RPs” to “4-IPs” gradually decrease over time. The potential energy differ-

ence between “4-IPs” and “2-Young Neurons” starts from a small value close to zero at time

point E11.5, then gradually increases to its largest gap at E14, and then gradually declines to

zero again at E17.5. This result indicates that the transition from “4-IPs” to “2-Young Neu-

rons” mainly occurs at the intermediate time region from E13.5 to E15.5, which is consistent

with our understanding that the “4-IPs” cells are the intermediate progenitors of cell develop-

ment (Fig 2a).

Based on our calculation using GraphFP, we also confirmed that free energy (Eq (1)) of the

system decreased over time (Fig 2f), which is consistent with accepted mathematical theory

[20, 21]. However, according to our calculation, free energy of the system did not converge to

its minimum free energy state at time point E17.5 when the experiment ended (see the vertical

dashed red line in Fig 2f). We predicted from Fig 2f that the system would reach its minimum

free energy state after time point E30.

GraphFP faithfully charts the probability flows of cell state-transitions

during cell development

We next examined the ability of GraphFP to quantify the dynamics of cell state-transitions

during embryonic murine cortical development by calculating the probability flows (Eq (10))

between each time intervals of the adjacent time stages (Fig 4). In the early stage from E11.5 to

E13.5, cells mainly transit from the early precursors of “3-APs/RPs” and “5-APs/RPs” to the

intermediate progenitor “4-IPs” and the two neuron clusters of “2-Young Neurons” and

“1-Neurons”. In the middle stage from E13.5 to E15.5, the intermediate progenitor “4-IPs”

joins in with “3-APs/RPs” and “5-APs/RPs” as the major source clusters that transit to two

neuron clusters, “2-Young Neurons” and “1-Neurons”. Meanwhile, as a source cluster,

“2-Young Neurons” starts to transit to “1-Neurons”, and in the latter stage from E15.5 to

E17.5, “4-IPs” takes a leading role in transiting to the neuron cluster of “1-Neurons” and

young neuron clusters, “2-Young Neurons” and “6-Young Neurons”. Meanwhile, “2-Young
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Neurons” continues as one of the major source clusters transiting to “1-Neurons” (Fig 4).

Compared with the gold standard trajectory shown in Fig 2a by Tempora [12], we identified a

new path whereby the IP cells of cluster “4-IPs” transit to neuron cells of cluster “1-Neurons”,

as confirmed by Yuzwa et al. [26], who reported that cortical RPs divide asymmetrically from

E11.5 to E17.5 to generate neurons directly or indirectly via transit-amplifying cells of IPs.

Cell-cell interactions drive the stochastic and nonlinear dynamics of cell

development

GraphFP explicitly models cell-cell interactions with a nonlinear quadratic interaction term in

the free energy (Eq (1)). To account for cell-cell interactions, we evaluated GraphFP on its abil-

ity to fit the experimental data (Fig 5a) and recover held-out time points (Fig 5b–5d) with cell-

cell interaction term (W 6¼ 0; solid lines in Fig 5) and without cell-cell interaction term (W = 0;

dashed lines in Fig 5). To evaluate the performance on estimation accuracy, we applied Kull-

back-Leibler divergence (KLD) to measure the difference between the estimated probability

distribution with/without interaction term and true probability distribution at each time

points (Table 1). A lower KLD value is indicative of better performance.

First, we applied GraphFP to the embryonic murine cerebral cortex development scRNA-

seq dataset using all 4 time points. Based on the estimated parameters θ�, we calculated the

Fig 4. GraphFP charts the probability flows of cell state-transitions. The circle point represents cell type (point size is proportional to the

cell-type frequency at each time point); the line between cell types represents probability flow from source cell type to target cell type (line

width is proportional to the value of probability flow).

https://doi.org/10.1371/journal.pcbi.1009821.g004
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stochastic dynamics of the cell type frequencies p(t) on probability simplex in continuous time

t(> t1) according to Eq (2) with given initial point of p̂ðt1Þ ¼ p1. Overall, GraphFP with cell-

cell interaction term outperforms GraphFP without cell-cell interaction term on the fitting of

the nonlinear curves for the 7 clusters (Table 1), especially for “2-Young Neurons”, “4-IPs”

and “6-Young Neurons” (Fig 5a).

Next, we applied GraphFP to the scRNA-seq datasets of (i) one held-out time point E13.5

(Fig 5b) and (ii) one held-out time point E15.5 (Fig 5c), separately.GraphFP with cell-cell

interaction term always outperforms GraphFP without cell-cell interaction term on both non-

linear curve fitting and held-out time point recovering except for one comparison on Held out

E13.5 dataset at time stage E13.5. (Table 1).

Fig 5. GraphFP accurately quantifies the stochastic dynamics of the cell type frequencies by modelling cell-cell interactions.

GraphFP calculated the stochastic dynamics of the cell type frequencies p(t) with cell-cell interaction term (W 6¼ 0; solid lines)

and without cell-cell interaction term (W = 0; dashed lines). Triangle points are the estimated cell type frequencies at each time

point where red represents the input data point to GraphFP, while blue represents the held-out data point to GraphFP. (a) Using

all 4 time points as input. (b) Held-out E13.5. (c) Held-out E15.5. (d) Held-out E13.5 and E15.5.

https://doi.org/10.1371/journal.pcbi.1009821.g005

Table 1. Evaluation of GraphFP’s performance on quantifying the stochastic dynamics of cell-type frequencies with cell-cell interaction term (W 6¼ 0) and without

cell-cell interaction term (W = 0) on the murine cerebral cortex dataset.

KLD With all time points Held out E13.5 Held out E15.5 Held out E13.5 and E15.5

with without with without with without with without

E13.5 0.0007 0.0101 0.0340 0.0217 7.0020e-05 0.0377 0.0675 0.0900

E15.5 0.0133 0.0168 0.0009 0.0119 0.0372 0.0518 0.1036 0.1130

E17.5 0.0056 0.0861 0.0036 0.0785 5.0603e-05 0.0240 1.9569e-06 2.0707e-06

The Kullback-Leibler divergence (KLD) distance was used to measure the difference between the estimated probability distribution by GraphFP and true probability

distribution at each time points (E13.5, E15.5, E17.5).

https://doi.org/10.1371/journal.pcbi.1009821.t001
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Finally, we applied GraphFP to the scRNA-seq data set of two held-out time points, E13.5

and E15.5 (Fig 5d). It is not surprising that both models drop their accuracies markedly on

recovering the held-out time points.In addition, the results by GraphFP with cell-cell interac-

tion term still outperform those by GraphFP without cell-cell interaction term (Table 1 and

Fig 5d).

As shown in Fig 5, our results illustrate that the stochastic and nonlinear dynamics of cell

development are not merely determined by the linear potential energies Fs, but also driven by

nonlinear cell-cell interactions. Specifically, the evolving probability frequencies of cell types

can be nonmonotonic (e.g., “2-Young Neurons”, “4-IPs”, “6-Young Neurons” in Fig 5).Mean-

while, time series scRNA-seq data with cells profiled at more time points will provide more

temporal information to recover the biologically complex dynamic processes.

GraphFP is robust to input data

As also shown in Fig 5a–5c, our results illustrate that GraphFP robustly recovers the stochastic

and nonlinear dynamics of cell development by using all datasets or datasets with one held-out

time point.

Since GraphFP works on cells with cluster labels or cell type annotations, we then examined

whether GraphFP is sufficiently robust to account for the uncertainty presented in the cluster-

ing or annotation methods. In the above sections, we have illustrated the outputs of GraphFP

based on the labelling of 7 clusters with a fine resolution provided by Tempora [12]. Here, we

further grouped the cells into 4 clusters with a coarse resolution as follows: “A-Neurons” con-

stituted by cells from “1-Neurons”; “B-Young Neurons” constituted by cells from “2-Young

Neurons” and “6-Young Neurons”; “C-APs/RPs” constituted by cells from “3-APs/RPs” and

“5-APs/RPs”; and “D-IPs” constituted by cells from “4-IPs” and “7-IPs”. We compared the

results of GraphFP based on the labelling of 7 cell types and the labelling of 4 cell types (Fig 6).

To make the results comparable, we aggregated the results based on the labelling of 7 cell types

by averaging the results from i) “3-APs/RPs” and “5-APs/RPs”, ii) “2-Young Neurons” and

“6-Young Neurons” and iii) “4-IPs” and “7-IPs”, separately, resulting in the same dimensions

as those based on the labelling of 4 cell types. It should be noted that the results based on 4 cell

types and the aggregated results based on 7 cell types are consistent with similar patterns of lin-

ear energies Φs (Fig 6a and 6d), interaction matrices Ws (Fig 6b and 6e), and probability flows

(Fig 6c and 6f). In addition, GraphFP is robust to the hyper-parameter choices in wide ranges.

The computational cost of GraphFP

We examined the impact of the number of cell types (n) on the computational cost of

GraphFP. When working on the murine cerebral cortex dataset with 7 cell types (n = 7) and 4

time stages, the runtime of GraphFP was around 3 minutes for each task on a personal laptop

(MacBook Pro with CUP 2.4 GHz Intel Core i5 and Memory 8 GB 2133 MHz LPDDR3)

(S1 Table). In our implementation, we set λl = 1000(l 2 2, 3, 4), β = 0.001, the learning rate as

α = 0.01/λl and Integral_step as 0.1.

We next examined GraphFP on another time series scRNA-seq dataset of the mouse spinal

cord injury healing process provided by [32] (see the detailed results in S2 Text). The new

dataset contains 13 clusters (cell types) and 4 time points. We applied GraphFP to this dataset

on the same computer with the same hyper-parameter settings as those for the murine cerebral

cortex dataset. GraphFP still achieved accurate and robust reconstruction of cell state-transi-

tion energy landscape on this dataset (S2 Text), and also achieved a reasonable performance

on computational speed: the runtime for each task was around 9 minutes (S2 Table).
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Fig 6. GraphFP is robust to uncertainty presented in cell type labels. GraphFP was applied to the murine cerebral

cortex dataset based on the labelling of 4 cell types with a coarse resolution (a-c) and the labelling of 7 cell types with a

fine resolution (d-f), separately. The estimated Φ (a), W (b) and charted probability flow (c) by GraphFP based on the

labelling of 4 clusters (“A-Neurons”, “B-Young Neuron”, “C-APs/RPs”, “D-IPs”). Aggregated results of the estimated

Φ (d), W (e) and charted probability flow (f) by GraphFP based on the labelling of 7 clusters, averaging the results

from i) “3-APs/RPs” and “5-APs/RPs”, ii) “2-Young Neurons” and “6-Young Neurons” and iii) “4-IPs” and “7-IPs”,

separately, resulting in the same dimensions as those based on the labelling of 4 cell types.

https://doi.org/10.1371/journal.pcbi.1009821.g006
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Based on the above experiments, we found that the computational speed of GraphFP is sus-

tainable for tasks with moderate number of cell types. Meanwhile, the computation of

GraphFP might be problematic for large n (e.g., n> 100) at current settings. As we applied the

complete cell state-transition graph, the degree of freedom (e.g., the parameters of the cell-cell

interaction matrix W) will grow in the order of O(n2), making the computation difficult. How-

ever, this problem is solvable. One way to solve this problem is to take advantage of the sparse

structure of the cell-cell interaction matrix W. As we have already noted, the estimated Ws of

both the murine cerebral cortex dataset (Fig 2d) and the mouse spinal cord injury dataset (Fig

A(b) in S2 Text) are sparse. Therefore, we can solve this problem by adding a L1 regularization

term of the matrix W to the loss function to enforce W to be sparse. We plan to pursue this

topic in our future work.

On the other hand, in practice, for large number of cell types, we can trade off the estima-

tion accuracy and the information of cell-cell interactions for runtime performance. GraphFP

without the cell-cell interaction term will be efficient for large number of cell types since the

degree of freedom (e.g., the parameters of linear potential energy Φ) will grow in the order of

O(n). For example, the runtimes of GraphFP without cell-cell interaction term (W = 0) for

both the murine cerebral cortex dataset (S1 Table) and the mouse spinal cord injury dataset

(S2 Table) are all less than 20 seconds.

Discussion

Modelling of cell development has long been a key goal of systems biology.The Waddington

landscape is a classic metaphor for describing cell development. Mathematical framework of

cell developmental energy landscape has been developed to study the dynamics of cell state-

transitions from gene regulatory network (GRN) based perspective (e.g., [33–36]) and state

manifold based perspective (e.g., [5, 37, 38]) (see [18] for a recent review of the two

approaches). Traditional GRN-based landscape can be hindered by the computational issue

raised by high-dimensional GRNs. Recently, a model-based dimension reduction approach of

the landscape (DRL) was proposed to construct a low-dimensional energy landscape of high-

dimensional GRNs [36], which overcomes the limitations of traditional methods. Although

great success has been achieved, the GRN-based landscape depends on prior biological knowl-

edge of the underlying GRN. When the information of GRNs is unavailable or not complete,

the state manifold based landscape will be constructed, especially for scRNA-seq data analysis.

The state manifold based methods model the cell development with stochastic Markov process

and/or drift-diffusion PDE, where cell states (e.g., cell types and cell clusters) represent the

local attractors of the underlying dynamic systems [18].

In this study, we propose GraphFP, a state manifold based computational framework, to

reconstruct the complex potential energy landscape and infer the stochastic dynamics of cell

state-transition during cell development. GraphFP models cell development based on the dif-

fusion process in a discrete spectrum of states [19–21]. It can be viewed from the lens of

dynamic optimal transport on networks as solving an optimal control problem to minimize

the kinetic energy of flow between adjacent time points [14, 39]. The FPE of GraphFP can be

characterized as a gradient flow of free energy when the probability simplex of discrete states is

equipped with the discrete L2-Wasserstein metric defined on the graphs [19–21]. Beyond its

clear theoretical importance, GraphFP has enabled critical insight into nonlinear dynamic cell

state-transition, as well as cell-cell interactions during cell development. We demonstrated

that the cell-cell interaction part of GraphFP plays a key role in capturing the stochastic

dynamic of the cell-type frequencies on both the murine cerebral cortex dataset (Table 1 and

Fig 5) and the mouse spinal cord injury dataset (S2 Text).
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GraphFP has the following strengths over existing methods. First, GraphFP models the

dynamics of cell clusters (e.g., cell states and cell types) on a discrete state space. In contrast,

methods, such as Waddington-OT [15], TrajectoryNet [16] and PRESCIENT [17], modelled

the dynamics of individual cells with drift-diffusion equations on a continuous state space.

With the dramatic increase in amount and size of scRNA-seq data, the cluster-based

approaches, which work on a relatively small number of clusters that usually represent anno-

tated cell types, warrant both scalability to large-scale scRNA-seq data and ease of biological

interpretability [12].

Second, GraphFP is built on a nonlinear model that explicitly takes into account cell-cell

interactions in free energy. The current computational methods for inferring cell-cell interac-

tions from single-cell data are mainly based on machine learning or statistics, relying heavily

on the domain knowledge as learning materials [22, 23]. On the other hand, GraphFP provides

an alternative and model-based approach to decipher cell-cell interactions that drive cell devel-

opment. In contrast, the underlying models of both Waddington-OT [15] and PRESCIENT

[17] are only able to characterize cell state-transition on the static potential energy landscape

driven by random noises, failing to account for cell-cell interactions. Although able to recon-

struct nonlinear development landscape, TrajectoryNet was based on the neural network

framework without explicit system models, thus lacking biological interpretability.

Nonetheless, some aspects still need to be improved. Firstly, the current GraphFP does not

account for cell proliferation during cell development, which may result in that probability

masses are not conservative over time. We can solve this problem by adopting the unbalanced

optimal transport framework that has been used by Waddington-OT [15] and TrajectoryNet

[16] to quantify cell proliferation. Secondly, as the existing time series scRNA-seq methods

such as Waddington-OT [15] and Tempora [12], the current GraphFP works in an off-line

fashion such that the cell clustering and annotation are performed on the entire data by merg-

ing cells from all time points together. This approach offers an unbiased, comprehensive and

quantitative definition of discrete cell types. However, with the emerging large-scale scRNA-

seq data, it may be computationally cumbersome to cluster the massive and continually arriv-

ing scRNA-seq datasets as a whole. Therefore, developing an on-line framework of GraphFP

that can cluster and annotate the single-cell time series scRNA-seq data in different batches in

a serial fashion should be an interesting topic. The newly developed single-cell data analysis

tools such as the on-line integration method online iNMF [40] and the cell type annotation

method scArches based on transfer learning [41] can be adopted.

Supporting information

S1 Text. Details for the parameter estimation of GraphFP. This document provides detailed

description of the parameter estimation and pseudocode for the GrapFP algorithm.

(PDF)

S2 Text. Application of GraphFP to the mouse spinal cord injury dataset. Fig A. GraphFP

reconstructs the cell state-transition energy landscape on the mouse spinal cord injury scRNA-

seq dataset. Fig B. The linear potential energy Φ quantifies cell differentiation potency.

Table A. Evaluation of GraphFP’s performance on quantifying the stochastic dynamics of cell

type frequencies with cell-cell interaction term (W 6¼ 0) and without cell-cell interaction term

(W = 0) on the mouse spinal cord injury dataset.
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S1 Table. Runtimes of GraphFP on the murine cerebral cortex dataset.
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