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The Darwin–Bateman paradigm recognizes competition among males for

access to multiple mates as the main driver of sexual selection. Increasingly,

however, females are also being found to benefit from multiple mating so

that polyandry can generate competition among females for access to multiple

males, and impose sexual selection on female traits that influence their mating

success. Polyandry can reduce a male’s ability to monopolize females, and

thus weaken male focused sexual selection. Perhaps the most important

effect of polyandry on males arises because of sperm competition and cryptic

female choice. Polyandry favours increased male ejaculate expenditure that

can affect sexual selection on males by reducing their potential reproductive

rate. Moreover, sexual selection after mating can ameliorate or exaggerate

sexual selection before mating. Currently, estimates of sexual selection inten-

sity rely heavily on measures of male mating success, but polyandry now

raises serious questions over the validity of such approaches. Future work

must take into account both pre- and post-copulatory episodes of selection.

A change in focus from the products of sexual selection expected in males,

to less obvious traits in females, such as sensory perception, is likely to

reveal a greater role of sexual selection in female evolution.
1. Introduction
The products of sexual selection that function as ornaments or armaments are

found predominantly, though not exclusively, in males [1]. The fundamental

cause of this sexual difference is believed to lie in the greater expenditure on

gametes made by males and females [2]. Because males often invest less in

any given reproductive event, they should be able to mate more frequently

than females so that their reproductive success is more variable, and dependent

on their ability to compete successfully for access to multiple females [2].

Numerous quantitative measures of the opportunity for sexual selection have

been proposed, including relative parental investment [3], the operational sex

ratio (OSR) [4], potential reproductive rates (PRRs) [5] and the variance in

mating success [6–8]. Intrinsic and extrinsic factors interact in often complex

ways to ultimately determine the extent to which males and females limit

each other’s reproductive potential (figure 1). We agree with Parker & Birkhead

[7], who argue that the slopes of the so-called ‘Bateman gradients’ offer key

measures because they can, in theory, indicate directly the intensity with

which sexual selection operates. However, we recognize that empirical

measurement of Bateman gradients in natural populations of animals is not

without its problems, and that caution is necessary in interpreting positive

slopes as evidence of sexual selection when other measures of the opportunity

for selection, or data on selection differentials for traits under selection, are un-

available [13]. Nonetheless, Bateman gradients have considerable heuristic

value for the theme of this volume, because they address explicitly how

polyandry will influence sexual selection.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2012.0042&domain=pdf&date_stamp=2013-01-21
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Figure 1. Operational sex ratio (OSR) is a central concept for understanding variation in mating competition and sexual selection within and between species. OSR
is the ratio (m : f ) or proportion (m/m þ f ) of males and females that are ready to mate in a population at any one time [4,9]. In many species, both sexes
show some level of competition for mating opportunities. However, when the relative number of opposite sex individuals that are ready to mate becomes rare,
competition intensifies, and stronger pre-copulatory sexual selection is expected among the sex in excess. The OSR in turn is influenced by the adult sex ratio (ASR)
and by a sex difference in potential reproductive rates (PRRs) [5]. All else being equal, PRR is the reproductive rate individuals would achieve if they were given
unlimited access to mates. If one sex has a higher PRR than the other, this difference will push the OSR towards the faster sex. A sex difference in PRR can arise due
to one sex making a higher parental investment, because of higher expenditure on gametes or parental care. All else is rarely equal, however. An individual’s age or
size often influences its PRR, and so do ecological factors such as food availability and temperature. Especially in ectotherms such as fish, amphibians, reptiles and
insects, low temperature often slows PRR. Whenever these effects on PRR differ between the sexes, they are expected to generate changes in the OSR [9,10]. While
effects via PRR are typically delayed, effects via ASR are instantaneous [11]. Naturally, the primary sex ratio affects ASR fundamentally, but many other factors can
also affect it, for example if the reproductive lifespan, migration pattern or predation risk differs between males and females. If acquisition of a resource, such as a
nest site, is needed before an individual becomes ready (‘qualified’) to mate or breed, the qualified sex ratio should replace ASR in the flow chart [12]. Insofar as
individuals benefit from multiple mates, Bateman gradients link mating competition to sexual selection. But this need not always be so, for example if individuals
are monogamous, or if they compete for a territory or other resource required to mate, sexual selection can still operate without covariation between number of
mates and reproductive success. As shown here, a wide range of factors can influence mating competition and sexual selection via OSR. Naturally, sexual selection
can be influenced by many processes that are not included in this illustration. Our intention here is not to be exhaustive, but simply to highlight the diversity of
interactions between intrinsic and extrinsic factors that underlie the form and strength of sexual selection.
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Bateman gradients connect mating success, measured as

number of mates, to reproductive success. When the slope of

the Bateman gradient is steep, one can expect strong selection

among individuals for access to as many mates as possible,

because the fitness pay-off from multiple mates is high.

When males compete more strongly for mating opportunities

than do females, males should have a steeper gradient than

females (figure 2a), as found for some, but not all, of Bateman’s

fruit flies [14,17]. Conversely, when females compete more

strongly than males for mating opportunities, we expect

the female gradient to be steeper (figure 2b), as found in the

sex-role-reversed species of pipefish, Syngnathus typhle [18].

Yet, we might also expect both sexes to show steep gradients,

such that both benefit from having multiple mates (figure 2c),

or shallow gradients (figure 2d) with neither sex benefitting

greatly. Such scenarios illustrate both the general utility of

Bateman gradients in predicting mate competition, and why

the labelling of competition as a ‘sex role’ obfuscates reality.

In their contribution, Parker & Birkhead [7] show theoretic-

ally how considering the costs and benefits of multiple mating

can moderate Bateman gradients, and thus the intensity of

sexual selection acting on males and females. Polyandry is

shown to reduce the difference between male and female
gradients, though not which is greater [7]. In our contribution,

we draw upon the empirical literature to argue that polyandry

can indeed have a major impact on the strength of sexual selec-

tion. The Darwin–Bateman paradigm in its original form

argued that females gain little from mating with more than

one male, predicting that females should have a Bateman gra-

dient that tends to zero. We therefore open this review with a

discussion of the selective pressures that can promote the evo-

lution of polyandry and thereby show why female gradients

can often be steeply positive (§2). We then discuss how poly-

andry can influence the strength of competition for access to

multiple mates for both sexes (§3), the consequences of poly-

andry for sexual selection acting after copulation—sperm

competition and cryptic female choice (§4), and how these

mechanisms of post-copulatory sexual selection can impact

net sexual selection operating on males and females (§5).
2. Why do females mate with more than
one male?

Mating with more than one partner is common among ani-

mals. Bateman realized that this represents the principal
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Figure 2. A Bateman gradient (or sexual selection gradient) is the slope of a linear regression between mating success (MS), measured as number of mates, and
reproductive success (RS) measured as number of offspring [14,15]. Here standardized Bateman gradients (i.e. with mean set to unity) illustrate four scenarios (a – d),
with dashed lines for males and solid lines for females. A steeper slope denotes a stronger directional selection for mating success. (a) When males have a steeper
slope, we expect conventional sex-roles (sensu [16], i.e. that males are the sex that predominantly competes for partners) to arise and (b) reversed sex-roles (that
females are the sex that predominantly competes for partners) when females have the steeper slope. More troublesome when it comes to ‘sex-role’ terminology is
the fact that both sexes can show similar directional selection for mating success, with (c) steep or (d ) shallow slopes in both sexes.
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way by which males increase their reproductive success [2]

(figure 2a,c). It is now clear that female reproductive success

can also depend on number of mates, because of direct and

indirect benefits, and because of effects of genetic diversity

within broods. Indeed, a recent study of the cricket Gryllus
campestris reported that, in a natural population, the gradient

of the relationship between number of mates and lifetime

reproductive success was of equal magnitude and positive

for both males and females [19] (cf. figure 2c).

There are many costs of mating in general, and with mul-

tiple partners in particular [20,21]. For example, mate

searching is often associated with time, energy and increased

predation risk, as is competition for mates, courtship and

mating activities [22,23]. The risk of being infected by

sexually transmitted diseases and costs related to immune

function are likely to increase with number of mating

partners [24,25], and mating can be costly for females if

male-derived chemicals or physical damage reduces their

lifespan, and hence potential lifetime reproductive success.

Nonetheless, where the benefits of mating exceed these costs,

so that females have positive Bateman gradients, selection is

expected to favour the evolution of polyandry. Here, we dis-

cuss the benefits females can gain from mating polyandrously.
(a) Direct benefits
Jacanas provide a well-studied example of how females can

increase their reproductive output from having more part-

ners. Both in the wattled, Jacana jacana, and bronze-winged

jacana, Metopidius indicus, a single female can mate with up

to four males, laying a clutch of four eggs that each male

will incubate [26,27]. Similarly, in the short-snouted pipefish,

Nerophis ophidion, the female attaches a clutch of eggs to the

male’s body, which he broods until offspring hatch four to

six weeks later [28]. Each male only carries eggs from one

female at a time, and because the egg maturation rate of

females is considerably higher than the brooding rate of

males, each female can, on average, produce two full

clutches, while a male broods one. Thus, for both the jacanas

and pipefish, the male contributes substantially to offspring

care, and although the eggs are large and expensive to pro-

duce, female PRR is higher than male PRR. Hence, a female

benefits from mating with several males, but only competi-

tively successful females manage to do so. Because females

engage in intra-sexual contest competition for mating part-

ners, this leads to sex-role reversal, sensu [16], and because
large, dominant and highly ornamented females are more

successful, it generates both intra- and inter-sexual selection

for these traits. Because a larger number of mates translate

directly into a higher reproductive success for the females,

it also means that species such as these are likely to have Bate-

man gradients with steeper slopes for females than for males

(cf. figure 2b). In N. ophidion, males father all the offspring

they care for [29], despite the polyandry. By contrast, there

is a high level of multiple paternity in jacana broods [26].

In bronze-winged jacanas, not all males in a harem get eggs

to incubate, but females appear to ‘bribe’ such males to

stay by allowing them copulations [27]. If males without a

clutch still father some young, this should reduce the

variance in reproductive success among males. Still, it is

not entirely clear what females gain from having such

excess males.

In most animals, females do not double their reproductive

success when mating with two males instead of one, like the

pipefish and jacana can. Still, they can benefit directly from

polyandry in a number of ways. Females that mate with sev-

eral partners can receive more paternal care and protection

for themselves and their offspring [20]. Mating with several

males can also increase egg production, owing to nutrients

in the ejaculate or nuptial gift [30–32]. Mating with multiple

males can secure against infertility, which is important in

populations in which infertile males are common [33,34].

Polyandry can also improve female fertility, because mating

with multiple males generates a greater supply of sperm

[31,35]. This may be particularly important in externally fer-

tilizing species, in which sperm numbers can be severely

limiting [36]. Sperm numbers can be limiting for females

also in internally fertilizing species, for example if insemin-

ation fails [34], or if the most popular males become sperm

depleted [37] or allocate sperm strategically [38]. Ironically,

while sperm depletion should be less of a problem for mon-

ogamous animals, polyandry might be both cause and

solution to sperm limitation [39].
(b) Indirect benefits
Indirect benefits arise when certain genes or combinations

of genes raise offspring fitness [20,40], and can be divided

into effects that relate to viability or attractiveness [20].

There is ample evidence that mate choice can target both

types of genetic quality, and a substantial body of research

has investigated the various traits used to signal it [23,40].
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Genetic compatibility refers to how the male and female

genomes complement each other in ways that affect offspring

performance (fertilization, growth, survival, etc.) [41–43].

Again, there is good evidence of mate choice that targets

such non-additive genetic effects, or mate choice that targets

both ‘good’ and compatible gene effects [42–46]. However,

when the genetic quality of mates cannot be determined

before mating, females may increase their chances of finding

a compatible sire for their offspring by mating polyandrously

[41,47]. Recent work suggests the same can be true for males

that mate polygynously [48]. In fact, a recent meta-analysis

suggests that post-copulatory mechanisms are more likely

to generate ‘good’ or compatible genetic benefits than is

pre-copulatory female choice based on male secondary

sexual traits [39]. Consistent with this, several empirical and

theoretical studies have shown that polyandry can evolve in

response to genetic incompatibility [49–52].

When polyandry leads to sperm competition, a male’s

ability to gain successful fertilizations can be related to the

relative number of sperm, their ability to reach and fertilize

the eggs, displacement of other males’ sperm and preventing

or delaying female remating. When this competitive edge is

heritable, it should result in competitively superior sons

[53,54]. Likewise, if a male’s fertilization potential is positively

associated with his genetic quality more generally, polyandry

could deliver viability benefits for offspring produced by

superior sperm competitors [55,56]. Experimental evolution

studies in house mice have demonstrated how polyandry

leads to the evolution of increased early embryo viability [57],

and comparative analyses suggest that this effect may be gen-

eral across mammalian species [58]. In §5, we discuss how

these forms of post-copulatory sexual selection can moderate

sexual selection operating before mating.
(c) Genetic diversity and relatedness within broods
Genetic diversity among offspring is lower in broods pro-

duced by two parents than in broods produced by three or

more contributors, whether it is due to polygyny, polyandry

or both. In habitats that are unpredictable from one gener-

ation to the next [59,60], increased genetic diversity among

offspring may increase the chances that at least some survive

[59], in a similar manner to that argued for the evolution of

sex [61]. Such effects of polyandry have, for example, been

found in an experimental study of the pygmy grasshopper,

Tetrix subulata [62], and manipulated polyandry has been

shown to increase colony resistance to parasites in the

bumblebee, Bombus terrestris [63]. Restricted circumstances

are required for polyandry to evolve as a result of these

effects however, such as small population size and low

costs of mating with more than one male [59].

Genetic and phenotypic diversity of a brood can also

affect competition among siblings. If full-sibs compete more

intensely for limited resources than half-sibs, for example

owing to more overlapping demands, survival rates should

be higher among broods consisting of more diverse offspring

[59], as recently shown in S. typhle [64] and in the ascidian

Ciona intestinalis [61]. This effect is likely to be most important

if the offspring of a brood are in close proximity, competing

for resources before [64] or after birth [65].

Given that polyandry can offer females so many direct

and indirect benefits, it is clear that our understanding of

sexual selection generally, and our refinement of the
Darwin–Bateman paradigm, particularly, needs to consider

selection on, and arising from, multiple mating by females.
3. Polyandry and mating competition
(a) Competition among females for mating

opportunities
Polyandry can generate competition among females for

mating opportunities. As we have seen, in species where

females obtain reproductive benefits from males, the female

Bateman gradient will be positive, and we should expect to

see competition among females for access to multiple

males. The intensity of female competition for mates will

depend largely on the benefits of polyandry and the costs

of mating for males in terms of their time out [5] (or

mating latency [66]) from the mating pool. A long time out

decreases the PRR. In the bushcricket, Kawanaphila nartee,

males transfer a large spermatophore at mating, consisting

of an ampulla that contains the ejaculate and around it a

protein secretion of the accessory glands. The latter serves

both as paternity guard, protecting the ampulla from being

eaten by the female before the ejaculate is transferred, and

as paternal investment, because the proteins consumed by

the female contribute directly to offspring production

[67,68]. Early in their reproductive season, there is a shortage

of pollen-rich flowers, which limits egg production. At this

time, females harvest the nutritious spermatophores that

males offer [69,70]. Because males also use pollen to produce

spermatophores, this means that male PRR is low early in the

season, with males taking several days following mating

before they can collect enough pollen to be ready to mate

again. Elevated female mating frequency coupled with long

time out for males generates a female-biased OSR, which

causes females to compete for the limited supply of males

[71,72].

Female competition in K. nartee involves episodes of

scramble competition with females racing to locate sexually

signalling males, and contest competition with females

struggling with already mounted females, attempting to

usurp males from those who have arrived first. Gwynne &

Bailey [73] found a selective advantage for females with

larger auditory spiracles during scramble competition, as

this gives females greater auditory sensitivity, allowing

them to locate a sexually signalling male rapidly. Moreover,

male K. nartee appears to promote female competition by pro-

ducing very short bursts of song that are more difficult for

females to locate, compared with the continuous song they

produce under high nutrient availability, when males instead

compete to attract a limited supply of sexually receptive

females [73]. Interestingly, auditory spiracle size exhibits con-

siderable sexual dimorphism in this species, expected of a

trait subject to intense sexual selection. In this case, the

female has the larger auditory spiracle and the greater

auditory sensitivity [74,75].

Female competition for access to males has been widely

documented where males or the resources they provide to

females are in limited supply [76,77]. However, because of

variation in male mate quality, female competition might

also be expected when males are not the limiting sex [77].

When females exhibit strong mating preferences, more

attractive males, or those of higher genetic quality, may be
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in greater demand than less attractive males. Under these

conditions, females will compete for access to high quality

males. For example, there are now a number of studies of

birds and mammals in which males form communal display

grounds, or leks, which have reported intense female compe-

tition over access to the most attractive males [78–80]. In part,

this competition might be anticipated because attractive

males in high demand from choosy females can become

sperm depleted [81,82], selecting for females able to mon-

opolize the attention of attractive males or to mate with

these males before they become sperm depleted [77].

It is now clear that polyandry can influence female repro-

ductive success, and that females can be subject to sexual

selection. Indeed, there has been a general increase in research

and debate on the role of sexual selection in the evolution of

female reproductive biology [77,78,83]. Much of the current

empirical work is focused on explaining the evolution of rela-

tively rare examples of female ornaments or armaments [84–

86], mainly because these kinds of traits are generally recog-

nized to be the products of sexual selection acting on males.

Importantly, however, the products of sexual selection via

female competition may often be more subtle, as illustrated

by K. nartee, with sexual selection favouring sensory adap-

tations in females that allow them to locate males quickly

[73]. Similarly, in the common goby, Pomatoschistus microps,
females respond to increased female competition by laying

larger clutches of eggs [87], whereas in S. typhle, the presence

of competitively superior, large females, causes small females

to invest more in growth and less in current reproduction

[88], thereby improving future competitive ability.
(b) Competition among males for mating opportunities
Female mating patterns have long been recognized as influ-

encing the strength of male mating competition [4,40]. In

species where females are continually receptive and highly

polyandrous, males are often unable to monopolize females,

resulting in comparatively low mating skews. In Soay sheep,

for example, an increased availability of sexually receptive

ewes results in a reduction in the strength of selection on

male body and horn size, because when receptive females

are in abundance, males are unable to use these traits to con-

trol access to multiple females [89]. The monopolizability of

females appears to be a major factor influencing mammalian

mating systems [90]. Likewise, in dung beetles, horns that are

used in the monopolization of mates are less likely to evolve

in species that occur in crowded communities, where males

are unable to efficiently monopolize the continually receptive

females [91].

By contrast, where females mate only once, male compe-

tition can be extreme, generating both protandry (where

males emerge or reach sexual maturity before females) and

extreme mating skew among males. For example, in heliconid

butterflies, monandry has resulted in pupal mating [92],

whereby adult males copulate with females before they

emerge from their pupal case. Likewise, in solitary bees,

males emerge often several days before females and compe-

tition for access to females as they emerge is intense, with

the largest males achieving a disproportionate share of mat-

ings [93]. Protandry can also arise under female polyandry,

if there is a benefit to the male of mating first, such as

higher fecundity in young females [94] or first male paternity

advantage, as in the bushcricket Requena verticalis [95]. In fact,
male R. verticalis, which provide a costly nuptial gift, exhibit

mate choice, selecting against older females that are less likely

to be virgins [95].
4. Post-copulatory sexual selection acting
on males

Sperm competition [96,97] and cryptic female choice [98] are

probably the most widely appreciated consequences of poly-

andry for sexual selection acting on males. Polyandry can

promote the spatial and temporal overlap of ejaculates from

multiple males at the time of fertilization, so that sexual selec-

tion will favour adaptations in males that ensure their own

sperm are successful in fertilizing available ova, and prevent

rival males from gaining access to fertilization opportunities.

Such adaptations might act via direct competitive interac-

tions between males over paternity, or as signals, delivered

during copulatory courtship [98] and used by females in

selecting among sperm from prospective fathers. Naturally,

post-copulatory sexual selection could act on females as

well, but this is a subject that has rarely been addressed [99].

In depth reviews of the evolutionary consequences of

post-mating sexual selection for male reproductive behav-

iour, morphology and physiology are available elsewhere

[97,100,101]. Therefore, we provide an overview of these

here and explore how increased male investment into adap-

tations that result from female polyandry can reduce the

potential strength of sexual selection acting on males. In §5,

we then focus on the potential interactions between pre-

and post-mating sexual selection, how post-mating sexual

selection might impact the net strength of sexual selection

acting on males, and how male expenditure on traits subject

to post-mating sexual selection might affect the operation of

pre-mating sexual selection via its impact on male PRRs.

(a) Selection on male reproductive expenditure
A range of male reproductive traits that promote paternity

have evolved in response to polyandrous mating by females.

Morphological adaptations that enhance paternity are per-

haps best documented in the insects, with sexual selection

favouring adaptations in male genital morphology that

displace or remove sperm of rival males from the site of

fertilization, giving the last male to mate a fertilization advan-

tage [102]. Polyandrous females frequently play an active

role in the removal or displacement of sperm, responding

cryptically to stimuli received from male genitalia during

copulation [103,104]. Thus, across insect taxa, species where

females are polyandrous tend to have more complex male

genital morphology than do monandrous species [105].

Within polyandrous taxa, male and female genital mor-

phology frequently exhibit strong signals of coevolutionary

change [106–108].

The degree to which males can displace rival sperm can

depend on the time they spend copulating with a given

female [97,109]. In the yellow dung fly, Scatophaga stercoraria,

males do not use their genitalia to remove rival ejaculates.

Rather, rival sperm are flushed from the female’s sperm

store by their own ejaculates, such that the proportion of off-

spring sired by a copulating male rises with diminishing

returns [110,111]. A male’s fitness can depend critically on

the time he spends copulating, the costs of prolonged
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copulation in terms of his ability to find and copulate with

additional females, and in the case of yellow dung flies the

time he spends guarding the female while she deposits her eggs.

A variety of forms of mate guarding have evolved in

response to polyandry. Behavioural mate guarding is

common across a variety of taxa, including insects [97],

birds [101] and mammals [112]. However, mate guarding

can also be achieved in ways that do not require the guarding

male to be physically present. For example, male insects [97],

reptiles [113,114] and mammals [115] deliver secretions to the

female reproductive tract that harden to form mating plugs

that serve as barriers to copulation by rival males. Among

mammals, the protein secretions that form these plugs are

under strong sexual selection that increases with the degree

of polyandry [116–119]. In Drosophila, males transfer seminal

fluid proteins within their ejaculates that suppress female

sexual receptivity to remating and promote the immediate

laying of eggs that will be fertilized by the copulating male

[120]. These seminal fluid proteins are likewise characterized

by a rapid evolutionary divergence [121] that is dependent

on the degree of polyandry [122]. Tettigoniids also transfer

compounds within the ejaculate that inhibit female sexual

receptivity [69], and comparative analyses have found nega-

tive evolutionary covariation between ejaculate volume and

the degree of polyandry [123]. Finally, in some insects,

males transfer antiaphrodisiac pheromones to females, ren-

dering them unattractive to other males. These pheromones

show a faster rate of evolutionary divergence in clades

where females are polyandrous [124].

Given that expenditure on mate guarding can have the

effect of reducing a male’s ability to mate with additional

females [125,126], selection is expected to favour phenotypic

plasticity in these components of pre- and post-copulatory

expenditure to maximize the fitness returns of individual

males. Indeed, we see considerable phenotypic plasticity

within species, with males investing in mate guarding more

heavily when the risk of sperm competition is high. For

example, in mammals [127], birds [128], reptiles [129] and

insects [130–133], males guard for longer, or with greater

intensity, when the risk of female remating with rival males

is elevated, whereas in Drosophila, males copulate for longer

[134] and transfer greater quantities of receptivity inhibiting

seminal fluid proteins when in the same situation [135,136].

In many taxa however, males are unable to control female

mating frequencies, so that sperm competition conforms to

a raffle in which a male’s fertilization success depends

critically on the number of sperm he has at the site of

fertilization relative to his competitors [38].

Implicit in Bateman’s [2] argument was the assumption

that sperm were cheap, and that males were limited in their

reproduction only by the number of females they could

acquire. However, we now know that ejaculate production

can represent a significant cost of reproduction for males

[137,138]. Studies of insects [139], amphibians [140], reptiles

[141], birds [142] and mammals [37] have all shown how

males can become depleted of sperm and seminal fluid

reserves with successive copulations, limiting the numbers of

females with which they can mate. Moreover, there is growing

evidence to suggest that males face a trade-off between

the allocation of resources to ejaculate production and to

pre-copulatory competition over access to females (table 1).

Mating costs of ejaculate production have recently been

incorporated explicitly into Parker’s game theoretic models
of ejaculate expenditure [152]. Here, males are assumed to

have a fixed energy budget for expenditure on reproduction,

which can be spent either on acquiring mates (through mate

searching, fighting for direct access to females or the

resources they require, or courtship displays and ornamenta-

tion used to attract females and persuading them to copulate)

or on the various ejaculate components that determine male

fertilization success (sperm, seminal fluid proteins). Male fit-

ness is assumed to be the product of the number of matings

obtained and the fitness gain per mating. Across species, the

models predict that males should increase their expenditure

on the ejaculate, and decrease their expenditure on gaining

additional matings as the risk (probability that a female

will mate with more than one male) and intensity (the

number of males with which a female mates) of sperm com-

petition increases (figure 3). There is now considerable

evidence to support this basic prediction. Thus, across

species, increases in the degree of polyandry are associated

with increases in testes mass [100,164]. Laboratory evolution

studies of single species have also shown increases in male

ejaculate expenditure in response to experimentally elevated

rates of polyandry, in both insects [165,166] and mammals

[167,168], and similar patterns of micro-evolutionary

divergence are implicated from cross-population studies

of mammals [169], frogs [170] and birds [171] that show covar-

iation in testes size and the degree of polyandry.

As with mate guarding, theoretical models predict that

males should adjust their expenditure on gaining fertiliza-

tions, depending on the current risks or intensity of sperm

competition [38]. Specifically, males should increase their

ejaculate expenditure when faced with a risk of sperm

competition from rival males, but reduce their expenditure

as the number of males competing for a given set of ova

increases (sperm competition intensity), because the fitness

pay-off per unit of ejaculate expenditure is expected to

decline as the number of males competing increases [38].

Studies of mammals [172,173], fish [174,175], birds [176]

and insects [177] have all reported increased numbers of

sperm ejaculated when males perceive cues to the presence

of rival males (sperm competition risk). Indeed, two recent

meta-analyses of the literature have reported moderate

sized and general effects of the presence of rivals on ejaculate

expenditure [178,179]. General support for the prediction that

males should decrease their ejaculate expenditure with

increasing intensity is perhaps less strong; the general effect

size found by Kelly & Jennions [178] was not statistically sig-

nificant. However, lack of concordance among studies may

lie in experimental design. Manipulating a male’s perception

of the presence of rival males (risk) is simpler than manipu-

lating his perception of sperm competition intensity,

because an increased number of males present at the time

of copulation may convey cues of heighted risk rather than

the number of males actually competing for fertilizations

[180]. Studies that have manipulated cues to a female’s past

mating frequency have provided good support for the predic-

tion that males decrease expenditure with sperm competition

intensity [181].

An assumption underlying intensity models is that

males adjust their ejaculate expenditure in response to vari-

ation in fitness pay-offs for their investment. From a male’s

perspective, a highly polyandrous female is assumed to be

of reduced reproductive value compared with a less polyan-

drous female. Male responses to sperm competition intensity



Table 1. A review of evidence suggesting that males suffer a trade-off between expenditure on gaining matings versus expenditure on gaining fertilizations.

species evidence references

acanthocephalan worms testes mass decreases with increasing sexual size dimorphism (a proxy for the intensity of

male contest competition)

[143]

insects

Cyrtodiopsis dalmanni juvenile hormone application increases eye span at the expense of testes mass [144]

Onthophagus

nigriventris

ablation of developing horns in pre-pupae increases testes mass in adults [145]

Gnatocerus cornutus selection for increased mandible size generates correlated reduction in testes mass [146]

Teleogryllus oceanicus negative genetic correlation between courtship song structure and ejaculate quality [147]

Nauphoeta cinerea competitive interactions between males decrease spermatophore size and sperm numbers [148]

Panorpa cognate negative genetic correlation between attractiveness and ejaculate investment per mating [149]

Photinus greeni negative phenotypic correlation between attractiveness and competitive fertilization success [150]

Hemideina crassidens males with large weapons have relatively smaller testes and ejaculate volumes than males

with small weapons

[151]

amphibians

Crinia georgiana negative among population covariation between testes mass and forearm development [152]

fishes

Oncorhynchus kisutch breeding coloration negatively correlated with sperm motility [153]

Salvelinus alpinus negative phenotypic correlation between red spawning coloration, dominance status and

sperm density

[154,155]

Poecilia reticulata negative genetic correlation between ornamentation and ejaculate quality [156]

Pomatoschistus

minutus

males lacking breeding coloration have testes 4.3 times larger, in absolute terms, than males

with breeding coloration

[157]

Thalassoma

bifasciatum

males with high mating success divert resources towards mate guarding at the expense of

gamete production

[81]

birds

Chlamydotis undulata males with exaggerated courtship displays show rapid deterioration in spermatogenic function

compared with males with less elaborate displays

[158]

Gallus gallus

domesticus

decline in ejaculate quality is associated with success in dominance interactions [159]

Malurus

melanocephalus

negative phenotypic correlation between plumage ornamentation and ejaculated sperm numbers [160]

mammals

pinnipeds among harem breeders, testis mass decreases with degree of sexual size dimorphism (a proxy for the

intensity of male contest competition)

[161]

Homo sapiens negative phenotypic correlation between voice attractiveness and ejaculated sperm numbers [162]
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can, in this sense, be seen as cryptic male mate choice

[48]. Male adjustments in ejaculate expenditure have been

reported for a number of measures of female quality, includ-

ing female age, size, fecundity and secondary sexual trait

expression [182,183], with larger ejaculates being delivered

to females of greater quality. Again, the general effect

of female quality on ejaculate expenditure appears both

statistically significant and moderate in size, although it

varies across taxonomic groups and reproductive mode

[178]. These studies show how individual males can exhibit

fine-grained phenotypic plasticity in the allocation of their

reproductive resources to different females, and that

polyandry is a significant driver of male expenditure.
(b) Impact on male potential reproductive rate and the
strength of sexual selection

Adaptations to sperm competition might be expected to

affect the strength of sexual selection acting on males insofar

as they will influence male fitness via the number of mates

acquired, the Bateman gradient. Males that must copulate

for extended periods to displace rival sperm or guard their

mates from potential rivals must take ‘time out’ from mate

searching in order to ensure they fertilize their current

female’s batch of ova. Likewise, allocation of resources to

mating plugs or seminal fluids can be costly in terms of

time required to replenish the proteins necessary for
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scramble competition, such that a is greatest when M ¼ 2 and reduces towards 1.0 or less as M increases (from Parker et al. [152]).
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additional mating attempts. These energetic costs of sperm

competition, which arise as an evolutionary consequence of

polyandry, will reduce a male’s PRR, the male Bateman gra-

dient [7], and thus the potential strength of sexual selection

both among and within species [184,185]. Among species, if

males increase their expenditure on the ejaculate with increas-

ing risk of female remating, male time out for gamete and

seminal fluid replenishment is likely to increase. This

would have the effect of ameliorating any male bias in the

OSR, and reducing the opportunity for sexual selection

acting via the number of mates males obtain. Within species,

as the degree of polyandry increases, the intensity of sperm

competition should increase, and as discussed in §4a, ejacu-

late expenditure is then expected to decrease [38,186]. A

decreased expenditure on the ejaculate by males would

have the counter effect of decreasing male time out, increas-

ing the OSR bias towards males, and thus the opportunity

for sexual selection to act via male mating success. Such

effects are likely to be strong in species where ejaculate

costs are very high. For example, in bushcrickets, males can

expend up to 30 per cent or more of their body mass on a

single ejaculate, which consists of sperm, seminal fluid pro-

teins that inhibit female receptivity, and the edible mass of

accessory gland proteins that females consume during the

period in which the ejaculate is transferred from the sperm-

atophore to the female’s sperm storage organs [123,187,188].

The magnitude of male expenditure on these large ejaculates

comes at a considerable cost, increasing male time out from

the mating pool required to replenish spent resources [126].

As we have seen for K. nartee, male time out can greatly
exceed female time out, generating a complete reversal in the

direction of sexual competition, so that females compete for

access to males [72,189].

An additional, and probably more widespread, effect of

sperm competition on the intensity of sexual selection is

expected to arise in species were males provide parental

care. Trivers [3] originally recognized that when females are

polyandrous, so that their broods contain offspring from mul-

tiple males, each male has a lower expected relatedness to the

brood, reducing the benefits of paternal care. Subsequent

theoretical treatments have concluded that lost paternity

through sperm competition can select against paternal care

[190–193]. Experimental studies of fish, insects, birds and

mammals have revealed how males reduce their expenditure

on paternal care when the risk of lost paternity through

sperm competition is elevated, although such effects are not

always found [194]. A male is expected to respond only to

a risk of lost paternity if he can expect to gain greater pater-

nity in future breeding attempts, a factor that might help

explain the often reported variation in the effects of paternity

on paternal care among species [195]. By contrast, although

cause and effect are difficult to distinguish, a broad pattern

of negative coevolutionary variation has been found between

rates of extra-pair paternity and female dependency on

paternal care (estimated from the reduction in female repro-

ductive success when the male is removed) across bird

species [196,197]. Simmons & Parker [184] argued that

increased polyandry and sperm competition could influence

the strength of sexual selection acting on males indirectly,

because lost paternity would select for reduced male
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expenditure on paternal care that would in turn reduce a male’s

time out from seeking additional mates. Indeed, the theoretical

analyses of Kokko & Jennions [195] show that sex roles are pre-

dicted by both polyandry and the strength of sexual selection

acting on males and females, but not by the initial bias in par-

ental investment into gamete production. Greater sexual

selection and female multiple mating were shown to generate

more female than male care.

In socially monogamous birds, attractive males who are

successful in forming breeding pair bonds are often also suc-

cessful in gaining extra-pair fertilizations [198–200]. In this

manner, sperm competition or cryptic female choice increases

the variance in male reproductive success and strengthens

the intensity of sexual selection on males [201,202]. However,

in polygamous mating systems, lost paternity can dampen

the opportunity for sexual selection. In the sand goby,

Pomatoschistus minutus, males build nests in which they

tend batches of eggs from several females. Despite paternal

care, sexual selection acts predominantly via male compe-

tition for females [203]. Parasitic fertilizations in nest

owners’ nests are common in this system [204]. Jones et al.
[204] modelled the opportunity for sexual selection on

males, based on the observed variance in male reproductive

success estimated from fertilization success within and

among nests. They found that the opportunity for sexual

selection declined slightly with the proportion of males that

took part in sneak matings, but was markedly reduced

when parasitic fertilizations were performed by non-nesting

males instead of nesting males (figure 4). These contrasting

findings for socially monogamous birds and polygynous

fishes illustrate how post-copulatory sexual selection can

have either synergistic or antagonistic effects on the strength

of pre-copulatory sexual selection, a theme we will address in

detail in §5.
selection without parasitic fertilizations (from Jones et al. [204]).
5. Interactions between pre- and post-copulatory
sexual selection

Quantifying the form and intensity of sexual selection across

episodes of male contest competition and female choice has

rightly been highlighted as an important endeavour for our

understanding of the net force of sexual selection, and thus

its evolutionary potential [205]. For example, episodes of

male contest competition and female choice can be reinfor-

cing, enhancing the evolutionary potential of that selection.

But equally, it can be opposing, so that female choice might

ease selection acting via male contest competition. Typically,

researchers have estimated the form and strength of selection

only at single episodes, rendering our understanding of the

evolutionary consequences of selection incomplete [205]. In

reality, when females are polyandrous, there are potentially

five episodes of sexual selection that need to be quantified;

pre-copulatory sexual selection via mate choice and compe-

tition for direct access to mates or for resources that qualify

an individual to mate [12], and post-copulatory sexual

selection via sperm competition and cryptic female choice

(figure 5). While there are studies that have examined both

male contest competition and female choice operating on

the same species [205,207], few studies have extended this

into the post-copulatory arena.

Soay sheep, Ovis aries, illustrate the ameliorating effects of

antagonistic pre- and post-copulatory sexual selection on
male fitness. While males compete for access to females,

females are highly polyandrous, copulating with as many

as 10 different rams per day, which generates intense sperm

competition [208]. Data from a free-living population on

St Kilda show that body size and horn size independently

contribute to male ability to acquire females, and that

horn size and testes size independently affect siring success

[89]. Importantly, however, intensity of sexual selection

acting on male secondary sexual traits depends critically on

the availability of ewes, or the OSR. When ewes were limited,

pre-copulatory sexual selection was strongest, as expected.

However, as the availability of ewes increased, the intensity

of post-copulatory sexual selection on testes size increased,

and the strength of pre-copulatory sexual selection on body

and horn size declined [89]. Moreover, dominant rams that

monopolize access to ewes have a high copulation frequency

and rapidly become sperm depleted, suffering a reduction in

paternity success under sperm competition. Thus, while the

copulatory success of large dominant rams increases through

the rutting season, their siring success declines, reducing the

intensity of pre-copulatory sexual selection acting on male

secondary sexual traits [37].

Effects of sperm depletion for males achieving high

competitive mating success have also been reported in

studies of insect mating systems. In a laboratory study of
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Gerris lacustris, large males were able to obtain a greater pro-

portion of matings [209]. However, small males, when they

did obtain a mating, copulated for longer and obtained a

higher relative paternity, so that there was no net action of

sexual selection on male size [209]. In fireflies, Photinus
greeni, males with the most attractive bioluminescent displays

had the lowest competitive fertilization success [150]. In this

experiment, males only mated once. Thus, this probably

reflects a trade-off between male expenditure on attractive-

ness versus competitive fertility rather than on sperm

depletion, but the effect is the same, that males favoured in

pre-copulatory sexual selection can be disfavoured when

females mate polyandrously.

Polyandry may also magnify the effects of pre-copulatory

sexual selection. In guppies, Poecilia reticulata, females show

strong preference for males with large orange patches, male

orangeness and female preference show additive genetic vari-

ation, and are genetically correlated across the sexes, such

that within populations the trait and preference coevolve

until checked by natural selection [210,211]. Females also

exercise cryptic female choice, accepting greater numbers of

sperm from colourful males [212]. Even when female control

over insemination is eliminated by artificial insemination of

equal numbers of sperm from two males, paternity is

biased towards the sperm donor with greater orange color-

ation [213]. Thus, pre- and post-copulatory sexual selection

appear to act synergistically in these fish. Synergistic effects

might be expected where high-quality males have enough

resources to allocate to both secondary sexual traits and

ejaculate production.

Life-history theory is firmly grounded in the notion of

trade-offs in resource allocation to fitness related traits

[214]. When variance in the allocation of resources required

for growth and reproduction exceeds variance in the acqui-

sition of those resources, individuals who invest heavily in

attracting females might be expected to have fewer resources

available for investment into their ejaculates [215,216]. This is
an underlying assumption in sperm competition theory for

which there is some good evidence (table 1). However, when

variance in acquisition exceeds variance in allocation, we can

expect high quality individuals to be in a position to invest

heavily in multiple fitness traits [215,216], such as secondary

sexual traits and ejaculates [217]. Thus, in some cases, we

might expect to see positive correlations between competitive

fertilization success and mate acquisition. Indeed, colourful

male guppies ejaculate faster swimming and more viable

sperm [218], implying that some males can invest heavily in

both attractiveness and fertility. Females might thereby

ensure good-genes benefits for their offspring not just by

pre-copulatory mate choice, but also by polyandry and the

competitive fertilization success of good quality males [55].

Where male attractiveness and fertilization success are

positively correlated, polyandry is expected to intensify

pre-copulatory sexual selection acting via female choice.

The phenotypic expression of traits subject to intense

sexual selection via female choice can evolve condition

dependence, providing honest signals of the underlying gen-

etic quality of potential mates [40,219,220]. Normally

associated with secondary sexual traits, this argument can

equally pertain to ejaculate traits that promote paternity

[221]. Condition dependence in male fertilization success

can thus be an important avenue for cryptic female choice.

Evidence for the synergistic action of pre- and post-copulatory

female choice comes from dung beetles, Onthophagus taurus, in

which males court females with a heritable and condition-

dependent drumming [222]. High condition males are more

attractive, have larger testes and shorter sperm [221]. Unsur-

prisingly, males with larger testes have a competitive

advantage in sperm competition [166]. Moreover, females

selectively use the short sperm of high-condition males

[223,224]. The consequence of these re-enforcing episodes of

pre- and post-copulatory female choice is the production of

offspring with enhanced viability [225,226].

Finally, there may be no correlation between pre- and

post-copulatory episodes of sexual selection. In a recent

study of D. melanogaster, fertilization success contributed

nearly as strongly as mating success to a male’s net lifetime

reproductive success. However, males mating last have the

fertilization advantage in this species, and when variance in

mating order was removed fertilization success explained

little of a male’s lifetime fitness [227]. The lack of correlation

between mating and fertilization success means that measures

of mating success alone are inappropriate for estimating overall

male success in sexual selection in this population. Such

findings are not limited to laboratory studies.

Leks are thought to epitomize sexual selection acting on

males, because females mate with only the most attractive

male present, resulting in extreme mating skews [228–230],

and thus intense sexual selection. However, off lek polyandry

can greatly temper the strength of sexual selection. This was

found in Houbara bustards, Chlamydotis undulata, which

at first appear to show a classic lek-based mating system

[231]. However, the reproductive skew is nullified via

extreme female polyandry [232]. Off lek polyandry is not

uncommon in lekking species [80,233,234], questioning the

validity of mating success data collected at leks as estimates

of the strength of sexual selection.

In general, Parker & Birkhead’s [7] simple model predicts

that polyandry and sperm competition should reduce the

benefits of multiple mates for males, and thus the strength
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of sexual selection. Indeed, a recent study of feral fowl,

Gallus gallus, found just such an effect [235]. Polyandry was

found to increase the relative importance of post-copulatory

episodes of sexual selection on male dominance, relative

to pre-copulatory episodes, and simultaneously erode the

opportunity for and strength of sexual selection.

The earlier-mentioned studies illustrate how estimates

of selection based on mating success alone can provide a

limited and sometimes incorrect view of the action of

sexual selection. Sperm competition and cryptic female

choice can dampen or negate any male advantages obtained

via mating success, or can amplify selection, depending on

the life history costs of competing for mates and sperm pro-

duction. There is little reason to expect that there should be

any generality here. A growing number of studies are avail-

able to show that competitive males can be limited in their

ability to produce costly ejaculates and thus unable to capital-

ize on their mating success (table 1). On the other hand, there

are also a growing number of studies that are pointing

towards mechanisms capable of generating positive associ-

ations between male attractiveness and sperm quality

[236–238]. Understanding the net action of sexual selection

in a given mating system will require detailed understanding

of both pre- and post-copulatory processes.
6. Concluding remarks
Our review of the literature illustrates the many ways in

which polyandry can moderate sexual selection. In general,

when females benefit from polyandrous mating behaviour,

for any of the reasons listed in §2, we should expect the

slope of the Bateman gradient (translating female mating suc-

cess to reproductive success) to increase. And as soon as

males, or males of high quality, become a limiting resource

for females, we can expect females to compete among them-

selves for such mates. However, polyandry has multiple

repercussions for both males and females, before and after

mating, and it has several important feedback mechanisms

that will impact the action of sexual selection. For example,

theoretical models of post-copulatory sexual selection suggest

that polyandry will favour the evolution of ejaculate expend-

iture at a cost of reduced expenditure on ornaments and/or

armaments (figure 3). Moreover, polyandry that occurs due

to parasitic fertilizations (sneaking, extra-pair fertilizations,

cuckoldry, etc.) might be expected to increase sexual selection

on males in some cases. However, whether it does or not
depends entirely on who gains the parasitic fertilizations—

males already successful in gaining multiple females or

males that otherwise might not breed [204]. An aspect of

post-copulatory sexual selection that we would like to see

explored, is selection acting on females via male adjustments

in their reproductive investment.

Although a sex difference in the slopes of Bateman gradi-

ents, often combined with sexual dimorphism, can be

indicative of sexual selection in the more ornamented or

armed sex, such sex differences are not required for sexual

selection to be acting strongly—it only makes it easier to discover.
Therefore, the special interest in sex difference in ornamenta-

tion [201], Bateman gradients [14] or variance in reproductive

success [6], characteristic of much research in this area, carries

the risk that we fail to spot less obvious cases of sexual selec-

tion. In many cases, both sexes can show steep Bateman

gradients, and hence benefit from having multiple mates, or

be under strong sexual selection for other reasons.

Historically, sexual selection research has focused

strongly on the evolution of male secondary sexual traits,

undoubtedly because of the early expectation that female

reproductive success should be independent of the number

of males mated [2]. However, we now know that polyandry

can clearly influence female reproductive success, and that

females, like males, are subject to sexual selection. With a

general increase in research and debate on the role of

sexual selection in the evolution of female reproductive

biology [77,78,83], much work has focused on explaining

the evolution of female ornaments or armaments [84–86],

because such traits are generally recognized to be the prod-

ucts of sexual selection acting on males. Importantly,

however, the products of sexual selection via female compe-

tition may be less obvious. We believe, therefore, that a shift

in focus from the expected products to the process of sexual

selection acting on females, will widen our eyes to a far

greater role of female competition over access to mates than

our current view affords. We also believe that future sexual

selection research must consider explicitly the effects of poly-

andry on mating competition and mate choice for both sexes,

and on the net action of sexual selection acting on males and

females across both pre- and post-copulatory episodes. Such

an approach is essential for a true appreciation of what is

arguably the most important agent of evolutionary change.
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copulation disturbance and female choice in lekking
black grouse. Anim. Behav. 52, 861 – 873. (doi:10.
1006/anbe.1996.0234)

230. Kokko H, Sutherland WJ, Lindström J, Reynolds JD,
Mackenzie A. 1998 Individual mating success, lek
stability, and the neglected limitations of statistical
power. Anim. Behav. 56, 755 – 762. (doi:10.1006/
anbe.1998.0815)

231. Hingrat Y, Saint Jalme M, Chalah T, Orhant N,
Lacroix F. 2008 Environmental and social constraints
on breeding sites selection. Does the exploded-lek
and hotspot model apply to the Houbara bustard
Chlamydotis undulata undulata? J. Avian Biol. 39,
393 – 404. (doi:10.1111/j.0908-8857.2008.03994.x)

232. Lesobre L, Lacroix F, Le Nuz E, Hingrat Y, Chalah T,
Jaime MS. 2010 Absence of male reproductive skew,
along with high frequency of polyandry and
conspecific brood parasitism in the lekking Houbara
bustard Chlamydotis undulata undulata. J. Avian
Biol. 41, 117 – 127. (doi:10.1111/j.1600-048X.2009.
04794.x)

233. Lanctot RB, Scribner KT, Kempenaers B,
Weatherhead PJ. 1997 Lekking without a paradox
in the buff-breasted sandpiper. Am. Nat. 149,
1051 – 1070. (doi:10.1086/286038)

234. Lank DB, Smith CM, Hanotte O, Ohtonen A, Bailey
S, Burke T. 2002 High frequency of polyandry in a
lek mating system. Behav. Ecol. 13, 209 – 215.
(doi:10.1093/beheco/13.2.209)

235. Collet J, Richardson DS, Worley K, Pizzari T. 2012
Sexual selection and the differential effect of
polyandry. Proc. Natl Acad. Sci. USA 109,
8641 – 8645. (doi:10.1073/pnas.1200219109)

236. Peters A, Denk AG, Delhey K, Kempenaers B. 2004
Carotenoid-based bill colour as an indicator of
immunocompetence and sperm performance in
male mallards. J. Evol. Biol. 17, 1111 – 1120.
(doi:10.1111/j.1420-9101.2004.00743.x)

237. Helfenstein F, Losdat S, Møller AP, Blout JD,
Richner H. 2010 Sperm of colourful males are
better protected against oxidative stress. Ecol.
Lett. 13, 213 – 222. (doi:10.1111/j.1461-0248.
2009.01419.x)

238. Pike TW, Blount JD, Lindström J, Metcalf NB. 2010
Dietary carotenoid availability, sexual signalling and
functional fertility in sticklebacks. Biol. Lett. 6,
191 – 193. (doi:10.1098/rsbl.2009.0815)

http://dx.doi.org/10.1006/anbe.1998.0968
http://dx.doi.org/10.1006/anbe.1998.0968
http://dx.doi.org/10.2307/2410369
http://dx.doi.org/10.2307/2410369
http://dx.doi.org/10.1098/rspb.1994.0063
http://dx.doi.org/10.1098/rspb.1994.0063
http://dx.doi.org/10.1073/pnas.171310198
http://dx.doi.org/10.1111/j.1420-9101.2008.01633.x
http://dx.doi.org/10.1111/j.1420-9101.2008.01633.x
http://dx.doi.org/10.1098/rstb.2005.1785
http://dx.doi.org/10.1098/rspb.1997.0177
http://dx.doi.org/10.1111/j.1095-8312.1999.tb01170.x
http://dx.doi.org/10.1098/rspb.2000.1332
http://dx.doi.org/10.1038/332593b0
http://dx.doi.org/10.1038/332593b0
http://dx.doi.org/10.1038/nature01367
http://dx.doi.org/10.1086/284547
http://dx.doi.org/10.1016/S0169-5347(00)01941-8
http://dx.doi.org/10.1016/S0169-5347(00)01941-8
http://dx.doi.org/10.1098/rspb.2004.2933
http://dx.doi.org/10.1111/j.1420-9101.2006.01117.x
http://dx.doi.org/10.1098/rspb.1996.0207
http://dx.doi.org/10.1098/rspb.1999.0832
http://dx.doi.org/10.1038/35070557
http://dx.doi.org/10.1073/pnas.0704871104
http://dx.doi.org/10.1073/pnas.0704871104
http://dx.doi.org/10.1111/j.1558-5646.2007.00084.x
http://dx.doi.org/10.1111/j.1558-5646.2007.00084.x
http://dx.doi.org/10.1371/journal.pone.0016233
http://dx.doi.org/10.1371/journal.pone.0016233
http://dx.doi.org/10.1098/rsbl.2010.0976
http://dx.doi.org/10.1098/rsbl.2010.0976
http://dx.doi.org/10.1073/pnas.1110841109
http://dx.doi.org/10.1163/156853987X00396
http://dx.doi.org/10.1006/anbe.1996.0234
http://dx.doi.org/10.1006/anbe.1996.0234
http://dx.doi.org/10.1006/anbe.1998.0815
http://dx.doi.org/10.1006/anbe.1998.0815
http://dx.doi.org/10.1111/j.0908-8857.2008.03994.x
http://dx.doi.org/10.1111/j.1600-048X.2009.04794.x
http://dx.doi.org/10.1111/j.1600-048X.2009.04794.x
http://dx.doi.org/10.1086/286038
http://dx.doi.org/10.1093/beheco/13.2.209
http://dx.doi.org/10.1073/pnas.1200219109
http://dx.doi.org/10.1111/j.1420-9101.2004.00743.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01419.x
http://dx.doi.org/10.1111/j.1461-0248.2009.01419.x
http://dx.doi.org/10.1098/rsbl.2009.0815

	Polyandry as a mediator of sexual selection before and after mating
	Introduction
	Why do females mate with more than one male?
	Direct benefits
	Indirect benefits
	Genetic diversity and relatedness within broods

	Polyandry and mating competition
	Competition among females for mating opportunities
	Competition among males for mating opportunities

	Post-copulatory sexual selection acting on males
	Selection on male reproductive expenditure
	Impact on male potential reproductive rate and the strength of sexual selection

	Interactions between pre- and post-copulatory sexual selection
	Concluding remarks
	C.K. was supported by the Swedish Research Council, and L.W.S. was supported by an Australian Professorial Fellowship from the ARC.
	References


