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Abstract 

Urban morphology and human mobility are two sides of the complex mixture of elements that implicitly define 
urban functionality. By leveraging the emerging availability of crowdsourced data, we aim for novel insights on how 
they relate to each other, which remains a substantial scientific challenge. Specifically, our study focuses on extracting 
spatial-temporal information from taxi trips in an attempt on grouping urban space based on human mobility, and 
subsequently assess its potential relationship with urban functional characteristics in terms of local points-of-interest 
(POI) distribution. Proposing a vector representation of urban areas, constructed via unsupervised machine learning 
on trip data’s temporal and geographic factors, the underlying idea is to define areas as “related” if they often act as 
destinations of similar departing regions at similar points in time, regardless of any other explicit information. Hid-
den relations are mapped within the generated vector space, whereby areas are represented as points and stronger/
weaker relatedness is conveyed through relative distances. The mobility-related outcome is then compared with the 
POI-type distribution across the urban environment, to assess the functional consistency of mobility-based clusters 
of urban areas. Results indicate a meaningful relationship between spatial-temporal motion patterns and urban 
distributions of a diverse selection of POI-type categorizations, paving the way to ideally identify homogenous urban 
functional zones only based on the movement of people. Our data-driven approach is intended to complement tradi-
tional urban development studies on providing a novel perspective to urban activity modeling, standing out as a ref-
erence for mining information out of mobility and POI data types in the context of urban management and planning.
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Unsupervised learning
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1 Introduction
Urban morphology and human mobility have been exam-
ined extensively within the context of urban planning 
and management. Whereas often treated as separate 
entities, the study of their potential relationship remains 
a substantial scientific challenge, involving analyses of 

complex interactions between built environment and 
urban processes such as navigation, daily routine activi-
ties and long-term life choices (Earnhart, 2001; Handy 
et al., 2002; Hillier & Iida, 2005). A particular case refers 
to the definition and investigation of urban functional 
zones, namely city areas characterized by a certain inter-
nal homogeneity in their complex mixture of local activi-
ties, primarily derived from human mobility processes 
and social behaviors (Crooks et  al., 2015; Stead & Mar-
shall, 2001; Zhang, 2004). Recent works highlighted their 
importance for planning applications, transportation 
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design, and further social studies (Gao et  al., 2013; Liu, 
Gong, et al., 2015; Yuan et al., 2014).

The challenge of our work consists of capturing high-
level latent functional concepts by solely analyzing 
human motion behaviors, instead of urban physical char-
acteristics. Towards this goal, we leverage the emerging 
availability of crowdsourced data, making use of geolo-
cated information to gain novel insights into functional 
aspects of urban spaces. The underlying city structure, 
indeed, goes beyond the only physical environments, pre-
senting internal interactions among urban areas, which 
lead to depict dynamic systems rather than static states. 
Urban functionalities are not only related to separate 
physical entities, but revolves around an integrated flow 
of spatial influences between locations (Berry, 1968). 
Most studies focusing on urban morphologies do not 
directly capture human dynamics within city areas, miss-
ing a prominent insight on the development of urban 
functionalities (Liu, Gong, et  al., 2015). The traditional 
objective geographic separation fails to capture percep-
tual boundaries and inherent actual “usage” of the urban 
territories, which may differ according to the complex 
human dynamics and motion activities (Zhou & Zhang, 
2016). This research provides a bottom-up view on the 
exploration of complex intra-city mobility flows and their 
relation with urban functional characteristics.

The proliferation of location-aware devices and tech-
nologies has boosted the collection of data with a spatial 
content, often publicly shared and widely disseminated 
(Batty et al., 2010; Batty et al., 2012). These data represent 
the basis for bottom-up approaches that gather first-hand 
information rather than assuming trends from theoreti-
cal assumptions, further allowing for combinations of 
different sources that contribute to describe cities as inte-
grated systems of multiple interacting networks. In this 
context, mobility data are valuable factors for modeling 
urban structures and human activities. Previous stud-
ies involved the use of taxi data (Liu, Gong, et al., 2015), 
mobile phone traces (Pei et al., 2014; Toole et al., 2012), 
and social-media check-ins (Zhou & Zhang, 2016). In 
line with this expanding trend, our research aims to con-
tribute towards the spatial-temporal understanding of 
urban mobility and the investigation of possible correla-
tions between travel patterns and urban functions (Liu, 
Gong, et al., 2015).

Specifically, we leverage taxi trip data as a raw source 
of information on the urban distribution of points-
of-interest (POI) typologies. Although the purpose of 
taxi trips can be very diverse, it is largely affected by 
the interaction with urban internal functions (Dong 
et  al., 2019; Zhao et  al., 2020); therefore, hypotheti-
cally, urban mobility can be used to identify homoge-
neous regions with similar functional characteristics. 

Our paper follows this direction by using urban POI 
data and taxi travel demand to explore the relationship 
between human motion and the mixture of basic func-
tional units across the urban space (Gao et  al., 2019; 
Wang et  al., 2019). The research goal is to perform an 
automatic mining of spatial-temporal characteristics 
from nearly-raw taxi data, without requiring any man-
ual feature extraction or human knowledge assistance, 
and subsequently investigate the outcomes with respect 
to the POI-type distribution throughout the urban 
environment.

We hereby propose a novel framework based on simi-
larities between multi-dimensional vector represen-
tations of urban areas, constructed via unsupervised 
machine learning on trip data’s temporal and geographic 
factors. The underlying idea is to define urban areas 
as “related” if they often act as destinations of similar 
departing regions at similar points in time, regardless of 
any other explicit information. The effective implemen-
tation leverages the concept of embeddings, real-valued 
dense vectors originally introduced in the natural lan-
guage processing (NLP) domain for modeling semantic 
relations between words (Bengio et  al., 2000; Mikolov, 
Chen, et  al., 2013; Mikolov, Sutskever, et  al., 2013; Pen-
nington et  al., 2014) and subsequently adopted, in very 
recent years, also for geographic and urban applications 
(Liu et  al., 2019; Qiu et  al., 2019; Yao et  al., 2017; Zhai 
et  al., 2019). Main adaptations in literature comprise 
embedding representations of locations or POIs originat-
ing from their relative spatial distribution over the terri-
tory (Liu et al., 2020; Yan et al., 2017) or derived from the 
way human trajectories cross them (Crivellari & Beinat, 
2019; Zhou et al., 2018). Our specific case aims to model 
hidden relations within the generated vector space in a 
completely data-driven manner, whereby areas are rep-
resented as points and stronger/weaker semantic related-
ness is conveyed through their relative distances. These 
output vectors are intended to implicitly map the mobil-
ity relatedness between geographic regions, potentially 
identifying homogenous functional areas across the city.

The algorithm relies on two processing steps: organ-
izing trip destination areas into spatial-temporal 
sequences, and employing a Word2vec-based model to 
accordingly generate their embedding representations. 
This mobility-related outcome is then compared with 
the POI-type distribution across the urban environment, 
to assess the functional consistency of mobility-based 
clusters of urban areas. In fact, independently from the 
motion embeddings, a further vector representation of 
urban areas is parallelly defined, modeled in the form of 
POI distributions, as urban POIs reflect, to some extent, 
the spatial allocation of urban functions and travel pur-
poses (Bao et al., 2020; Miaoyi et al., 2018).
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Evaluated on a recent open-sourced dataset of taxi 
travel demand in New York City, results indicate a mean-
ingful relationship between spatial-temporal motion pat-
terns and urban distributions of a diverse selection of 
POI-type categorizations, paving the way to ideally iden-
tify homogenous urban functional zones only based on 
the movement of people. The meaningful insights of our 
data-driven approach are intended to complement tradi-
tional urban development studies on providing a novel 
perspective to urban activity modeling, standing out as 
a reference for automatically mining information out of 
different data types in the context of urban management 
and planning.

2  Methodology
We designed an unsupervised approach for constructing 
mobility-based multi-dimensional dense vectors (embed-
dings) of urban areas. These output vectors are intended 
to implicitly map the mobility relatedness between geo-
graphic regions, aiming to identify homogenous func-
tional areas across the city. The algorithm relies on 
organizing trip destination areas into spatial-temporal 
sequences, and employing a Word2vec-based model to 
accordingly generate embedding representations of the 
elements along such sequences. Concurrently, further 
POI-based vectors are separately defined, reflecting the 
urban POI-type distribution over the territory.

The global workflow can be summarized in two parallel 
processing steps (P1, P2), subsequently converging into 
two evaluation steps (E1, E2):

• P1. Trip data processing: from raw taxi trip data to 
sequences of urban areas (Section 2.1.), to Word2vec 
sequential modeling for generating mobility embed-
dings (Section 2.2.);

• P2. POI data processing: POI spatial distribution and 
categorization modeling for generating POI-type 
vectors of urban areas (Section 2.3.);

• E1 (on P1). Mobility-based evaluation: motion-
related investigation based on similarity metrics 
among the generated mobility embeddings of urban 
areas (Section 3.3.1.);

• E2 (on P1+P2). Functional evaluation: functional 
consistency within mobility-related urban areas 
based on similarity metrics of POI-type vectors 
according to mobility-based regional clusters (Sec-
tion 3.3.2.).

2.1  Trip data pre‑processing
Trip recordings are represented as space-time 
events, defined by the geographic origin and des-
tination areas, and the corresponding time stamp: 

Ti = (Origini, Destinationi, ti). Depending on the data 
source, additional information may be present; however, 
aiming for an extensive application, we solely rely on the 
above-mentioned attributes.

The pre-processing phase is directed to transforming 
single origin-destination trips into a collective sequen-
tial data format. The idea is to define ordered sequences 
of urban areas over time, connecting destination regions 
based on similar space-time characteristics of their start-
ing points. These sequences of urban areas then make up 
the training corpus of the following Word2vec model.

The sequence definition is based on a distinctive proce-
dure. Given an urban territory divided into a set of urban 
areas, each trip-related origin area is used to define a 
separate characteristic sequence. The sequence contains 
chronologically ordered destination areas associated 
to that same origin area, whereby each element in the 
series is reported in the form of a pairing (Area _ IDi, ti). 
A certain area j, therefore, comprises a sequence Sj = {(A
rea _ IDi, ti)  |  i = 1, 2, 3, …}j: time information is explic-
itly encoded in the sequence, together with the unique 
identifier of the destination areas. The collection of such 
sequences represents the effective input data format for 
the vector-based representation learning process. In the 
next subsection, we introduce the Word2vec implemen-
tation and present its adapted version to the proposed 
mobility-based embedding generation task.

2.2  Embedding model for generating vector 
representations of urban areas

2.2.1  Word2vec algorithm
The rise of embedding vector representations is origi-
nally ascribed to the NLP domain, whose use pertains 
the inherent definition of semantic relations between 
words, based on the direct sequential processing of raw 
text. This concept has been gradually adapted to a vari-
ety of research domains related to sequential data analy-
sis, generalizing the definition of “words” into any format 
of “categorical entities”, and the definition of “sentences” 
into any sequential organization of such entities implic-
itly describing their dependencies.

In broad terms, embeddings are identified as dense 
vectors of “meaning”, whose representation is derived 
from the distribution of entity co-occurrences in a large 
training corpus. The underlying intuition presumes that 
entities occurring in similar contexts share similar vector 
representations.

The most used embedding generation procedure is the 
Word2vec model (Mikolov, Sutskever, et  al., 2013), an 
artificial neural network structure made of a single linear 
projection layer between the input and the output layers. 
The model is explicitly designed for learning entity repre-
sentations from sequential data, and is therefore generally 
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considered an unsupervised approach. However, in prac-
tice, its training process is guided by an internal auxiliary 
prediction task. Given a set of pre-defined distinctive 
entities, organized into a training corpus made of a col-
lection of sequences, the algorithm is intended to scan 
each sequence with a sliding window and, at each step, 
attempting on predicting the current entity with the help 
of its neighbor entities along the sequence (or vice versa, 
depending on which of the two original versions is imple-
mented). The prediction outcomes during the training 
process are aimed to provide an according update of the 
network weights. In particular, the embedding vectors 
are specifically represented by those weights connecting 
each entity in the input layer to the neurons of the hidden 
layer (the totality of embedding vectors therefore refer to 
a weight matrix of dimensionality num_entities × hid-
den_size). Prediction here is therefore not an aim in itself, 
but a proxy to learn vector representations.

Our implementation resorts to the Skip-gram 
approach, defining a learning process focused on maxi-
mizing, at each sliding step, the probability of predicting 
the neighbor entities nE1, …, nEj, along the sequence, of 
a given focus entity Et, with regard to its embedding θt. 
The cost function C represents the negative log probabil-
ity of the correct prediction, optimized with mini-batch 
stochastic training:

The resulting gradient, derived with respect to the 
embedding parameters θ (i.e., ∂ C /∂ θ), triggers the 
update of their values. By repeating the process over 
the entire training corpus until convergence, the cor-
responding vectors of all entities are learned, giving rise 
to a multi-dimensional vector space inherently mapping 
semantic relations through the relative distance between 
entities.

2.2.2  Model training and vector generation
The pre-processed data, in the form of origin-specific 
sequences of chronologically ordered destination areas, 
serve as a training corpus, whereby each element in the 
sequence is defined as a pairing (Area _ IDi, ti). The total-
ity of unique urban areas included in the corpus identifies 
the “vocabulary” set, which is intended to be translated 
into corresponding embedding vectors. A characteristic 
vector representation is therefore associated to each of 
the areas, together composing an embedding matrix of 
size num_areas × vector_size.

The matrix is updated following the Skip-gram training 
process. Each sequence is scanned with a sliding window, 
progressively targeting, at each step, a focus area and 
its context, input and output variables to the Word2vec 

C = −
j

i=1
log p(nEi|Et)

model, respectively. The mobility relatedness between 
urban areas is therefore translated, in practice, into con-
sistent vector representations built on time-dependent 
destination co-occurrences along space-dependent 
sequences of origin areas. The context of each destina-
tion area is defined based on the temporal proximity of 
other destinations along the same sequence, which char-
acterizes a certain origin area. This means relating desti-
nation areas of trips occurring at a similar point in time, 
and originating from the same initial area. The temporal 
proximity is captured through a time-dependent sliding 
window, defining a variable-length context. In contrast 
to the traditional Word2vec model, setting the window 
hyperparameter as a pre-defined fixed number of con-
text elements (e.g., the four previous and following ele-
ments along the sequence), we implement the window 
definition in terms of a selected time span, enriching 
each sliding step with a variable number of context ele-
ments. Based on the temporal distribution of the trips, 
only those areas within a certain fixed time difference 
from the focus area are inserted into the context window. 
The time hyperparameter value depends on the represen-
tation purposes and the trip distribution, and its choice 
is closely related to the spatial resolution of the terri-
tory subdivision that is used for building the initial data 
sequences. Figure 1 shows a visual example of the sliding 
window process, depicting a context window of five min-
utes in the past and five in the future.

Based on the areas successively falling into the context, 
the model updates each focus area’s embedding vector by 
repeatedly performing the internal auxiliary prediction 
task on the space-time distribution of trips, producing 
a final embedding representation for each of the areas 
included in the “vocabulary”.

The overall workflow from raw trip data to embedding 
vectors of urban areas is summarized in Fig. 2.

2.3  POI‑based functional vectors
Independently from the motion embeddings, a further 
vector representation of urban areas is defined in paral-
lel, with the goal of exploring a possible relation between 
mobility-based homogeneous regions and urban func-
tional characteristics, attempting on providing a quan-
titative and qualitative evaluation of the consistency 
between the two aspects. These functional character-
istics are modeled in the form of POI distributions, as 
urban POIs reflect, to some extent, the spatial allocation 
of urban functions and travel purposes (Bao et al., 2020; 
Miaoyi et al., 2018).

Given an initial set of POIs identified by distinctive cat-
egorical types and geospatial coordinates, each point of 
the set is associated to a specific area of the urban ter-
ritory, referring to the same subdivision utilized for 
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defining mobility embeddings. Each area, therefore, 
besides being described by a certain motion vector, is also 
connected to a characteristic POI-based representation.

In practice, the process consists of manually defin-
ing a vector of POI-category distribution for each urban 
area, generating a real-valued representation that allows 
conveying quantitative similarity measures. Following a 
pre-definition of a finite set of classes to associate to each 
POI, the POI-based vectors are constructed in the follow-
ing way. Given a set of M POI-categories, each urban area 
is described by a vector of M dimensions, whereby each 
element in the vector refers to a specific corresponding 
unique category. The value of each element reports the 
number of POIs (scaled between 0 and 1), falling within 
that specific urban area, and belonging to the class asso-
ciated to that specific vector slot.

This simple approach presents the advantage of 
explicitly defining the categories of interest, collectively 
counting the expression of each distinctive component 
and, consequently, determining characteristic vector 

representations that can relate with each other through 
distance-based statistical metrics. Figure  3 summarizes 
the process of POI-based vector definition.

3  Experiment
This section describes the dataset, the experimental set-
tings, and the modeling results, presenting a compara-
tive evaluation of mobility embeddings with respect to a 
purely geographic perspective, and highlighting the dif-
ferences between spatial and behavioral proximities.

3.1  Data
The experimental part was carried out on a real-world 
dataset. Specifically, we trained the model on taxi trip 
recordings across New York City territories, a popular 
open data source already utilized in a variety of mobil-
ity-related studies (Jindal et al., 2017; Kankanamge et al., 
2019; Wang & Ross, 2019; Xu et al., 2021).

New York City covers an urban area of 784 km2, admin-
istratively divided into 5 boroughs and 263 zones. Taxi 

Fig. 1 Word2vec sliding window training process with a window size of five minutes in the past and five in the future

Fig. 2 Mobility embedding generation framework
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trip data were acquired from the open data portal of the 
New York City municipality1, reporting the space-time 
individual trip information (origin-destination pairs) 
provided to the NYC Taxi and Limousine Commission 
by technology providers authorized under the Taxicab 
& Livery Passenger Enhancement Programs. In particu-
lar, our experiments leveraged the yellow taxi data in the 
whole month of March 2019.

Each trip observation is originally identified by the date 
and time stamp of occurrence, the departing geographic 
location, and the place of arrival. Both origin and desti-
nation information are indicated at the spatial resolution 
level of the 263 city zones. We collected a total of 7.8 mil-
lion urban trips, further subjected to the pre-processing 
phase preceding the model training, leading to reshap-
ing the original data format into 263 origin-based input 
sequences for generating 263 destination-based embed-
ding vectors. Different choices of urban division are any-
way allowed, often constrained by the used data source. 

An exemplifying overview of the original data features 
utilized in the experimental part is shown in Table 1.

Regarding the POI data utilized for assessing the func-
tional consistency of mobility-related regions, we made 
use of the OpenStreetMap dataset, which includes a total 
of 32164 unique POIs structured in 117 low-level classes, 
spatially distributed across the New York City terri-
tory. The pre-processed format of such data is shown in 
Table 2, where each POI was associated to a specific area 
of the territory division described above.

3.2  Experimental settings
The model implementation was set up with an embed-
ding size of 25 dimensions and a context window size of 
five minutes in the past and five minutes in the future, 
leveraging a mini-batch optimization training process 
with noise-contrastive estimation loss and Adam opti-
mizer (Kingma & Ba, 2014; Mnih & Kavukcuoglu, 2013).

To quantitatively measure the relatedness between 
urban areas in terms of embedding representations and 
POI-type vectors, we made use of the cosine similarity 
metric, therefore transforming the relative associative 
strength into the cosine of the angle between vectors: 
similarity decreases as the angle grows and vice-versa. 
The calculation relies on the dot product between unit-
normalized vectors:

Cos(a, b) =
a • b

�a� �b�

Fig. 3 POI-based vector definition framework

Table 1 Exemplifying overview of the trip data format

Trip time Origin_ID Destination_ID

2019-03-01 00:25:27 95 130

2019-03-01 00:05:21 249 28

2019-03-01 00:48:55 138 98

2019-03-01 00:11:42 48 48

… … …

Table 2 Exemplifying overview of the POI data format

OSM_ID POI type POI name Zone name Zone_ID

357620442 restaurant Dolcino Trattoria Toscana Kips Bay 137

357620536 fountain Pulitzer Fountain Midtown North 163

357620571 school Cathedral Preparatory Seminary Upper West Side North 238

357620584 memorial Carrere Memorial Manhattan Valley 158

… … … …

1 https:// www1. nyc. gov/ site/ tlc/ about/ tlc- trip- record- data. page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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A qualitative visualization of the embedding space was 
achieved through the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm (Van der Maaten & Hin-
ton, 2008), reducing the multi-dimensional space into 
two dimensions while keeping similar elements close and 
dissimilar ones apart.

3.3  Evaluation
We organized the research findings on two levels: a gen-
eral exploration of similarity-based measures between 
embeddings of urban areas, and a comparison of their 
derived functional homogeneity identification with 
respect to a purely spatial proximity perspective, high-
lighting the captured information differences.

The first level introduces the conceptual relevance of 
urban areas’ mobility-based vector similarities, directly 
investigating the outcome of the embedding model. 
Examples of inter-area relatedness are included, reveal-
ing spatial-temporal links across sub-regions within 
the original territory division. The second level, on the 
other hand, focuses on a comparative evaluation of the 
mobility embedding method against a purely geographic 
approach. The underlying idea consists of exploring and 
comparing the functional consistency of urban region 
aggregations defined by mobility-based representations 
versus spatial distance-based definitions, evaluating 
advantages and disadvantages in identifying urban func-
tional relatedness.

3.3.1  Urban areas’ mobility embeddings
The analysis output is represented by the generation of 
embedding vectors of single urban areas, whose mutual 
relations are quantified by vector similarity measures, 
depicting a network of spatial-temporal connections 

and mobility relevancies. In particular, the constructed 
representation relates those frequent trip destinations 
originating from same starting areas at similar points in 
time. Two areas with a high embedding similarity reflect 
a substantial spatial-temporal relatedness in terms of 
frequent co-occurrences along the same departing area’s 
pre-processed time series. Mobility relations between 
regions are therefore encoded into a common “urban 
vector space”. This allows grouping urban areas in a way 
that goes beyond the mere geography and spatial prox-
imity. Locations that are close in space do not necessar-
ily imply the same mobility characterization; analogously, 
areas that are more distant can instead potentially share 
similar spatial-temporal patterns.

Figure 4 reports four exemplifying cases listing the top 
five similar areas, in terms of cosine similarity score, of 
a chosen reference area, depicted with their geographic 
location on the map.

At a first glance, the mobility relatedness between 
urban areas seems to be influenced, to some extent, by 
their geographical distance. This is generally true when, 
intuitively, neighboring areas have similar functional 
characteristics, which may determine a dense web of 
mutual correspondences between trips’ origins and des-
tinations. However, the connection between motion 
relatedness and geographic distance is not straightfor-
ward, neither in terms of presuming that all neighbor-
ing areas share the same functional characteristics, nor 
in terms of assuming that those characteristics neces-
sarily affect mobility in the same way. Although a subtle 
trend shows up in the examples, the reported similari-
ties do not strictly follow precise geospatial properties 
(e.g., Sunnyside’s top similarities do not develop on its 
south-east side; Richmond Hill’s ones do not develop on 

Fig. 4 Four examples of top five similar areas (yellow regions), in terms of cosine similarity score, of a chosen reference area (red region)
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its north-west side). Furthermore, individual characteris-
tics of mobility embeddings also reflect in their similar-
ity distribution, particularly noticing the case of Battery 
Park City, which exhibits substantially lower top similar-
ity scores compared to the other three cases, therefore 
expressing a general weaker tendency of sharing similar 
mobility patterns with the other regions.

To visually display an overall representation of the vec-
tor space and the motion relations between the totality of 
urban areas, embeddings can be reduced through t-SNE 
into two dimensions, as displayed in Fig.  5. Each area’s 
label in the plot is differently colored according to the 
borough it belongs to. All in all, the tendency of grouping 
neighboring regions is present, but many exceptions are 
distinctly observable. For a better comprehension, three 

portions of the vector space are zoomed in, displaying a 
mixture of urban areas.

To sum up, we highlight the fact that different non-
adjacent areas may anyway be strongly related from a 
mobility-based origin-destination perspective, con-
sequently locating in the same part of the embedding 
space. Going beyond spatial proximity, the vector space 
reveals a complex system of inter-area relations, revealing 
hidden spatial-temporal patterns through a convenient 
dynamic data-driven representation of urban areas. 
Frequent co-occurrences of destination areas, over time, 
originating from the same departing area, are therefore 
translated into mobility-based associations and, conse-
quently, into an index of situational relatedness within a 
potential context of trip-related perception.

Fig. 5 Two-dimensional t-SNE reduction of the urban areas’ vector space
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3.3.2  Functional consistency within mobility‑related urban 
areas

A quantitative evaluation for assessing the functional 
consistency of mobility-based representations of urban 
areas was carried out by determining, for each given area, 
a characteristic urban cluster (in the form of a combina-
tion of multiple areas) based on the top similar embed-
ding vectors. The task aims to verify whether the POI 
distribution within that identified urban cluster is con-
sistent with the one of its given target area. Specifically, 
the idea is to compare the average intra-cluster similarity 
with the extra-cluster one, expecting higher values in the 
first case and, consequently, relating the functional-based 
POI distribution with the motion behavior of people.

From a practical perspective, the workflow consists of 
specifying a POI vector, based on a pre-defined choice 
of functionality-related aspects, and calculate its cosine 
similarity with respect to the other urban regions’ POI 
vectors, grouped according to the previously calculated 
mobility embeddings’ similarities. For instance, if the 
mobility embedding of area Q identifies a cluster of top 
similar areas including R, S, T, and W, the functional 
evaluation is based on measuring the POI vector similar-
ity of area Q with any other urban area, and compare the 
average similarity with R, S, T, W against the average with 
all other areas. If the first measure is higher, the assump-
tion is that mobility embeddings intrinsically model 

urban functionality additionally to their motion-related 
representation.

To verify the results, we compared these outcomes with 
a purely geographic-based approach, namely defining 
aggregated urban clusters only based on the spatial dis-
tance between areas, in contrast to our mobility-based 
top similar embedding representation approach. The dual 
similarity comparison (intra-cluster vs extra-cluster), in 
this case, was therefore set up simply as closer regions 
vs distant regions. The underlying idea relied on assess-
ing if mobility-based territory aggregations may provide 
more information on the urban functionality rather than 
a purely geospatial proximity perspective.

Inspired by previous research efforts (Yuan et al., 2021; 
Zhang et al., 2018), we explored different combinations of 
POI-type categorizations, to deliver various insights on 
the experimental trials. We first proceeded to categorize 
each POI type into one of two possible classes: residen-
tial (e.g., schools, laundries, hairdressers, beauty shops, 
jewellers, convenience stores, furniture shops, supermar-
kets, bakeries, pharmacies, doctors, dentists, opticians, 
...) and tourist-related functions (e.g., attractions, memo-
rials, tourist info centers, hotels, toilets, ...). Figure  6 
illustrates the results in terms of “winning” or “losing” 
similarity scores for each reference area (green: intra-
cluster similarity is higher than extra-cluster one; blue: 
vice-versa). The similarity threshold value to define the 

Fig. 6 Assessment of functionality cluster consistency according to residential and tourist-related functionality classes. Results are reported in 
terms of “winning” or “losing” similarity scores for each reference area (green if its intra-cluster similarity is higher than its extra-cluster one; blue if 
vice-versa)
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mobility-based clusters and the distance threshold value 
to define the geographic-based clusters were both set to 
maximize the intra-cluster similarity. The maps reveal 
that 242 out of 263 areas have a higher intra-cluster simi-
larity in the case of mobility embeddings, while only 198 
in the geographic-based case. This suggests a strong ten-
dency of embeddings of implicitly grasping information 
on the resident/tourist duality, which is better inherently 
described by trip-based vectors rather than the simple 
geographic distance. Moreover, it is clear how the errors 
of the geographic approach tend to aggregate spatially, 
symptoms of the presence of neighboring areas in space 
having different POI distributions. The mobility embed-
ding approach, on the other hand, is not directly influ-
enced by spatial proximity, modeling functional regions 
only based on homogeneous people’s movements.

A deeper investigation reveals the quantified cosine 
similarity difference between intra- and extra-cluster 
averages for each reference area, as shown in Fig.  7. In 
particular, it is relevant to notice that Manhattan area 
exhibits higher values in both the mobility-based and 
geographic case, consequence of a spatial proximity influ-
ence on the POI distribution over the territory. The geo-
graphic approach instead presents substantial errors in 
the Queens borough and its neighboring areas, whereby 
the mobility embeddings are not particularly affected, 
delivering a portray of diverse functional characteristics 
among geographically proximate regions.

Further POI vector definitions may also be investi-
gated. Instead of a general categorization into resident 
and tourist-related functionalities, more detailed classi-
fications can be explored, delivering different outcomes 
and derived assumptions. An option could be to study a 
specific combination of POI types, for instance related 
to dining activities. Specifically, we proceeded to select 
a subset of four separate classes of POIs: fast food, res-
taurant, pub, café. The goal was to investigate mobility-
based clusters with regard to the distribution of such four 
dining options. Figure  8 reports the winning (intra- or 
extra-cluster) similarity score for each reference area, 
revealing that 227 areas have a higher intra-cluster simi-
larity in the case of mobility embeddings, while only 209 
in the geographic-based case. Again, we can observe that 
the errors of the geographic approach tend to aggre-
gate spatially, reflecting different POI-type distributions 
across neighboring areas. Such spatial aggregation is not 
present in the mobility embedding case, which models 
functional regions based on human movements rather 
than geographic proximity.

By plotting the cosine similarity difference between 
intra- and extra-cluster averages, as shown in Fig. 9, we 
observe that the geographic case exhibits widespread 
extremes, namely a larger number of high positive val-
ues but also a substantial number of very negative val-
ues, whereas the embedding approach is more balanced. 
This outcome depicts how mobility and geography gives 

Fig. 7 Assessment of functionality cluster consistency according to residential and tourist-related functionality classes: cosine similarity difference 
between intra- and extra-cluster averages for each reference area
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different responses to the complex phenomenon under 
study, delivering an intricate portray of diverse dining 
characteristics among urban regions.

Finally, to provide a further example on the variety 
of potential combinations and explorations of POI cat-
egories (each revealing different insights and patterns), 

Fig. 8 Assessment of functionality cluster consistency according to different dining-related POI classes (fast food, restaurant, pub, café). Results are 
reported in terms of “winning” or “losing” similarity scores for each reference area

Fig. 9 Assessment of functionality cluster consistency according to different dining-related POI classes (fast food, restaurant, pub, café): cosine 
similarity difference between intra- and extra-cluster averages for each reference area
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we report a last trial classifying POIs into one of five 
possible classes: cater (e.g., fast foods, restaurants, 
bars, cafés, pubs), public facility (e.g., benches, water 
supplies, toilets, waste baskets), shopping (e.g., con-
venience stores, clothing shops, supermarkets, shoe 
shops, furniture shops), life service (e.g., hairdressers, 
laundries), and accommodation service (e.g., hotels). 
By investigating mobility-based clusters with regard 
to the distribution of those five classes, the winning 
scores, reported in Fig.  10, state that 204 areas have 
a higher intra-cluster similarity, against a geographic-
based result of 189 areas. Once again, spatial aggrega-
tions are more prominent on the geographic side, even 
if the performance diversity is not as large as in the 
previous two examples.

The cosine similarity difference between intra- and 
extra-cluster averages, reported in Fig.  11, reveals a 
tendency of the geographic approach of obtaining 
slightly higher positive values over Manhattan, conse-
quence of a similar class distribution among proximal 
areas in space; however, the rest of the city follows a 
general opposite trend, with the embedding approach 
disclosing higher positive values, therefore imply-
ing that similar and diverse functional characteristics 
are better grasped based on the movement of people 
rather than the mere geographical proximity.

4  Discussion and conclusion
Within the modern perspective of cities as integrated 
systems of multiple interacting networks, human mobil-
ity represents a central factor for gaining insights on 
effective urban structures and functionalities. Going 
beyond the simple geography, the spatial-temporal traits 
of people’s movements are intended to carry an implicit 
message on the functional relationships between differ-
ent urban areas, which not necessarily follow neighbor-
ing spatial properties. Aiming to grasp this meaningful 
aspect of the urban configuration, we proposed a data-
driven experimental approach for investigating possible 
correlations between travel patterns and urban functions.

The research framework was characterized by similar-
ity measures between multi-dimensional vectors of urban 
areas, constructed via unsupervised machine learning 
on the sole basis of trips’ occurrences in space and time. 
Specifically, we organized trip-related destination areas 
into spatial-temporal sequences, subsequently fed into a 
time-dependent Word2vec-based model to accordingly 
generate embedding representations. This outcome was 
then compared with the POI-type distribution across the 
city, to assess the functional consistency of mobility clus-
ters of urban areas.

By embodying the concept of spatial-temporal relat-
edness into a mathematical representation, whereby 

Fig. 10 Assessment of functionality cluster consistency according to different POI-based functionality classes (cater, public facility, shopping, life 
service, accommodation service). Results are reported in terms of “winning” or “losing” similarity scores for each reference area
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related areas end up gathering next to each other in a 
multi-dimensional vector space, mobility embeddings 
disclosed a complex system of relations, depicting a 
network of space-time connections and relevancies. 
Whereas motion relatedness between urban areas can 
be influenced, to some extent, by their geographic dis-
tance, we revealed that the link “mobility-proximity” is 
not straightforward, giving rise to a dense web of mutual 
correspondences and different similarity distributions 
expressing weaker or stronger tendencies of sharing simi-
lar mobility patterns with other regions.

Moreover, an evaluation of functional consistency was 
carried out by determining, for each urban area, a char-
acteristic “mobility block” identified by its top similar 
motion embedding vectors, and further comparing the 
average POI-type intra-block distribution similarity with 
the extra-block one. We analyzed three examples of POI 
categorization (tourist/resident duality, dining activities, 
high-level functional types), and set up a comparative 
baseline as a purely geographic-based approach, namely 
defining aggregated urban clusters only based on spa-
tial distances. The results emphasized how the errors of 
the geographic model tended to cluster spatially, symp-
toms of the presence of neighboring areas in space hav-
ing different POI distributions; on the other hand, this 
rarely happened in the mobility embedding case, not 
directly influenced by spatial proximity but built on peo-
ple’s homogeneous movements. General observed char-
acteristics comprise: a higher quantity of intra-cluster 

similarity samples in the mobility-based approach, a 
substantial number of very negative values of intra-extra 
cluster difference in the geographic case, different overall 
responses of the two models towards the intricate por-
tray of diverse POI characteristics among urban regions. 
According to the use case under study, whereas Manhat-
tan area expresses similar internal functional character-
istics, and therefore the geographic approach was very 
effective, the rest of the city depicts a complex diverse 
pattern of POI-type distribution, making the embedding 
solution substantially better.

To sum up, the main contribution of this study lies 
in providing an effective approach for exploring the 
relations between mobility and functionality through 
machine-readable representations able to convey simi-
larity measures. By automatically mining the underlying 
relations of trip data in terms of characteristic destina-
tions from same urban regions at similar points in time, 
we provide a novel perspective of approaching human 
mobility and urban activity, exploring the relationship 
between people’s motion and the mixture of basic func-
tional units across the urban space. Applicable to any 
arbitrary spatial-temporal scale and in presence of any 
initial territory division, the methodology allows for 
direct comparisons and POI-based associations of mobil-
ity-related areas, providing a tool for an alternative inves-
tigation of homogenous urban regions and paving the 
way for ideally identifying urban functional zones only 
based on the movement of people.

Fig. 11 Assessment of functionality cluster consistency according to different POI-based functionality classes (cater, public facility, shopping, life 
service, accommodation service): cosine similarity difference between intra- and extra-block averages for each reference area
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The potential extensions of this paper may com-
prise multiple perspectives. A major direction can deal 
with expanding the inherent limitation of the tested 
case study. Whereas we tackled human mobility pro-
cessing on the perspective of taxi trip data, the meth-
odology could be applied, in principle, to any kind of 
trip-related format. We assumed taxi travels to be an 
acceptable approximation of motion behavior for stud-
ying urban functional characteristics, though depicting 
only one of the multiple complex facets linking human 
mobility and urban morphology. Different data sources 
may be employed to further investigate how various 
transportation modalities are able to catch different 
aspects of the way a certain urban area is “utilized”. 
Such combination may be explored in the form of a col-
lective data merging or even as a comparative analysis 
on how several travel demands can differently relate to 
the POI-type distributions over the territory.

In addition, mobility embeddings can be tested in 
various applications, either as a basis for clustering and 
similarity searching, or even as an input to downstream 
predictive models, potentially merged with further data 
sources into more complex representations. Moreover, 
the experimental part may leverage various implemen-
tation options, such as different resolutions, in time 
and space, and study areas of variable size, attempting 
on modeling different scales of the hidden spatial-tem-
poral aspects of the urban reality. A variety of POI-type 
categorizations can further be explored, investigating 
and analyzing the amount of information that mobility 
embeddings provide with respect to diverse functional 
configurations. Another matter that may be worth tak-
ing into account is the study of the seasonality and 
trend evolution over time, whereby we dealt with a 
static use case. Finally, whereas our data-driven model 
implicitly catches an ensemble outcome of the complex 
urban aspects of the intrinsic relation between human 
mobility and urban functionality, the analysis and rea-
soning around single deeper issues and contributions 
require a prominent theory-driven exploration, aim-
ing to merge theoretical-based assumptions with data-
based evidence.

To conclude, the proposed perspective is intended 
to complement traditional studies on the modeling of 
urban activities, presenting a landmark for the auto-
matic mining of mobility and POI data types within the 
context of urban management and planning.
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