
Computational and Structural Biotechnology Journal 19 (2021) 3674–3681
journal homepage: www.elsevier .com/locate /csbj
Structural binding site comparisons reveal Crizotinib as a novel LRRK2
inhibitor
https://doi.org/10.1016/j.csbj.2021.06.013
2001-0370/� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: michael.schroeder@tu-dresden.de (M. Schroeder).
Sarah Naomi Bolz a, Sebastian Salentin a, Gary Jennings a, V. Joachim Haupt a, Jared Sterneckert b,
Michael Schroeder a,⇑
aBiotechnology Center (BIOTEC), Technische Universität Dresden, Tatzberg 47/49, Dresden 01307, Germany
bCenter for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, Dresden 01307, Germany
a r t i c l e i n f o

Article history:
Received 12 March 2021
Received in revised form 4 June 2021
Accepted 6 June 2021
Available online 10 June 2021

Keywords:
Protein–ligand interactions
Drug repositioning
Binding site
LRRK2
Crizotinib
Structure-based screening
a b s t r a c t

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a frequent cause of autosomal dominant
Parkinson’s disease (PD) and have been associated with familial and sporadic PD. Reducing the kinase
activity of LRRK2 is a promising therapeutic strategy since pathogenic mutations increase the kinase
activity. Several small-molecule LRRK2 inhibitors are currently under investigation for the treatment of
PD. However, drug discovery and development are always accompanied by high costs and a risk of late
failure. The use of already approved drugs for a new indication, which is known as drug repositioning, can
reduce the cost and risk.
In this study, we applied a structure-based drug repositioning approach to identify new LRRK2 inhibi-

tors that are already approved for a different indication. In a large-scale structure-based screening, we
compared the protein–ligand interaction patterns of known LRRK2 inhibitors with protein–ligand com-
plexes in the PDB. The screening yielded 6 drug repositioning candidates. Two of these candidates,
Sunitinib and Crizotinib, demonstrated an inhibition potency (IC50) and binding affinity (Kd) in the
nanomolar to micromolar range. While Sunitinib has already been known to inhibit LRRK2, Crizotinib
is a novel LRRK2 binder.
Our results underscore the potential of structure-based methods for drug discovery and development.

In light of the recent breakthroughs in cryo-electron microscopy and structure prediction, we believe that
structure-based approaches like ours will grow in importance.
� 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Background

Parkinson’s disease (PD) is a common neurological disorder that
affected 6.1 million people and caused 211,296 deaths in 2016
alone [1]. The disease is characterized by the loss of dopaminergic
neurons and the presence of aberrant protein aggregates of a-
synuclein in the brain. In addition to the typical parkinsonian
motor symptoms, patients suffer from non-motor symptoms like
cognitive impairment, mental illness, and olfactory dysfunction
[2]. The risk of developing PD is thought to be determined by an
interplay of both environmental factors and genetics [3]. A fre-
quent cause of autosomal dominant forms of the disease are muta-
tions in the leucine-rich repeat kinase 2 (LRRK2) [2,4]. Mutations in
LRRK2 are found in patients with familial PD and also have been
implicated with sporadic PD [5]. G2019S is the most common
known pathogenic LRRK2 variant and shows increased kinase
activity. Blocking of LRRK2 kinase activity using small-molecule
inhibitors has neuroprotective effects in some PD models [6]. At
the same time, a partial loss of function of LRRK2 does not appear
to lead to a particular phenotype or disease in humans [7]. This
makes the reduction of LRRK2 kinase activity a promising and pre-
sumably safe therapeutic strategy for PD. Several small-molecule
inhibitors that target LRRK2 are currently under investigation
and some are close to entering clinical trials [8]. However, drug dis-
covery and development is an expensive process [9,10] that is at
risk of late failure due to poor efficacy or severe side effects
revealed during clinical trials [11].

Drug repositioning, which is the use of already approved drugs
for new indications, has the potential to reduce the cost, time, and
risk of drug development since many biochemical and clinical fac-
tors, such as safety or adsorption, are already known for approved
drugs [12]. Candidates for drug repositioning can be systematically
identified. One strategy, also known as drug-centric approach, is to
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connect a known drug to a new target that is related to a different
indication [13]. The exponential growth of structural data [14] and
recent progress in protein structure prediction [15,16] make
structure-based methods a promising approach to this strategy
[17]. As a prime example, we recently identified three potent, inex-
pensive, and easily available drug repositioning candidates for Cha-
gas disease by comparing protein–ligand interaction profiles of
Chagas targets and other proteins [18].

Here, we use a structure-based drug repositioning approach to
identify new inhibitors of LRRK2. Our approach is based on the
observation that drugs bind different targets with similar interac-
tion patterns. To identify new LRRK2 inhibitors, we determine
the interaction pattern of a LRRK2 template structure with inhibi-
tor using the Protein–Ligand Interaction Profiler (PLIP) [19,20] and
compare it to the interaction patterns of all complex structures in
the Protein Data Bank (PDB) [21]. We use binary interaction finger-
prints to represent the interaction patterns of the template and
PDB structures (Fig. 1). The top matches of the screening are man-
ually filtered and experimentally validated.

A prerequisite for our approach is the availability of a protein–
ligand complex structure of the query target. With multiple struc-
turally diverse domains and a molecular weight six times higher
than the average 30–60 kDa, LRRK2 is a difficult to crystallize pro-
tein. High-quality structural information on the protein currently
only includes lower organism homologs or parts of the protein like
single domains [22–28]. Recently, some cryo-electron microscopy
structures with coordinates for large parts of LRRK2 have been
released in the PDB (PDB IDs: 6VNO, 6VP6, 6VP7, 6VP8, and
6XR4 [22,23]). Yet, there is no protein–ligand complex structure
of LRRK2 available in the PDB. To overcome this lack of informa-
tion, we selected complex structures of two LRRK2 inhibitors
bound to the humanized LRRK2 homolog Roco4 as templates.
2. Methods

2.1. Virtual screening and characterization of hit compounds

We retrieved complex structures that served as queries for the
virtual screening from the PDB. Since there was no LRRK2 complex
available in the PDB, complex structures of two LRRK2 inhibitors
Fig. 1. Overview over the study. PLIP interactions are extracted from a LRRK2 template st
and every fingerprint in PDB. The top matches are experimentally validated.

3675
bound to the humanized LRRK2 homolog Roco4 (PDB IDs: 4YZM
and 4YZN [27]) were used.

We determined the non-covalent interactions between the inhi-
bitors and Roco4 using the Protein–Ligand Interaction Profiler
(PLIP) [19,20]. The interaction pattern of each inhibitor was then
encoded into an interaction fingerprint, a binary vector in which
each bin represents an interaction feature. An interaction feature
was defined by the combination of two non-covalent interactions
within an angle and distance range. If a particular interaction fea-
ture was present in the interaction pattern, the respective bin was
set to 1, otherwise, it was set to 0, as already described in [29,18].
The interaction fingerprints are available from PharmAI (Dresden,
Germany).

Subsequently, the Tanimoto similarity of the query interaction
fingerprints to the fingerprints of all protein–ligand complexes in
the PDB was determined. The screening was performed on the full
PDB without prior filtering. The Tanimoto similarity is calculated
from the intersection of on-bins between fingerprint A and B
divided by the sum of on-bins in A and on-bins in B minus the
intersection of on-bins between A and B. The complexes were
ranked according to the overall similarity of their interaction pat-
terns to the query. Complexes that showed an empirical p-value
of 0.001 (based on the distribution of all pairwise similarities) or
less (Fig. A.1) and contained an FDA-approved drug were consid-
ered hits.

Hit complexes were manually filtered according to two criteria:
1) agreement of key interaction features after visual inspection and
2) drugs with adverse-effects considered too severe for treatment
of Parkinson’s disease patients or compounds that were considered
to be inappropriate for systemic exposure were discarded.

The SwissADME web service [30] was used to assess physico-
chemical properties of the six candidate drugs identified by
interaction-based virtual screening. The BOILED-Egg algorithm
[31] integrated into the web service calculates the lipophilicity
and polarity of molecular structures to predict gut epithelial and
blood/brain barrier (BBB) permeation. Literature was used to con-
firm the BBB permeability predictions.

To calculate the chemical similarity between compounds,
canonical smiles were retrieved from PubChem [32]. We used the
Chem.AllChem.GetMorganFingerprintAsBitVect() method from RDKit
[33] to generate circular Morgan fingerprints with 16384 bits
ructure with inhibitor. They are encoded as a fingerprint, which is compared to each
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and a diameter of 4. The Morgan fingerprints correspond to
extended-connectivity fingerprints as described in [34,35]. The
Tanimoto similarity was used as fingerprint similarity metric.
The chemical similarity heatmap was generated using the python
package seaborn [36] (version 0.11.1) with the heatmap() method.
2.2. Sequence and structural similarity of humanized Roco4 and LRRK2

For sequence identity calculation, the amino acid sequences of
Roco4 and LRRK2 were downloaded from UniProt [37]. To get the
humanized sequence of Roco4, the two phenylalanine residues
Phe1107 and Phe1161 were manually modified to leucines [27].
Global sequence identity was calculated using the EMBOSS Needle
Pairwise Sequence Alignment web service with default parameters
[38]. To analyze the structural similarity, we selected a cryo-
electron microscopy structure of LRRK2 (PDB ID: 6VNO [23]) and
structurally aligned it with both chains of the Roco4 LRRK2-IN-1
complex (PDB ID: 4YZM) and with the Roco4 Compound19 com-
plex (PDB ID: 4YZN). PyMOL [39] (version 2.4.0) with the super
command was used for structural alignment of the proteins and
RMSD (root-mean-square deviation of atomic positions)
determination.
2.3. Experimental validation

The six hit compounds from the virtual screening were ordered
from Selleckchem (Houston, Texas, USA). GW 5074 was ordered
from Tocris Bioscience (Bristol, UK). Stocks of all compounds were
shipped to Reaction Biology Corporation (Malvern, Pennsylvania,
USA) and Eurofins DiscoverX (Fremont, California, USA) for IC50
and Kd determination, respectively. The IC50 and Kd assays were
performed as service by the companies.

For IC50 measurements, compounds were tested at 10 different
concentrations in duplicates with 3-fold serial dilution starting at
100 lM. Compounds were dissolved and diluted in 100% DMSO.
Briefly, LRRK2 G2019S and a peptide substrate ([RLGRDKYKTLR-
QIRQ]) were prepared in reaction buffer; 20 mM Hepes (pH 7.5),
10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/ml BSA,
0.1 mM Na3VO4, 2 mM DTT, 1% DMSO. Compounds were delivered
into the reaction mixture. After a 20 min incubation, 33P-ATP was
added to a final concentration of 10 lM to initiate the reaction.
Reactions were carried out for 2 h at room temperature. The final
enzyme and substrate concentrations were 20 nM and 20 lM,
respectively. Kinase activity was detected by the P81 filter-
binding method. The whole procedure is also described in [40].

Kd values were determined via the KINOMEscan assay, which is
based on a competition binding assay that quantitatively measures
the ability of a compound to compete with an immobilized, active-
site directed ligand. The compounds were tested at 11 different
concentrations in duplicates with 3-fold serial dilution starting at
100 lM. Compounds were dissolved and diluted in 100% DMSO.
LRRK2 G2019S was tagged with DNA for qPCR detection. Shortly,
streptavidin-coated magnetic beads were treated with the biotiny-
lated competitive ligand for 30 min at room temperature. The
liganded beads were blocked with excess biotin and washed with
blocking buffer (SeaBlock (Pierce), 1% BSA, 0.05% Tween 20,
1 mM DTT) to remove unbound ligand and to reduce non-
specific binding. Binding reactions were assembled by combining
kinase, liganded affinity beads, and test compounds in 1x binding
buffer (20% SeaBlock, 0.17x PBS, 0.05% Tween 20, 6 mM DTT).
The assay plates were incubated at room temperature with shaking
for 1 h and the affinity beads were washed with wash buffer (1x
PBS, 0.05% Tween 20). The beads were then re-suspended in elu-
tion buffer (1x PBS, 0.05% Tween 20, 0.5 lM non-biotinylated affin-
ity ligand) and incubated at room temperature with shaking for
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30 min. The kinase concentration in the eluates was measured by
qPCR.
3. Results

3.1. Virtual screening

To identify repositioning candidates for the inhibition of LRRK2,
we performed a virtual screening that identifies potential binders
based on interaction pattern similarity. We chose structures of
the humanized LRRK2 homolog Roco4 in complex with two LRRK2
inhibitors (PDB IDs: 4YZM and 4YZN [27]) as query structures for
the screening because there was no LRRK2 complex structure
available in the PDB.

Non-covalent interactions between the inhibitors and Roco4
were detected using PLIP (Fig. 2A). Both inhibitors are anchored
to the binding site by two hydrogen bonds with the backbone of
Val1108. The interaction pattern of Compound19 [41] is further-
more defined by two halogen bonds and a hydrophobic interaction
with the side-chains of Asp1177, Asp1112, and Leu1161, respec-
tively. LRRK2-IN-1 [42] interacts with two chains of Roco4. In chain
A, LRRK2-IN-1 forms another hydrogen bond with Lys1055 and
contacts the side-chains of Leu1161, Ala1176, and Asp1177 via
hydrophobic interactions. In chain B, the inhibitor does not interact
with Asp1177 and Lys1055, but forms a hydrophobic interaction
with Lys1034.

We encoded the non-covalent interaction patterns into binary
interaction fingerprints in which each bin represents a particular
interaction feature. We compared the interaction fingerprints of
the query structures to the interaction fingerprints of complex
structures in the PDB. From the complexes with a significantly sim-
ilar interaction pattern by p-value, we selected those that contain
FDA-approved drugs. This resulted in a total of 15 hit complexes
comprising 13 distinct FDA-approved drugs (Table A.1). After man-
ual assessment and filtering involving visual inspection of the com-
plexes and careful evaluation of the compound applicability
(Table A.1), 6 top candidates remained (Table 1, Fig. 3).
3.2. Humanized Roco4 as LRRK2 template

Our virtual screening was based on structures of the humanized
LRRK2 homolog Roco4. To assess the suitability of humanized
Roco4 as a model for LRRK2, we analyzed sequence and structural
similarity of the two proteins. Gilsbach et al. achieved humaniza-
tion of Roco4 by mutating the two phenylalanine residues
Phe1107 and Phe1161, which are located at the binding site of
the inhibitors, to leucines [27]. Interestingly, the global sequence
identity between humanized Roco4 and LRRK2 is only 13%. How-
ever, the proteins share significant structural similarity. We struc-
turally aligned the query structures of our virtual screening (PDB
IDs: 4YZM and 4YZN [27]) with a cryo-electron microscopy struc-
ture of LRRK2 (PDB ID: 6VNO [23]). The RMSDs were 1.74 Å, 1.67 Å,
and 1.74 Å for chain A and chain B of Roco4 in complex with
LRRK2-IN-1 and Roco4 in complex with Compound19, respec-
tively. The interacting residues of humanized Roco4 align very well
with the corresponding residues of the LRRK2 kinase domain
(Fig. 4). In chain A of the LRRK2-IN-1 Roco4 complex, Leu1161
aligns with Leu2001, Ala1176 with Ala2016, Asp1177 with
Asp2017, and Lys1055 with Lys1906. Moreover, the backbone of
Val1108 aligns with the backbone of Ala1950. In chain B of the
LRRK2-IN-1 Roco4 complex, we see the same alignment pattern
for Leu1161, Ala1176, and Val1108. Lys1034 does not align with
any residue of LRRK2. The interacting residues of the Compound19
Roco4 complex are also in good agreement with the respective
LRRK2 residues: Leu1161 matches with Leu2001, Asp1177 with



Fig. 2. Protein–ligand interactions detected by PLIP of the LRRK2 inhibitors and the hit compounds from the virtual screening. Protein residues are shown in blue and
compounds in orange. (A) Two structures of humanized Roco4 with LRRK2-IN-1 (left, PDB ID: 4YZM) and Compound19 (right, PDB ID: 4YZN). LRRK2-IN-1 interacts with two
chains of Roco4. Above is the cartoon representation of Roco4 in complex with the inhibitors. Below is a close-up of the interactions between the inhibitors and and the
binding site residues of Roco4. (B) Interactions between the hit compounds and their targets. All compounds share key interaction features with one of the LRRK2 inhibitors.
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Asp2017, and the backbone of Val1108 with the backbone of
Ala1950. Asp1112 aligns with Ser1950, which has different side
chain properties.
3.3. Characterization of the top candidates

Each of the 6 hit compounds shares key interaction features
with one of the LRRK2 inhibitors (Fig. 2). Vardenafil and LRRK2-
IN-1 both form a hydrogen bond in the central part of the ligand,
and the hydrophobic interactions to the benzene ring of Vardenafil
match the distance and angle range of the hydrophobic interac-
tions that LRRK2-IN-1 forms with chain A of Roco4. Paroxetine
forms two hydrogen bonds at different parts of the ligand. This pat-
tern is also present in the binding mode of LRRK2-IN-1. Moreover,
the hydrophobic interactions of the 1,3-Benzodioxole moiety of
Paroxetine match the hydrophobic interaction pattern that
LRRK2-IN-1 constitutes with Lys1034 and Leu1161 of Roco4 chain
B. The interaction pattern of Efavirenz exhibits two parallel hydro-
gen bonds, which are also present in the interaction patterns of
both LRRK2 inhibitors. Although Efavirenz registered as a hit based
on its interaction pattern similarity to LRRK2-IN-1, it also matches
very well with Compound19 since the halogen atoms are in the
same distance range. The case is similar for Crizotinib. The interac-
tion pattern of this compound was found to be significantly similar
to the interaction pattern of LRRK2-IN-1, which is most obviously
reflected in the parallel hydrogen bonds. Nevertheless, Crizotinib
3677
also goes very well with Compound19 as it has halogen atoms in
the right position. Liothyronine forms a trinity of two halogen
bonds and one hydrogen bond. This pattern can also be found in
the interaction pattern of Compound19. Lastly, the interaction pat-
tern of Sunitinib includes two hydrogen bonds and one halogen
bond that are in the same distance range as the hydrogen bonds
and the halogen bond that Compound19 forms with Val1108 and
Asp1177 of Roco4.

The original indications of the top candidates are various, com-
prising cancer, depression, erectile dysfunction, HIV/AIDS, and
hypothyroidism (Table 1). Half of the compounds are known to
be kinase inhibitors. Interestingly, there is previous evidence of
inhibitory activity against LRRK2 for one of the top candidates:
The anti-cancer drug Sunitinib is a receptor tyrosine kinase inhibi-
tor that has been shown to efficiently inhibit LRRK2 [43]. The pro-
tein kinase inhibitor Crizotinib is currently approved for use in
non-small cell lung carcinoma [44]. Paroxetine is a selective sero-
tonin uptake inhibitor already used for treating depression in
Parkinson’s disease [45]. Moreover, it has been identified as a
direct inhibitor of G protein-coupled receptor kinase 2 (GRK2),
which is a serine/threonine kinase like LRRK2 [46]. Vardenafil is
an inhibitor of phosphodiesterase 5 and is applied for the treat-
ment of erectile dysfunction [47]. Liothyronine is a synthetic form
of the thyroid hormone triiodothyronine that is used for hypothy-
roidism [48]. It has been shown that there is an association of low
thyroid hormone levels with motor symptoms in Parkinson’s



Table 1
Queries and top hits of the virtual structure-based screening. The respective PDB IDs are shown in parentheses. The approved use and the BBB permeability of the hit compounds
are given. The query structure with LRRK2-IN-1 yielded four top hits, while the query structure with Compound19 yielded two top hits.

Query Hit Approved Use BBB
Permeable

Humanized Roco4 with LRRK2-IN-1
(4YZM)

Human phosphodiesterase 5A with Vardenafil
(1XP0)

Vardenafil: inhibitor of phosphodiesterase 5A (in erectile
dysfunction)

Yes

Bovine GPCR kinase with Paroxetine (4L9I) Paroxetine: serotonin uptake inhibitor (in depression);
GPCR Kinase 2 inhibitor

Yes

HIV-1 reverse transcriptase with Efavirenz
(1IKW)

Efavirenz: Non-nucleoside inhibitor of reverse
transcriptases (in HIV/AIDS)

Yes

Mutant ALK with Crizotinib (4ANS) Crizotinib: double mutant anaplastic lymphoma kinase
inhibitor (in oncology)

No

Humanized Roco4 with Compound19
(4YZN)

Proliferating cell nuclear antigen with
Liothyronine (3VKX)

Liothyronine: Synthetic thyroid hormone (in
hypothyroidism)

Yes

IL-2-inducible T cell kinase with Sunitinib
(3MIY)

Sunitinib: RTK inhibitor (in oncology); known inhibitor of
LRRK2

Yes

Fig. 3. Chemical structures of the six top repositioning candidates identified by the
virtual screening.
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disease [49]. Efavirenz is a non-nucleoside inhibitor of reverse
transcriptases and is used for the treatment and prevention of
HIV/AIDS [50].

Drugs that target LRRK2 in Parkinson’s disease must be able to
cross the BBB in order to reach the brain. Therefore, we predicted
BBB permeability for our 6 top candidates using the SwissADME
web service. Sunitinib, Paroxetine, and Efavirenz were predicted
to penetrate the BBB, while Crizotinib, Vardenafil, and Liothyronine
were predicted not to permeate the barrier. The BBB permeability
of Sunitinib, Paroxetine, and Efavirenz was supported by literature
[51–53]. In addition, we found evidence in the literature that Var-
denafil and Liothyronine cross the BBB [54,55], while BBB penetra-
tion of Crizotinib is poor [56] (Table 1).

In contrast to a chemical similarity approach, our interaction
pattern similarity approach has the potential to reveal scaffolds
that are different to the query compounds. To investigate whether
the virtual screening yielded novel scaffolds, we calculated chem-
ical similarities between the query and the hit compounds (Fig. 5).
The highest chemical similarity was detected for the two query
compounds LRRK2-IN-1 and Compound19. Strikingly, none of the
six top repositioning candidates showed a considerable chemical
similarity with the query compounds. The same applies to the hit
compounds with one another.
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3.4. Experimental validation of the hit compounds

A specific challenge to our drug repositioning approach was the
use of a homolog structure as template instead of a LRRK2 struc-
ture. To validate the virtual screening results, all six top candidates
were tested for in vitro inhibition of LRRK2 kinase activity. The
most common pathogenic LRRK2 mutation in PD is G2019S and
is located in the protein kinase domain of LRRK2 [8]. We used
LRRK2 G2019S together with an artificial substrate to measure
the ability of the hit compounds to inhibit the LRRK2 kinase variant
(IC50 determination). Furthermore, we tested the compounds for
competitive binding to the active site of the mutant LRRK2 kinase
(Kd determination).

Four of the six top candidates demonstrated an IC50 below
100 lM (Table 2, Fig. 6). The measured IC50 values were 10 nM,
1 lM, 47 lM, and 67 lM for Sunitinib, Crizotinib, Vardenafil, and
Liothyronine, respectively. Of these four compounds, Sunitinib
and Crizotinib produced a Kd less than 100 lM. While Crizotinib
showed a Kd of 8 lM, Sunitinib produced a Kd of 67 nM.
4. Discussion and conclusion

LRRK2 is considered a promising therapeutic target in Parkin-
son’s disease. Using a structure-based drug repositioning approach,
we identified two approved cancer drugs that inhibit LRRK2 with
an IC50 and a Kd in the nanomolar to micromolar range.

Sunitinib is a multi-target tyrosine kinase inhibitor that modu-
lates the activity of several kinases, including vascular endothelial
growth factor receptors (VEGFRs), platelet-derived growth factor
receptors (PDGFR), stem cell factor receptor (KIT), and fms-like tyr-
osine kinase 3 (FLT3). It competitively binds the kinases at the ATP
binding site [57]. Sunitinib is approved for the treatment of differ-
ent cancers, such as metastatic renal cell carcinoma (mRCC) [58]
and pancreatic neuroendocrine tumors (pNET) [59]. Consistent
with previous reports [60,43], we found that Sunitinib is a potent
inhibitor and binder of LRRK2 G2019S. The retrieval of a known
binder serves as a good validation of our virtual screening
approach.

Crizotinib is a tyrosine kinase inhibitor that targets hepatocyte
growth factor receptor (HGFR), anaplastic lymphoma kinase (ALK),
and proto-oncogene tyrosine-protein kinase ROS (ROS1) through
ATP-competitive binding. It is approved for use in non-small cell
lung cancer (NSCLC) as an inhibitor of the mutant form of ALK
[44]. We showed that Crizotinib is a moderate inhibitor and binder
of LRRK2 and to our knowledge, there are no previous reports of
this pharmacology published in the scientific literature. In contrast
to Sunitinib, Crizotinib is not brain penetrant. However, given that
brain metastases are a common and lethal complication of NSCLC



Fig. 4. Structural alignment of the interacting residues of humanized Roco4 with the corresponding LRRK2 residues. The alignment is shown for each of the Roco4 query
structures from the virtual screening: Roco4 in complex with LRRK2-IN-1 (left and middle, PDB ID: 4YZM) and with Compound19 (right, PDB ID: 4YZN). Compounds are
shown in orange. Roco4 residues are illustrated in dark, LRRK2 residues in light blue. Protein residue labels are in black for Roco4 and in red for LRRK2.

Fig. 5. Chemical similarity heatmap of the query and the top hit compounds
identified by the virtual screening. The highest chemical similarity is between
LRRK2-IN-1 and Compound19.

Table 2
IC50 and Kd of the top candidate drugs. GW 5074 was the positive control. Sunitinib
and Crizotinib showed IC50 and Kd values in the micromolar to nanomolar range.

Compound IC50 (nM) Kd (nM)

Vardenafil 470,00 >100,000
Paroxetine >100,000 >100,000
Efavirenz >100,000 >100,000
Crizotinib 980 8300
Liothyronine 67000 >100,000
Sunitinib 10 67
GW 5074 <5.1 790

Fig. 6. In vitro inhibition of (left, IC50) and binding to (right, Kd) LRRK2 G2019S by the s
the IC50 plot, LRRK2 activity is plotted against the respective compound concentration.
assay measured the ability of the hit compounds to compete with an active-site directed
assays were performed in duplicates and plots show average values. Sunitinib and Crizo
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and Crizotinib-treated NSCLC patients eventually develop resis-
tance, the brain penetrant ALK inhibitor Lorlatinib, a cyclized
derivative of Crizotinib, has been developed [61]. The drug has
been approved for the treatment of ALK-positive metastatic NSCLC
in 2018 [62]. Our results suggest that Lorlatinib could also be a
LRRK2 kinase inhibitor useful in the treatment of Parkinson’s
disease.

Sunitinib and Crizotinib are chemically dissimilar from the
query compounds LRRK2-IN-1 and Compound19. Moreover, Crizo-
tinib has a negligible chemical similarity with the known LRRK2
binder Sunitinib. This proves that our interaction pattern similarity
approach is capable of identifying novel scaffolds that would not
have been revealed by chemical similarity approaches.

Our structure-based approach was challenged by the lack of
LRRK2 complex structures. We used complex structures of the
humanized LRRK2 homolog Roco4 instead. Overall, humanized
Roco4 and LRRK2 have little sequence identity but display high
structural similarity. In particular, the binding site residues of
humanized Roco4 align very well with the corresponding residues
of the LRRK2 kinase domain. This underscores the suitability of
Roco4 as model for LRRK2. Using this model, we yielded a surpris-
ingly good success rate. Out of six top candidates identified by our
virtual screening, two effectively bind and inhibit LRRK2 G2019S. It
should be noted that, strictly speaking, virtual screening and
experimental validation do not measure the same parameters.
The virtual screening captures the interaction similarity between
query and hit complexes. However, to manifest these interactions,
compounds and proteins must overcome many physicochemical
constraints, such as assay conditions, access to the protein binding
site, potential compound tautomerization, and non-specific pro-
tein–protein, compound-compound, and protein-compound bind-
ix top candidates from the virtual screening. GW 5074 served as positive control. In
In the Kd plot, the readout is plotted against the compound concentration. The Kd
ligand. The readout was the amount of LRRK2 bound to the competitive ligand. Both
tinib have an IC50 and Kd in the micromolar to nanomolar range.
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ing. These effects largely influence in vitro binding kinetics (Kd)
and the potency of inhibition (IC50).

In high-throughput screenings, thousands or millions of com-
pounds are tested against the target of interest to identify novel
binders. In contrast, we created a focused chemical library with
only six test compounds using our structure-based screening
approach. The compounds identified by our screening are more
likely to bind than a random selection of compounds because their
interaction patterns are similar to those of known binders. How-
ever, the approach is more of a statistical nature and cannot per-
fectly predict binding. Therefore, experimental validation is key
to determining the true binders. Moreover, our approach cannot
be compared to a quantitative structure–activity relationship
(QSAR) study in which details of an interaction can be interpreted
to inform the next steps in drug development. Rather, the method
should be seen as a step before a QSAR study. Another limit of the
virtual screening is that it merely predicts binding and not success
in follow-up studies such as cell assay and in vivo studies. Still, as a
screening approach, our structure-based method has very high
success rates. In previous studies, the approach demonstrated to
predict 5–10% binders [63,29,18], which is superior to high-
throughput screenings. In the present study, two out of six hit
compounds actually bind LRRK2 G2019S, which corresponds to a
success rate of 33%.

As with all structure-based approaches, the feasibility and suc-
cess of our computational drug repositioning screening depend on
the availability of structural data. Despite the rapid growth of
structural data, the number of compounds in the PDB is tiny com-
pared to chemical databases like ChEMBL [64]. However, this could
change dramatically in the near future. Recent advances in cryo-
electron microscopy now allow researchers to obtain high-
resolution structures of proteins that are difficult to crystallize
[65]. In addition, structure prediction has recently made a major
breakthrough when the artificial intelligence system AlphaFold
developed by DeepMind achieved unprecedented accuracy in the
Critical Assessment of protein Structure Prediction (CASP) [16].
These advances will increase the importance of structure-based
methods like our virtual drug repositioning approach.

To conclude, the structure-based drug repositioning approach
presented in this work has proven to be successful in identifying
LRRK2 kinase inhibitors. With the virtual screening, we were able
to retrieve a known LRRK2 binder and to find a novel binder. We
showed that the LRRK2 homolog Roco4 served as a sufficient query
for the screening. Our results demonstrate the power and potential
of structure-based drug repositioning, which will gain in impor-
tance in the next years.
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