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Dynamic states of population activity in prefrontal
cortical networks of freely-moving macaque
Russell Milton 1, Neda Shahidi1 & Valentin Dragoi 1,2✉

Neural responses in the cerebral cortex change dramatically between the ‘synchronized’ state

during sleep and ‘desynchronized’ state during wakefulness. Our understanding of cortical

state emerges largely from experiments performed in sensory areas of head-fixed or tethered

rodents due to technical limitations of recording from larger freely-moving animals for several

hours. Here, we report a system integrating wireless electrophysiology, wireless eye tracking,

and real-time video analysis to examine the dynamics of population activity in a high-level,

executive area – dorsolateral prefrontal cortex (dlPFC) of unrestrained monkey. This tech-

nology allows us to identify cortical substates during quiet and active wakefulness, and

transitions in population activity during rest. We further show that narrow-spiking neurons

exhibit stronger synchronized fluctuations in population activity than broad-spiking neurons

regardless of state. Our results show that cortical state is controlled by behavioral demands

and arousal by asymmetrically modulating the slow response fluctuations of local excitatory

and inhibitory cell populations.
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A prevailing view in neuroscience is that the activity of a
neural population is strongly influenced by the state of the
animal. Thus, synchronized fluctuations in the responses

of simultaneously recorded neurons have been predominantly
observed in several sensory cortical areas of rodent brain1–7.
During sleep and rest, cortical populations are intrinsically syn-
chronized in the low-frequency range1,8,9, while during wake-
fulness they are actively desynchronized by cholinergic inputs
received from subcortical areas10–12. Previous recordings from
sensory areas have shown that the degree to which populations
are desynchronized depends on behavioral context, which mod-
ulates sensory coding and perception2–4,7,13,14. In rodent primary
sensory areas, low-frequency activity is apparent in inactive,
awake animals, and these oscillations are suppressed by active
behaviors like whisking and locomotion2–5,7. However, despite
the prevalence of these ideas, previous investigations of cortical
state dynamics at single cell resolution have been performed in
rodent sensory cortex while technical limitations have prevented
the analysis of dynamic cortical states in larger animals freely
moving in their environment for many hours. Importantly,
whether behavioral state modulates cortical population activity in
higher-order, executive areas is unknown.

Results
Integrated wireless system to examine brain states in monkey.
We developed an integrated system for large-scale electro-
physiology, eye tracking, and behavioral state classification in
freely-moving macaque monkey. We performed wireless record-
ings using a 96-channel multielectrode array implanted in the
dorsolateral prefrontal cortex (dlPFC; area 4615) of two freely-
moving monkeys (Fig. 1a and Supplementary Fig. 1; sessions
lasted 195 min on average). The large 2D geometry (4 × 4 mm) of
the multielectrode array allowed us to investigate changes in brain
state across a wide range of cortical distances. A wireless, battery-
powered headstage transmitted neural signals to a centralized
digital signal processor (DSP) and recording computer via an
array of eight antennae placed around the experimental cage
(Fig. 1a). A wireless eye tracker was used to monitor pupil dia-
meter and eye movements. Animals were fitted with a wireless eye
tracker, which uses a transparent lens to reflect the eye image to
an on-board camera (Fig. 1b) mounted to the headpost and
transmitting oculomotor information to an eye-tracking com-
puter. Animals were initially fitted with a dummy device until
they learned to ignore the lens in their field of view and lost
interest in touching and potentially damaging the head-mounted
eye tracker. Once the animals could consistently wear the dummy
eye tracker without touching it, the dummy was swapped with the
real device which the monkeys wore without damaging. To
encourage active exploration and locomotion, animals had access
to buttons on either side of the cage which intermittently dis-
pensed a small reward pellet if pressed. In addition, sessions
included a “lights-out” period to encourage animals to sleep. An
overhead video of the animal was used to classify behavioral states
as active wakefulness, quiet wakefulness, or rest. Periods when the
animal was awake, but the lights were off were not included in
subsequent analyses. Classification of behavioral states based on
the recorded video was done in two stages. First, any intervals
during which the animal was in a sleeping posture for >5 min
were defined as “rest”. All periods during which the lights were
on, and the animal was not in a rest posture were further clas-
sified into “active” and “quiet” states by processing the overhead
video to quantify movement. The videos were processed using a
pixel-wise subtraction algorithm that quantifies the frame-to-
frame changes in the camera’s field of view indicating animal
motion. For each session, the average motion during wake state

was used as a threshold to classify each 10 s epoch as active or
quiet wakefulness (Fig. 1c). Overall, we analyzed 11 sessions in
two 9-year-old adult male animals, which is equivalent to 2027
epochs of active wakefulness, 6182 epochs of quiet wakefulness,
and 2943 epochs of rest.

In order to examine how cortical state is impacted by ongoing
behavior, two methods for quantifying cortical oscillatory
synchrony were used. Initially, we computed the power ratio of
local field potentials (LFPs) in the low-frequency (0.5–10 Hz) and
high-frequency (20–59 Hz) bands. In rodent models, cortical
activation reduces low-frequency LFP power and increases high-
frequency LFP power4,16,17. Thus, the power ratio between the
low (<10 Hz) and high (>20 Hz) LFP bands is commonly
computed to quantify cortical state from LFP recordings17. At
single-neuron resolution, the “synchronized state” is character-
ized by neuronal membrane potential fluctuations within the low-
frequency band, with action potentials being generated on the
crests of these low-frequency oscillations1. Therefore, we devel-
oped a novel method to quantify the power of low-frequency
oscillations in spike rasters recorded from a large population of
well-isolated single units, referred here as population synchrony
index (PSI). Briefly, population firing rate was computed in each
10 s epoch by taking the total number of spikes recorded across
the whole population within each 10 ms bin, then converting to
spikes per unit by dividing by the number of units and converting
to spikes/second by multiplying with a scaling factor of 100. Due
to the large number of units, population firing rate is a smooth
continuous signal that is suitable for spectral decomposition. PSI
is defined as the average of Fourier coefficients of the population
firing rate for the 0.5–10 Hz frequency band divided by its mean
(in 10 s epochs) (Fig. 1d). Statistical significance of results was
determined using nonparametric tests that do not assume an
underlying normal distribution, i.e., Wilcoxon signed-rank and
Wilcoxon rank-sum for comparison of two groups of unmatched
and matched observations. When significant differences among
three groups (active, quiet, and rest) were assessed,
Kruskal–Wallis and Friedman tests were used to detect
differences in unmatched and matched data, respectively (see
“Methods”).

Behavioral state and population activity. Rest significantly
increased the LFP power ratio (power in 0.5–10 Hz divided by
that in 20–59 Hz), hence reflecting a shift in cortical processing to
a more synchronized state16,18 (Fig. 2a, b; p < 0.05, Wilcoxon
signed-rank). In individual neurons, synchronous bouts of high
and low activity were visible in spike rasters during rest, but not
during wakefulness. These ON/OFF dynamics produced a pre-
dominantly slow oscillation in the average firing rate of the
population (Fig. 1d, e). The magnitude of slow oscillatory activity,
quantified by the PSI, was strongly increased in rest relative to
wakefulness (Fig. 2c; p < 0.005, Wilcoxon signed-rank), and
synchronous activity was associated with a significant decrease in
the average firing rate of the neural population (Fig. 2d; p < 0.005,
Wilcoxon signed-rank). These analyses demonstrate that during
rest, low-frequency oscillations, previously observed in EEG stu-
dies, can be readily detected in the spike rasters of large popu-
lations of well-isolated single units. This opens up the intriguing
opportunity of exploring these phenomena at a much finer
resolution than has been previously possible.

The relationship between cortical desynchronization and
wakefulness was further dissected by extracting active and quiet
behavioral states. We thus developed an automated system based
on the frame-by-frame analysis of the video data to classify each
10 s epoch of wakefulness into active (e.g., locomotion) or quiet
state (Fig. 1c, see “Methods”). Relative to rest, active wakefulness
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was associated with increased firing rates and lower PSI,
indicating a desynchronized state (Fig. 2). Quiet wakefulness
represented an intermediate state, with firing rates and PSI values
falling between those of rest and active wakefulness. Population
firing rates and PSI were significantly different across all

behavioral states (Fig. 3a, b; Friedman test, p < 0.001; Wilcoxon
signed-rank test with Bonferroni correction, p < 0.001 for all
pairwise comparisons). These results support the idea that the
degree of synchrony serves as a readout of cortical state, and may
represent the neural substrate of vigilance.
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Fig. 1 Integrated system for monitoring behavioral states and cortical activity. a Schematic of wireless recording system from a 96-channel
microelectrode array in dlPFC of freely behaving macaque. Array image photo credit: Utah Array—© 2020 Blackrock Microsystems, LLC. Monkey cartoon
diagram image credit: Reproduced with permission35. © IOP Publishing. All rights reserved. Three-dimensional brain cartoon generated with Scaleable
Brain Atlas36–38. b (Left) Schematic of wireless eye tracking system. (Right, top) Example of wirelessly recorded eye image with pupil detection. (Right,
bottom) Example of wirelessly recorded pupil diameter. c Monkey movement is quantified based on consecutive video frames as the number of pixels that
changed in intensity. The average movement during wakefulness for each recording session was used as a threshold to classify 10 s epochs as active or
quiet wakefulness. (Top left and top middle) Example of two subsequent frames during quiet wakefulness, (top right) pixel-wise subtraction reveals no
motion during this period. (Bottom left and bottom middle) Example of two subsequent frames during active wakefulness. (Bottom right) Pixel-wise
subtraction reveals that the monkey is actively behaving during this period. d (top) Example raster showing the firing rates of 29 simultaneously recorded
single units while the monkey is awake. The spike count in each 10ms bin was converted to sp/s by scaling by a factor of 100. (Bottom) Population firing
rate was computed as the average firing rate for the population within each 10ms bin (black trace). The red line shows the average population firing rate
for the whole 10 s period shown (6.3 sp/s). Population synchrony index (PSI) is 0.0433. PSI quantifies the 0.5–10 Hz oscillations of the population firing
rate during the 10 s period. e Same as b, but recorded while the monkey is resting. Low-frequency fluctuations are apparent in both spike rasters and
population firing rate. Average population firing rate is 4.5 sp/s and PSI is 0.0632.
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Our measure of population synchrony index (PSI) has not been
previously used to quantify cortical state in freely-moving
animals. Therefore, we asked whether the population spiking
activity provides a more precise prediction of the behavioral state
of the animal than the LFP power ratio. We thus trained a linear
support-vector machine to decode the behavioral state of each
10 s epoch based on cortical state as quantified using either PSI or
LFP power ratio. PSI and LFP power ratio were z-scored within
session to facilitate combining across sessions, and training and
test data were randomly sampled such both sets had equal
numbers of active, quiet, and rest epochs (see “Methods”). We
found that, while both LFP power ratio and PSI can predict
behavioral state better than chance level, the PSI-trained decoder
was significantly more accurate (Wilcoxon rank-sum test, p <
0.001; Fig. 3i). This indicates that our PSI measure provides a
more accurate quantification of cortical state than the LFP
power ratio.

In sensory cortex, locomotion has been found to increase pupil
diameter and reduce low-frequency synchronous oscillations while
impacting neural responses in a modality-specific manner2–4,7.
We examined the key measurable variables associated with
behavioral state—motion index, firing rates, PSI, and pupil
diameter—to better understand the relationship between physio-
logical and behavioral variables in unconstrained animals. This
allowed us to investigate the relationship between cortical state,
oculomotor activity, and behavior during different states of
wakefulness. Epochs of wakefulness were classified as active or
quiet by thresholding the motion index calculated based on the
frame-by-frame analysis of animal behavior. We additionally
determined how the degree of behavioral activity (i.e., the raw

motion index value) during wakefulness relates to population
firing rate, PSI, and pupil diameter. These variables were z-scored
for all epochs within each session, and then combined across
sessions. We revealed a strong and highly significant correlation
between locomotion and spiking activity in dlPFC (Fig. 3c;
Pearson’s correlation, R= 0.44363, p < 0.0001). When individual
recording sessions were considered, there was a positive correla-
tion between population firing rate and motion index in every
session (p < 0.0001; Supplementary Fig. 2). We further found a
highly significant negative correlation between the z-scored
motion index and PSI when combining across sessions (Fig. 3d;
Pearson’s correlation, R= 0.11584, p < 0.0001; 8/11 sessions were
statistically significant, see also Supplementary Fig. 2). Further-
more, we examined the time course of transitions between
active and quiet wakefulness and found that the population
firing rate trace closely tracks with motion index (Supplementary
Fig. 3). Altogether, these results indicate that population activity in
dlPFC strongly depends on ongoing behavioral state during
wakefulness.

Autocorrelation analysis reveals that population synchrony, PSI,
is highly persistent as it changes slowly in time (over minutes,
Supplementary Fig. 4a). This is consistent with the influence of
general arousal as the main factor contributing to these changes.
We took advantage of the 2D geometry of the multielectrode array
to compute PSI within a range of cortical distances, and found
greater PSI values at nearby distances while preserving differences
in PSI across behavioral states (Supplementary Fig. 4b). A
correlate of general arousal is pupil size. Indeed, active behavior
generates a state of heightened arousal associated with acetylcho-
line and norepinephrine release that increases ongoing activity in
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during wake is 91% that of rest. d (Left) Population firing rate is reduced during rest. (Right) Summary of all sessions showing average population firing rate
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cortical circuits and pupil dilation2–4,7,19–22. To determine
whether locomotion changes general arousal, animals were trained
to wear a wireless eye tracker (see “Methods”) which allows us to
record pupil diameter and eye movements (Fig. 1b). Pupil
diameter and motion index were highly correlated with behavioral
state across sessions (Pearson’s correlation, R= 0.44523, p <
0.0001; Fig. 3e and Supplementary Fig. 2). Furthermore, pupil
diameter was positively correlated with population firing rate
(Pearson’s correlation, R= 0.29972, p < 0.0001) and negatively
correlated with PSI (Pearson’s correlation, R=−0.27307, p <
0.0001), which was apparent even in individual sessions
(Supplementary Fig. 5a–d).

One possible confound that could partially explain the changes
in dlPFC responses during wakefulness is eye movements
(Supplementary Fig. 6; see “Methods”). Across sessions, popula-
tion firing rate had a subtle yet significant positive correlation
with eye velocity and saccade rate (Supplementary Fig. 7a, b;
Pearson’s correlation, R= 0.16213 and 0.12629, respectively, p <
0.001). However, PSI was not significantly correlated with eye
velocity (R=−0.094515) or saccade rate (R=−0.092722;
Supplementary Fig. 7c, d). To determine which measure
significantly influences the fluctuations in population synchrony,
we performed a multiple regression relative and relative weight
analysis23, which is an important supplement to multiple
regression when predictor variables are correlated among
themselves, as is the case in our data. This analysis transforms
predictor variables to create a new set of orthogonal predictors,
which are then used for multiple regression24. Using this
approach, we determined that PSI significantly depends on both
firing rate and pupil diameter (Fig. 3f–h, p < 0.001; 99.9%
confidence interval for the predictor weights is greater than
zero), but does not significantly depend on eye velocity or motion
index when all other predictors are taken into account. These
results indicate that pupil diameter, population firing rate, and
PSI are all features of the underlying brain state which co-
fluctuate as animals transit through different behavioral states.

Cortical states in functionally-defined cell types. We further
investigated how behavioral state impacts neuronal subpopula-
tions by classifying well-isolated single units into narrow-spiking
and broad-spiking subpopulations based on the shape of the
average action potential waveform (Fig. 4a, see “Methods”).
Previous studies have suggested that narrow-spiking units are
likely to represent parvalbumin interneurons, whereas broad-
spiking units represent a mix of mostly pyramidal cells and some
interneurons25,26. Consistent with past work27,28, narrow-spiking
neurons comprised 16% of the overall population and had sig-
nificantly higher firing rates than broad-spiking cells (Wilcoxon
rank-sum test, p < 0.01; mean rates 5.63 sp/s and 4.02 sp/s,
respectively; Fig. 4b). Firing rates of both subpopulations were
influenced by behavioral state, with highest firing rates occurring
in the active state and lowest in rest (Fig. 4c; p < 0.001, Friedman
test; p < 0.001, Wilcoxon signed-rank test with Bonferroni cor-
rection for pairwise comparisons). Given the similar effects of
behavioral state on firing rates in both subpopulations, we
investigated the state dependency of the ratio between excitation
and inhibition. For each epoch, we computed the ratio of average
firing rates of putative excitatory and inhibitory subpopulations,
referred to as “E/I ratio”. Overall, there was a significant reduction
in E/I ratio during rest, indicating a shift to a more inhibition-
dominated regime relative to wakefulness, and a modest, but
significant decrease in active relative to quiet wakefulness (Fig. 4d;
p < 0.0001, Kruskal–Wallis; p < 0.0001, Wilcoxon rank-sum test
with Bonferroni correction). The dynamic shift towards inhibi-
tion observed during rest implies an active role of inhibitory

subpopulations in maintaining the synchronous state. However,
the differences in E/I ratio during wakefulness suggest that the
responses of putative excitatory and inhibitory populations dur-
ing wakefulness are complex and involved more than just cortical
state dynamics.

Putative excitatory and inhibitory subpopulations were tuned
to the behavioral state of the animal (see “Methods”). Population
synchrony was highest during rest, and gradually decreased
during quiet to active wakefulness for both subpopulations
(Supplementary Fig. 8; Wilcoxon rank-sum test with Bonferroni
correction; p < 0.0001). Surprisingly, the degree of population
synchrony of the narrow-spiking population was larger than that
of the broad-spiking population regardless of ongoing behavioral
state (Fig. 4e–g; p < 0.0001, Wilcoxon rank-sum test with
Bonferroni correction). Cortical inhibitory neurons are electri-
cally connected through gap-junctions, which could underlie this
enhanced synchrony29. Narrow-spiking units have also been
reported to fire for a brief phase of the cortical slow oscillation,
which could further increase low-frequency synchrony30,31. To
determine if both subpopulations are modulated differently by
quiet and active wakefulness, we normalized the PSI values in
these states to their rest values. In active wakefulness, narrow-
spiking neurons are substantially more desynchronized relative to
rest than the broad-spiking cells (p < 0.0001, Kruskal–Wallis test;
p < 0.0001, Wilcoxon signed-rank test). In the quiet wakefulness
state, the broad-spiking subpopulation is slightly more desyn-
chronized relative to rest than the narrow-spiking subpopulation
(Supplementary Fig. 8; p < 0.0001, Wilcoxon signed-rank).
Relative to their respective rest values, the PSI of broad-spiking
and narrow-spiking populations showed a clear difference in their
state-dependent dynamics. The broad-spiking population was
highly desynchronized during both quiet and active wakefulness.
The narrow-spiking cell population was only slightly desynchro-
nized during quiet wakefulness, but strongly desynchronized
during active wakefulness. These results suggest that arousal may
exert a disproportionate influence on the narrow-spiking
neuronal subpopulations.

Discussion
A prominent view of sensory processing is that cortical networks
are desynchronized during active wakefulness and synchronized
during quiet wakefulness and sleep1,8–12,32. This view is based on
earlier rodent studies in which technical limitations required
animals to be restrained2–4,7, hence preventing the analysis of
dynamic states of cortical activity in larger animals freely moving
in their environment. Furthermore, whether the impact of
behavioral state on cortical population activity extends to higher-
order, executive cortical areas has been unknown. We overcame
technical limitations inherent in previous studies by developing a
system that integrates wireless transmission of cortical activity,
wireless eye-tracking, and real-time video analysis to examine the
dynamics of population activity in dlPFC of unrestrained mon-
keys. Our approach allowed us to identify distinct cortical sub-
states during quiet and active wakefulness, and transitions in
population activity during drowsiness and rest. These results
reveal that wakefulness is not a purely desynchronized state,
rather synchrony during wakefulness co-fluctuates with beha-
vioral demands.

Previous studies performed in rodent sensory cortex have
established a relationship between the degree of ongoing cortical
synchrony and behavioral performance13. However, whether
locomotion in unconstrained nonhuman primates yields reliable
shifts in cortical state, as observed in rodents, has been unknown.
Furthermore, previous studies of cortical state have focused on
sensory areas and stimulus coding2–4,7, but whether the results
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can be extended to executive areas, such as dlPFC, has been
unclear. Our results reveal that the impact of brain state on
cortical dynamics, including population synchrony and firing
rate, are remarkably similar across brain areas and model systems.
This indicates that the main features of cortical state have
remained evolutionarily unchanged across species, which further
supports the idea that they must convey substantial functional
advantages to the organism.

Our study rests on our successful development and integration
of three key technologies—wireless eye tracking, wireless multi-
electrode recording, and behavioral monitoring—in a focused
effort to advance our understanding of the dynamics of cortical

state in freely-moving nonhuman primates. However, our
approach has a number of technical limitations that will need to
be addressed in future work in order to completely characterize
cortical states and their relationship to behavior. First, our
wireless eye tracker cannot resolve microsaccadic activity inher-
ent during visual fixation, and hence we cannot establish links
between fixational eye movements and ongoing cortical state.
Second, the fact that our electrophysiological recordings are
limited to one cortical area, dlPFC, makes it impossible to
investigate how changes in brain state impact the communication
between brain areas. Third, electrophysiological classification of
functional cell types based on spike waveforms does not capture
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Fig. 4 Putative inhibitory populations are more synchronous than putative excitatory populations. aMean spike waveforms of 367 recorded single units
classified as narrow-spiking or broad-spiking based on peak-to-trough duration. b Narrow-spiking units had a significantly higher mean firing rate than
broad-spiking units (5.63 sp/s vs. 4.02 sp/s; p= 0.0023, two-sided Wilcoxon rank-sum, n= 367 U). c (Top) Mean firing rates of broad-spiking units
during active, quiet, and rest states. Firing rates are highest in the active state, and lowest in the rest state, and at an intermediate level in the quiet state
(p= 4.1e−5; Friedman test; asterisks indicate p < 0.0001; two-sided Wilcoxon signed-rank test with Bonferroni correction; n= 308 broad-spiking units).
(Bottom) Same analysis for narrow-spiking units. Firing rates are significantly higher in the active state than either the quiet or rest state (p= 1.5e−4;
Friedman test; asterisks indicate p < 0.0001; two-sided Wilcoxon signed-rank with Bonferroni correction; n= 59 narrow-spiking units; the reduction in
firing rates between the quiet and active states is not significant, p= 0.01). Boxplot box indicates first and third quartile, center line of the box indicates the
median, and whisker lengths reflect the inter-quartile range multiplied by 1.5. d Putative E/I ratio computed as the ratio of broad-spiking to narrow-spiking
firing rates across all behavioral states. E/I ratio slightly increases in quiet relative to active state, however there is a particularly strong swing towards
inhibition during rest (p < 0.0001, Kruskal–Wallis test; asterisks indicate p < 0.0001, two-sided Wilcoxon rank-sum test with Bonferroni correction; error
bars indicate mean ± standard error, n= 8204 epochs). e–g PSI was computed for both narrow-spiking and broad-spiking populations in active (e), quiet
(f), and rest (g) states. Broad-spiking populations for each session were subsampled 100 times to match the population size of the narrow-spiking units
and PSI was averaged overall sub-samplings. Broad-spiking PSI and narrow-spiking PSI distributions are shown for both monkey T (top) and monkey G
(bottom). PSI for both subpopulations was z-scored and combined across both monkeys for each behavioral state, demonstrating significantly higher PSI
for the narrow-spiking population in all behavioral states (top, insets; asterisks indicate p < 0.0001; two-sided Wilcoxon signed-rank test).
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the heterogeneity of genetically-defined neuronal subtypes. Our
electrophysiological classification of waveforms may result in a
narrow-spiking population of likely parvalbumin-expressing
interneurons, and a broad-spiking population mostly comprised
of excitatory pyramidal cells and a subset of other interneurons
subtypes. Finally, our chronic electrode arrays do not allow us to
record across all the layers of the cortical column, and hence we
cannot investigate how cortical state operates within the depth of
cortex.

We have demonstrated that arousal is a key determinant of
population activity in dlPFC, strongly linked with locomotor
behavior. Furthermore, regardless of behavioral state, narrow-
spiking cells exhibit stronger synchronized fluctuations in
population activity compared to broad-spiking neurons. These
results imply that arousal influences network behavior mainly by
modulating the synchronized fluctuations of putative parvalbu-
min inhibitory cells32. The greater degree of population syn-
chrony in these cells may serve to limit low-frequency synchrony
in excitatory cell populations and maintain stable firing rates
across behavioral states33. Our integration of multiple wireless
recording methodologies has allowed us to study cortical function
during complex behavioral states that are difficult or impossible
to observe in an experimental rig. This approach opens up new
opportunities for future large-scale wireless electrical recordings
in many brain areas coupled with advanced behavioral mon-
itoring to explore questions that have been unapproachable
until now.

Methods
Ethics statement. All experiments were performed in accordance with protocols
approved by the Animal Welfare Committee and the Institutional Animal Care and
Use Committee for the University of Texas Health Science Center at Houston
(UTHealth).

Surgical procedures. A titanium headpost was implanted medially with anchor
screws. Following a recovery period exceeding 6 weeks, animals were acclimatized
to the experimental cage for at least 4 days per week for over 4 weeks. After
acclimatization, animals were implanted with a 96-channel Utah array in the left
dlPFC (area 46) and pedestal on the caudal skull (Blackrock Microsystems). The
stereotaxic coordinates were chosen to make the craniotomies based on MRI and
brain atlases15,34,35. During surgery, visual identification of arcuate and principal
sulci guided precise implantation of arrays into the dlPFC. Following array
implantation, animals had a 2-week recovery period before recording from
the array.

Behavioral paradigm. Two 9-year-old adult male rhesus monkeys (Macaca
mulatta) were used for these experiments. Recordings were performed in a custom
4′ × 2′ × 3′ (LxWxH) plastic cage surrounded by an array of eight antennae. To
encourage walking around the cage, animals were trained to push two buttons on
either side of the cage to receive a small food reward. After ~1 h, animals were
encouraged to rest by suspending food access and turning down the lights. IR
illumination was used to monitor the animals when lights were off. Only sessions
in which the animals took a rest were included in analysis. Recording sessions were
2 h and 50 min on average, and we were able to record for up to 6 h. Animals rested
for 44 min per session on average. During a subset of sessions in which the eye
tracker was worn, animals were not given a lights-out period. The animal’s natural
rest postures would interfere with the eye tracker, potentially causing damage to the
device. Furthermore, the eye tracker was not deemed necessary for rest analysis as
eyelids are closed during rest.

Wireless electrophysiology. Following a postsurgical recovery period, we wire-
lessly recorded from the 96-channel multielectrode array in dlPFC (see surgical
procedures). Cereplex W (Blackrock Microsystems) was attached to the pedestal
and the animal was transferred into the plastic recording cage, which is 4′ × 2′ × 3′
(LWH), and surrounded by eight directional antennae. Physiological data was
recorded on a Cerebus neural signal processor (Blackrock Microsystems). Con-
tinuous LFP was recorded at 2 kHz and was used for spectral analysis. Analysis of
LFP spectra were implemented using an open-source MATLAB package (Chronux).
Putative spike waveforms were captured upon threshold crossing at 30 kHz and
sorted offline using Plexon Offline sorter. Analyses were done using only well-
isolated single units. Each well-isolated single unit was either classified as a putative
narrow-spiking interneuron or broad-spiking pyramidal cell. For each unit,
spike waveforms were averaged, normalized, and spline interpolated to a 2.5 μs

resolution27. We then computed the time between peak and trough, and used a
threshold of 300 μs to classify units as putative interneurons and pyramidal cells28.

Behavior tracking. We recorded a top-down video of the animals during the
experiments using an IR-sensitive camera. Video frame acquisition was controlled
by a dedicated computer running custom Python scripts to send a TTL pulse to be
recorded by the DSP upon acquisition of each frame in order to synchronize video
frames with neural and eye tracker data. During the experiment, access to food
would temporarily be suspended and lights turned off to encourage resting. Epochs
of rest were defined as any period during the experiment in which the animal
entered and maintained a resting posture for a period of at least 5 min. The video
for the wake periods was concatenated and processed to quantify the animals’
movement. The motion index was defined as the average number of pixels that
change in intensity between consecutive frames. The recordings were binned into
10 s, nonoverlapping epochs. Wake epochs were classified as either active or quiet
based on whether the motion index was greater than or less than the average
motion level during wakefulness. Motion index was computed using custom
software written in Python using the OpenCV package.

Eye tracking. We used a custom wireless eye tracker (ISCAN) to measure pupil
position and diameter during sessions in which animals were not encouraged to
rest. Pupil diameter was recorded using the neural signal processor (Blackrock
microsystems) and synchronized to the overhead video in the same way as the
neural data (see Behavioral tracking). Pupil diameter and position were sampled at
1 kHz. For the sessions in which pupil diameter was recorded, the animals were not
encouraged to rest to prevent any damage or movement of the eye mirror. To train
animals to wear the device without damaging it, its 3D geometry was modeled
(Sketchup Pro), and dummies were 3D printed and fitted with eye mirrors. To
properly position the eye tracker and dummies relative to the eye, custom adapters
were designed, and 3D printed to attach directly to the headpost and serve as an
anchor point for the eye tracker. These adapters were designed to interface with the
headpost, without touching the animal directly, to minimize discomfort, and
reduce the likelihood of the device being tampered with. These dummy eye trackers
were worn by animals for several mock recording sessions to adjust them to
wearing the device. Once the animals grew accustomed to wearing the dummy and
stopped touching it altogether, the real device was used. Horizontal and vertical
coordinates of the pupil were recorded and used to compute eye velocity. To
extract fixations, eye velocity was thresholded at one standard deviation above the
median. Any period of time greater than 5 ms during which the eye was below this
threshold was considered a fixation.

Population synchrony index. Spike rasters were separated into 10 s epochs and
binned into 10 ms windows. For each 10 ms window, the average firing rate for the
population was computed. The relationship between population firing rate and
behavioral state was determined by averaging population firing rate within each 10
s epoch to match the resolution at which behavioral state was defined (see Beha-
vioral tracking). The PSI for each 10 s epoch was computed from the corre-
sponding 10 ms resolution population average firing rate trace. This trace was
Fourier transformed for each epoch to yield a set of Fourier coefficients. PSI for a
given epoch was given by the average of Fourier coefficients for frequencies
between 0.5 and 10 Hz, divided by the mean population firing rate for the epoch.
PSI quantifies the magnitude of low-frequency oscillations in the population
spiking activity. For the analyses involving putative broad-spiking and narrow-
spiking populations, PSI was computed separately. Sessions with fewer than four
narrow-spiking subpopulations were excluded from these analyses. PSI for narrow-
spiking subpopulations was computed as described above. For the broad-spiking
population, bootstrapping was employed to control for any influence of population
size on PSI values. From the overall broad-spiking population, 100 subpopulations
were selected randomly for each session such that each broad-spiking sub-
population size was equal to the size of the narrow-spiking population. PSI was
computed for all epochs for each broad-spiking subpopulation. PSI of the broad-
spiking population in a given epoch was given by the average PSI value overall
100 subpopulations. For analyses pertaining to Supplementary Fig. 4b, a set of
populations of units within a radial distance were determined based on the location
of the electrode detecting each unit within the geometry of the multielectrode array.
Populations with fewer than 4 U were not used in this analysis. Comparisons of PSI
across different states were made using the same populations of units across
each state.

Statistics and reproducibility. Statistical significance was assessed using non-
parametric tests. Wilcoxon signed-rank and Wilcoxon rank-sum tests were used
when comparing two groups of unmatched or matched observations, respectively.
When significant differences among three groups (active, quiet, and rest) were
assessed, Kruskal–Wallis and Friedman tests were used to detect differences in
unmatched and matched data, respectively. In these cases, post-hoc pairwise tests
were conducted if differences among groups were determined. Because we did not
want animals to sleep while wearing the eye tracker, we analyzed 11 sessions that
included a rest period and did not include eye tracking and we analyzed a further
nine sessions that included the eye tracker and no rest periods. We additionally
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employed a support-vector machine decoder to determine how well PSI and LFP
could predict behavioral state. Decoders were trained with data combined across all
sessions. Each session contributed the equal epochs of each behavioral state, and
this number was equal to the number of occurrences of the least frequent state for
each session. LFP power ratio and PSI were z-scored within each session before
combining data across all sessions. We employed tenfold cross validation to ensure
that the SVM was appropriate (i.e., not overfitting to the specific training data), and
then continued by training the decoder with a random half of the data set and
testing with the other half. This train-half, test-half paradigm was repeated 1000
times, and average performance was reported. We ran a multiple regression with
relative weight analysis to determine how different factors impact population
synchrony. This relative weight analysis was performed in R using an online tool
(RWA-Web) to account for correlations between predictor variables of multiple
regression analysis24. All other statistical analyses were performed in MATLAB.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used in this study are available from the corresponding author upon reasonable
request.

Code availability
The code used for data analyses in this study is available from the corresponding author
upon reasonable request.
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