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Endosomes as Signaling Platforms
for IL-6 Family Cytokine Receptors
Dirk Schmidt-Arras* and Stefan Rose-John*

Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany

Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including
IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor
but we now know that the cytokine plays a pivotal role in the orchestration of
inflammatory processes as well as in inflammation associated cancer. Moreover, IL-
6 is involved in metabolic regulation and it has been shown to be involved in major
neural activities such as neuroprotection, which can help to repair and to reduce
brain damage. Receptor complexes of all members formed at the plasma membrane
contain one or two molecules of the signaling receptor subunit GP130 and the
mechanisms of signal transduction are well understood. IL-6 type cytokines can also
signal from endomembranes, in particular the endosome, and situations have been
reported in which endocytosis of receptor complexes are a prerequisite of intracellular
signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial
activation of downstream signals. We here summarize the molecular mechanisms
underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance
for pathogenic processes.
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INTRODUCTION

Interleukin-6 (IL-6) – together with IL-1β and TNFα – is one of the major inflammatory cytokines,
which is elevated in most if not all inflammatory states and has also been recognized as a frequent
growth factor in many cancers (Grivennikov et al., 2009; Lesina et al., 2011; Garbers et al., 2018;
Jones and Jenkins, 2018). IL-6 activity is also an important target of therapy in autoimmune diseases
(Kang et al., 2019). The biology of IL-6, which has been cloned 35 years ago (Hirano et al., 1986), is
complex and not completely understood (Rose-John, 2018).

IL-6 was originally identified and cloned as a B-cell stimulating factor (Hirano et al., 1986)
but it soon turned out that it was identical with hepatocyte stimulating factor (Gauldie et al.,
1987), hybridoma growth factor (Brakenhoff et al., 1987) and human interferon beta-2 (Zilberstein
et al., 1986), pointing to a pleiotropic spectrum of activities. Now we know that IL-6 plays
a prominent role in many inflammatory states and cancer. Moreover, IL-6 has prominent
metabolic functions (Wallenius et al., 2002) and is an important factor in neural development
(Gadient and Otten, 1994).

Human IL-6 is a four helical glycosylated protein of 184 amino acids (Reif et al., 2021), which
shares an overall structural homology with many other cytokines (Spangler et al., 2015). On
target cells, IL-6 binds to a membrane-bound IL-6 receptor (IL-6R) and the complex of IL-6 and
IL-6R associates with a second receptor subunit called GP130 leading to an onset of intracellular
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signaling via the janus kinase (JAK)/signal transducer and
activator of transcription (STAT), phosphoinositide-3 kinase
(PI3K)/AKT kinase and protein tyrosine phosphatase non-
receptor type (PTPN) 11/SHP2/mitogen activated protein kinase
(MAPK) pathway (Schaper and Rose-John, 2015; Jones and
Jenkins, 2018; Rose-John, 2018). Interestingly, GP130 has been
recognized to be a subunit of the receptor complexes of IL-11, IL-
27, leukemia inhibitory factor (LIF), ciliary neurotrophic factor
(CNTF), cardiotrophin like cytokine (CLC), oncostatin M (OSM)
and cardiotrophin-1 (CT-1), which together form the IL-6 family
of cytokines (Figure 1A; Schaper and Rose-John, 2015; Jones and
Jenkins, 2018; Rose-John, 2018).

It has been shown that the IL-6R is readily shed from the cell
surface of human and murine cells (Müllberg et al., 1993) and is
found in human blood (Riethmueller et al., 2017). Interestingly,
in humans but not in mice, the soluble IL-6R (sIL-6R) can
also be generated by translation from an alternatively spliced
mRNA (Lust et al., 1992), although this mechanism accounts
only for about 10% of sIL-6R that is found in human blood
(Riethmueller et al., 2017). The sIL-6R binds IL-6 (Müllberg
et al., 1993) and the complex of IL-6 and sIL-6R stimulates
cells, which only express GP130 but no IL-6R (Mackiewicz et al.,
1992). Except on mature granulocytes (Wilkinson et al., 2018),
IL6ST, encoding GP130, is expressed on all cells of the body.
However, expression levels vary. High expression levels were
found in the liver, in particular hepatic stellate cells, placenta,
breast and lymph node. In leukocytes, IL6ST is in particular
expressed in T-cells (Fagerberg et al., 2014; Uhlén et al., 2015).
In contrast, IL6R expression is very low in most of the tissues
and elevated expression has been found in both types of alveolar
cells, hepatocytes, some leukocytes, such as granulocytes, and in
the skeletal muscle (Rose-John et al., 1990; Oberg et al., 2006).
The ratio of GP130 and alpha receptor such as IL-6R therefore
dictates cytokine responsiveness of an individual cell. However,
expression data have to be handled with caution as expression
levels vary depending on the deposited dataset and expression
of IL6ST and IL6R should be validated experimentally in the
tissue of interest.

Cells without IL-6R expression are completely unresponsive
to IL-6 (Mackiewicz et al., 1992). The mode of signaling via
the sIL-6R significantly enlarges the spectrum of target cells of
IL-6 and has been called IL-6 trans-signaling (Rose-John and
Heinrich, 1994). Similarly, it has been demonstrated in vitro
that IL-11 bound to the sIL-11R can stimulate GP130 expressing
cells although the in vivo relevance of this process has not yet
been elucidated (Lokau et al., 2016). Interestingly, Human Herpes
Virus 8 encodes a protein, which shows 25% sequence identity
with human IL-6 (Neipel et al., 1997). This viral IL-6 (vIL-6)
protein, a soluble protein without transmembrane domain, was
shown to directly bind to GP130 without being presented by the
human IL-6R (Chow et al., 2001). Therefore, the vIL-6 protein
stimulates cells in the absence of IL-6R and therefore shows the
same spectrum of target cells as the IL-6/sIL-6R complex via
trans-signaling (Molden et al., 1997; Müllberg et al., 2000). In
addition to the sIL-6R, which is found in the blood of healthy
individuals at concentrations of about 40–80 ng/ml, soluble forms
of gp130 are found in the blood at levels of about 400 ng/ml

(Garbers et al., 2018; Rose-John, 2018). It is believed that sIL-6R
and sgp130 form a buffer for IL-6, which in healthy volunteers is
found at 1–5 pg/ml but which rises during inflammatory states by
several 100- to 1000-fold (Garbers et al., 2018; Rose-John, 2018).

For a long time, activation of signal proteins by receptor
complexes at the plasma membrane were thought to be the
only source of downstream signaling. In this monolithic view,
internalization of receptor complexes has been solely considered
to terminate receptor signaling. However, emerging data suggest
that receptor complexes internalized into endosomes can serve
as signaling platforms that support sustained intracellular
signaling, potentially even with altered signal quality. Here,
we summarize current knowledge and discuss the importance
of endomembranes, in particular endosomes, for the signal
transduction of IL-6 family cytokines.

THE INTERLEUKIN-6 FAMILY OF
CYTOKINES

The IL-6 family of cytokines is defined by the presence of GP130
in their cognate receptor complexes (Figure 1A). IL-6 and IL-
11 bind to their specific IL-6R and IL-11R receptor subunits and
subsequently associate with a homodimer of GP130 (Figure 1A;
Kishimoto, 2005). The cytokines CNTF and CLC interact with
the CNTF-R and signal via a heterodimer formed by GP130 and
the related protein LIF-R (Kishimoto, 2005). OSM directly binds
to GP130 leading to heterodimer formation with LIF-R whereas
LIF directly binds to the LIF-R, which heterodimerizes with
GP130 (Kishimoto, 2005). OSM can also bind to an alternative
receptor complex which is formed by GP130 and the OSM-R
(Mosley et al., 1996). IL-27 is a dimeric cytokine formed by the
four-helical protein p28 and the soluble cytokine receptor-like
protein EBI3, which binds to a heterodimer formed of GP130 and
WSX-1 (Pflanz et al., 2002; Figure 1A).

Several designer proteins have been generated to study the
biology of IL-6 and the relevance of GP130 signaling. Hyper-
IL-6 is a fusion protein of sIL-6R covalently connected to the
NH2 terminus of IL-6 by a flexible peptide linker (Fischer
et al., 1997). Hyper-IL-6 mimics IL-6 trans-signaling and was
used to differentiate between classic- and trans-signaling. Hyper-
IL-6 but not IL-6 alone strongly stimulated the expansion of
hematopoietic stem cells (Audet et al., 2001) and the survival
of sympathetic neurons (März et al., 1998). Smooth muscle cells
(Klouche et al., 1999), endothelial cells (Romano et al., 1997), and
embryonic stem cells (Humphrey et al., 2004) are only responsive
to IL-6 in the presence of sIL-6R. Moreover, it was shown that
liver regeneration, which is largely dependent on IL-6 (Cressman
et al., 1996) was significantly accelerated in the presence of sIL-6R
(Galun et al., 2000; Peters et al., 2000).

While Hyper-IL-6 demonstrated the enormous in vitro and
in vivo potential of IL-6 trans-signaling, it did not prove that
this signaling mode actually occurred in vivo. Therefore a second
designer protein was generated, which was called soluble gp130Fc
(sgp130Fc) (Jostock et al., 2001). The sgp130Fc protein consists of
the entire extracellular portion of GP130 fused to the Fc portion
of a human IgG1 antibody (Jostock et al., 2001). It turned out
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FIGURE 1 | (A) Overview of IL-6 family cytokine receptor complexes. GP130, LIFR, OSMR, and IL-27Rα/WSX-1 are the only receptor subunits of the family that
interact with members of the Janus kinase family and are therefore competent for signal transduction (Schmidt-Arras et al., 2021). (B) Trafficking of IL-6 family
cytokine receptors. Receptors get synthesized into the endoplasmic reticulum and subsequently glycosylated at Asn residues. These glycans are essential during
passage through the ER quality control. Ligand binding at the plasma membrane causes receptor homo/heterodimerization. Internalized receptors are either
subjected to degradation or to recycling back to the plasma membrane.

that sgp130Fc exclusively blocked IL-6 trans-signaling without
affecting classic IL-6 signaling via the membrane-bound IL-6R
(Jostock et al., 2001). The reason for this specificity was the fact
that GP130 shows no measurable affinity for the separate proteins
IL-6 or IL-6R. It only binds the complex of IL-6 bound to the

IL-6R (Jostock et al., 2001). Therefore, stimulation of cells, which
express IL-6R with IL-6 will not be affected by sgp130Fc since IL-
6 bound to the membrane-bound IL-6R immediately associates
with membrane-bound GP130 and sgp130Fc has no access to the
receptor-bound IL-6. In contrast, the complex of IL-6/sIL-6R in
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solution can just as well bind to membrane-bound GP130 as to
sgp130Fc. In the presence of a molar excess of sgp130Fc, IL-6
trans-signaling will be completely blocked (Jostock et al., 2001).

It has been shown that IL-6 trans-signaling is involved
in many pathophysiologic states including autoimmunity and
cancer (Jones et al., 2011). Recent work demonstrated that
specific blockade of IL-6 trans-signaling prevented high-fat diet
induced adipose tissue macrophage accumulation (Kraakman
et al., 2015) and blocked IL-6 mediated neurodegeneration in a
transgenic animal model (Campbell et al., 2014). Recently it was
found that IL-6 trans-signaling strongly stimulated repopulation
of microglia in the mammalian brain and thereby aided to repair
cognitive deficits from brain injury (Willis et al., 2020).

Inhibition of IL-6 activity by neutralizing antibodies to the
IL-6R has been approved in many countries for the treatment
of autoimmune diseases (Tanaka et al., 2014; Kang et al., 2019).
The neutralizing antibodies tocilizumab and sarilumab have
been approved for the treatment of patients with autoimmune
diseases such as Rheumatoid Arthritis (Garbers et al., 2018;
Jones and Jenkins, 2018; Kang et al., 2019). Both antibodies
block the binding of the ligand IL-6 to the IL-6R (Garbers
et al., 2018; Jones and Jenkins, 2018). This helps to avoid a
problem seen with neutralizing IL-6 antibodies, which led to
enormous accumulation of IL-6 bound to the antibody in the
circulation of patients (Lu et al., 1992). In contrast, treatment with
neutralizing IL-6R antibodies resulted in only slight elevation
of serum IL-6 levels, which were explained by an inhibition of
IL-6 internalization via the membrane-bound IL-6R (Nishimoto
et al., 2008). However, IL-6R internalization and degradation
rates were not altered by the binding of tocilizumab in vitro
(Fujimoto et al., 2015). Blockade of IL-6 biologic activity with
the help of IL-6R neutralizing antibodies has been approved in
many countries. The blockade of IL-6 activity is highly successful
and has been shown to be equivalent or superior to the blockade
of the cytokine TNFα (Gabay et al., 2013; Burmester et al.,
2017). Interestingly, we have shown that specific blockade of
IL-6 trans-signaling was as effective as the blockade of global
IL-6 activity by a neutralizing antibody indicating that IL-6
trans-signaling represents the pro-inflammatory IL-6 activity
(Scheller et al., 2011) whereas IL-6 signaling via the membrane
bound IL-6R was rather protective e.g., in the case of bacterial
infections (Sodenkamp et al., 2012; Hoge et al., 2013). Having
shown that the sgp130Fc protein protected mice in models of
inflammatory bowel disease (Atreya et al., 2000; Mitsuyama et al.,
2006) we could recently demonstrate the efficacy of the sgp130Fc
proteins in patients with Crohn’s disease and ulcerative colitis
(Schreiber et al., 2021).

During inflammatory states, IL-6 is secreted by many cell
types including myeloid cells, fibroblasts, endothelial cells and
T-cells (Kang et al., 2020) and the response to IL-6 stimulation
differs between cell types (Jones and Jenkins, 2018). In order
to define the cell specific response to IL-6 we have generated a
constitutively activated GP130 molecule, which was dimerized
by a leucine zipper (Stuhlmann-Laeisz et al., 2006) and inserted
this construct, which we termed LGP130, into the ROSA26 locus
of mice (Scherger et al., 2019). This mouse model allows to
activate GP130 signaling in a cell-autonomous manner in every

selected cell type by breeding these mice to appropriate Cre-
expressing transgenic mice (Haldar et al., 2007; Scherger et al.,
2019). This mouse model allowed us recently to define the
interplay of cell-autonomous, activated GP130 in hepatocytes and
a systemic innate immune response, which was likely triggered
by the hepatic GP130-induced expression of acute phase proteins
such as serum amyloid A (Schumacher et al., 2021).

THE LIFE-CYCLE OF IL-6 FAMILY
RECEPTOR COMPLEXES

Expression of IL-6 Receptor Proteins
Response to IL-6 family cytokines is largely determined by
the expression of the corresponding receptor complex proteins
and it was demonstrated that expression levels of IL6ST,
encoding GP130, and LIFR are controlled by epigenetic
mechanisms. Inhibition of histone H3 acetylation resulted in
elevated expression of IL6ST and LIFR in certain cell types
(Blanchard et al., 2002). The promoter region of IL6ST contains
several transcription factor binding sites, including those for
CCAAT/enhancer binding protein (C/EBP) β, SP1, STAT1/3
(O’Brien and Manolagas, 1997) and NFκB. It is therefore not
surprising that IL6ST expression can be induced by several
cytokines, including IL-1β, IL-6, IL-10, OSM, and IFNγ (Romas
et al., 1996; O’Brien and Manolagas, 1997; Blanchard et al., 2001)
that either induce STAT1, STAT3, or NFκB activity. Furthermore,
the mitogen-activated protein kinase (MAPK) ERK2 was found
to be associated with the IL6ST promoter and enhances
IL6ST expression most likely via phosphorylation of the SP1
transcription factor (Bonito et al., 2014). In isolated murine mast
cells, IL-10 strongly induced IL6ST expression and subsequently
GP130 surface localization and in consequence sensitivity of mast
cells toward WSX-1 (Traum et al., 2012). The designer cytokine
HyperIL-6 is also able to robustly induce IL6ST expression and
subsequent GP130 plasma membrane accumulation in isolated
aortic smooth muscle cells (Klouche et al., 1999).

Trafficking of Signal Transducing
Receptors
Receptors for IL-6 family cytokines are type I transmembrane
proteins. As such they are synthesized into the endoplasmic
reticulum (ER), undergo N-linked glycosylation with high-
mannose glycan structures and are subject of the ER quality
control (Figure 1B; Caramelo and Parodi, 2015). Upon ER exit,
glycan structures are modified within the Golgi before receptors
traffic to the plasma membrane. Full maturation and trafficking
of GP130 to the plasma membrane was demonstrated to occur
within one to four hours, depending on the cellular system
(Gerhartz et al., 1994; Wang and Fuller, 1995; Schmidt-Arras
et al., 2014). GP130 becomes N-glycosylated at several asparagine
residues within its extracellular domain (Moritz et al., 2001; Xu
et al., 2010). The attached glycans most likely assist in GP130
folding as mutation of N-glycosylation sites largely resulted in
localization of GP130 in a perinuclear compartment, most likely
the endoplasmic reticulum (Waetzig et al., 2010). Consequently,
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deficient GP130 glycosylation induced either via mutagenesis
or via pharmacological inhibition resulted in impaired cellular
sensitivity toward IL-6 family cytokines (Waetzig et al., 2010;
Matsuo et al., 2014).

In addition to glycosylation, trafficking of GP130 to the plasma
membrane is also hampered by premature intracellular activity
of GP130. Activating deletion mutations in IL6ST are found in
patients suffering from inflammatory hepatocellular adenoma
(IHCA). These deletions vary in size and cluster at the EF loop
of domain 2 (Figure 2A) that is part of the cytokine-binding
module of GP130 (Rebouissou et al., 2009; Schütt et al., 2013).
The surface localization of these constitutively active GP130
variants is largely lowered (Rinis et al., 2014; Schmidt-Arras
et al., 2014) due to prolonged association with the lectin-base
chaperone calnexin within the ER quality control (Schmidt-
Arras et al., 2014) that results in delayed GP130 maturation.
Similar observations were made for oncogenic constitutively
active receptor tyrosine kinases (Schmidt-Arras and Böhmer,
2020) and suggest that either altered ectodomain conformations
or downstream signaling pathways modify receptor processing
and trafficking to the plasma membrane.

Little is known about biosynthesis and trafficking of the signal-
transducing IL-6 family receptor members LIFR and OSMR.

Trafficking of Alpha Receptors
In polarized MDCK cells, the IL-6R is synthesized and
transported to the plasma membrane within one hour. During
the biosynthetic process, IL-6R becomes N-glycosylated at Asn
residues within the extracellular domain (Gerhartz et al., 1994;
Riethmueller et al., 2017). IL-6R glycosylation seems to be
dispensable for ligand binding and trafficking to the plasma
membrane (Riethmueller et al., 2017). In contrast, deletion of the
N-terminal Ig-like domain strongly reduces plasma membrane
localization of IL-6R most likely due to aberrant receptor
maturation (Vollmer et al., 1999). Four hours after synthesis
wildtype IL-6R becomes degraded independent of ligand-binding
(Gerhartz et al., 1994; Flynn et al., 2021), suggesting that similar to
GP130, internalization of IL-6R occurs independent of receptor
activity. The short cytoplasmic domain was shown to mediate
basolateral sorting in polarized MDCK cells and deletion of
the cytoplasmic domain resulted in apical rerouting of IL-6R
(Martens et al., 2000). In contrast, the close homolog, IL-11R
is present at both, basolateral and apical sides in MDCK cells
(Monhasery et al., 2016). Similar to IL-6R, the ectodomain of IL-
11R is subjected to N-linked glycosylation. However, in contrast
to IL-6R, glycosylation at Asn-194 seems to be essential for the
transport to the plasma membrane and substitution of Asn-
194 with alanine resulted in predominant localization to the ER
(Agthe et al., 2018b).

Aberrant Trafficking of Alpha Receptors
Due to Disease-Associated Mutations
Recently, inactivating mutations of IL-6R were identified in
two patients suffering from immunodeficiency and an abnormal
inflammatory response, associated with eosinophilia and elevated

IgE levels (Spencer et al., 2019). Both variants impaired IL-
6 signaling while signaling of other IL-6 family cytokines was
intact. While one of these variants did not integrate into the
plasma membrane due to a premature stop codon, the IL-
6R I279N substitution (Figure 2B) resulted in predominant
intracellular localization due to impaired trafficking to the
surface. It is possible that this variant is entrapped in the ER due
to folding defects in the extracellular domain.

Also in IL-11R, loss-of-function mutations (Figure 2B)
were identified in patients and found to be associated with
craniosynostis, a juvenile disease that causes premature closure of
skull sutures (Nieminen et al., 2011; Keupp et al., 2013). Some of
these mutations were shown to cause impaired IL-11R trafficking
to the plasma membrane thereby impairing cellular susceptibility
to IL-11 (Agthe et al., 2018a). Albeit the detailed mechanism
of retention has been addressed, it is likely that folding defects
in the IL-11R ectodomain result in prolonged association with
the ER quality control, resulting in the observed predominant
localization to the ER.

Also in LIFR and OSMR loss-of-function mutations were
identified. While LIFR mutations were associated with Stüve-
Wiedemann syndrome (Dagoneau et al., 2004), a rare disease
characterized by skeletal dysplasia, mutations in OSMR were
found in patients with primary localized cutaneous amyloidosis
(Arita et al., 2008). However, whether these variants have an
impact on receptor trafficking has not been addressed yet.

Mechanisms of Internalization
Engulfment into clathrin-coated vesicles is the most common
and probably best studied way of receptor internalization and
involves the recruitment of clathrin to heterotrimeric adaptor
protein (AP) complexes. The reader is referred to recent reviews
for further details (Le Roy and Wrana, 2005; Edeling et al., 2006;
Briant et al., 2020; Homma et al., 2021). Four different adaptor
protein complexes AP1-AP4 that promote formation of clathrin-
coated vesicles were identified. AP2 was shown to interact
with the cargo either via a Yxx8 motif or a [D/E]XXXL[L/I]
‘acidic di-leucine’ motif. It initially binds to membrane sites with
accumulated phosphatidylinositol (4,5)-bisphosphate (PIP2) at
the inner leaflet of the membrane (Figure 3A) which leads to a
conformational change exposing the cargo binding site (Owen
et al., 2004; Edeling et al., 2006). PIP2 also promotes binding
of the GTPase dynamin to the plasma membrane that catalyzes
pinching off of the endocytic vesicles (Briant et al., 2020).

The C-terminus of GP130 contains a STQPL786L787 di-
leucine motif (Figure 3A), that was shown to be essential
for efficient internalization of GP130. Substitution of both
leucine residues with alanine largely impaired internalization
and strongly delayed GP130 degradation (Dittrich et al., 1996).
Interestingly, the GP130 di-leucine motif was also shown to
mediate basolateral sorting of GP130 in polarized MDCK cells.
C-terminal truncation of GP130 led to apical sorting of GP130
(Doumanov et al., 2006). However, little is known if this sorting
mechanism also applies in vivo and in human cells. A similar
SRQFL1069I1070 di-leucine motif was identified in the C-terminus
of LIFR (Figure 3B) that is essential for LIFR internalization
(Thiel et al., 1999). GP130 was shown to be constitutively
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FIGURE 2 | (A) Mutations in GP130 that interfere with receptor maturation or receptor endocytosis. Activating deletion mutations in GP130 were found in
inflammatory hepatocellular adenoma and impair GP130 maturation. Frameshift mutations that lead to truncated GP130 molecules devoid tyrosine residues and
internalization motif are found in patients. (B) Mutations in the α receptor subunits IL-6R and IL-11R that impair receptor maturation to the plasma membrane. Point
mutations in IL-6R are found in patients with a novel immunodeficiency syndrome. Point mutations in IL-11R are found in patients suffering from craniosynostosis.
Prolonged residence of these mutants within the ER quality control is likely.

associated with the adaptor protein complex AP-2 (Figure 3A;
Thiel et al., 1998). Consequently, internalization of GP130 can
be blocked by inhibitors of clathrin or via inhibition of dynamin
(Schmidt-Arras et al., 2014; Martinez-Fabregas et al., 2019;
Flynn et al., 2021). Consistent with the finding that AP-2 is
constitutively associated with GP130, internalization of GP130
was demonstrated to occur independent of ligand-binding or JAK
activity (Thiel et al., 1998; Flynn et al., 2021).

A recent report suggested that GP130 internalization kinetics
depend on the half live of signaling receptor complexes. In
this study, the authors generated IL-6 variants that bind to
GP130 independently of IL-6R and with differential affinity
toward GP130. Using these variants, the authors demonstrate
that the half-life of cytokine/receptor complexes depend on the
affinity of the ligand toward GP130. Furthermore, they suggest
that long lived cytokine/receptor complexes display enhanced
internalization kinetics with localization to EEA1-decorated early
endosomes and enhanced degradation kinetics in RPE1 and HeLa
cells. The highest internalization rates in this study were found
for the HyperIL-6/GP130 complex. This is in stark contrast
to previous findings, where HyperIL-6 was found to induce

a stable long-lived receptor complex at the plasma membrane
of HepG2 cells that displayed reduced internalization kinetics
as compared to the IL-6/IL-6R/GP130 complex (Peters et al.,
1998). Furthermore, one of the engineered IL-6 variants that
had similar GP130 binding affinities as HyperIL-6 displayed
a significantly reduced internalization kinetic as compared to
HyperIL-6 (Martinez-Fabregas et al., 2019). It is therefore
possible that GP130 internalization rates are cell type-dependent
and dependent on the type of receptor complex formation.

Albeit Janus kinase activity and therefore GP130 tyrosine
phosphorylation is dispensable for GP130 internalization,
phosphorylation of Ser-782 that lies in vicinity of the di-leucine
motif was demonstrated to enhance GP130 internalization and
degradation. A S782A substitution resulted in enhanced cell
surface localization of GP130 (Gibson et al., 2000). While
LIF stimulation induced GP130 Ser-782 phosphorylation by
calmodulin-dependent kinase type (CAMK) II (Gibson et al.,
2000, 2005), Ser-782 becomes phosphorylated via p38-activated
MAPK-activated protein kinase (MAPKAPK) 2 downstream of
the pro-inflammatory cytokines IL-1β, TNF and IFNγ (Radtke
et al., 2010; Zha et al., 2017). As a consequence, GP130
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FIGURE 3 | Internalization of IL-6 family signal transducing cytokine receptors occurs via a di-leucin motif. Binding of the adaptor protein complex AP2 to this
di-leucin motif and to PIP2 at the inner leaflet of endocytosis-prone membrane areas initiates formation of clathrin-coated vesicles. The di-leucin motifs of GP130 (A)
and the LIFR (B) are shown. Serine phosphorylation in close vicinity to the di-leucin motif is mediated by cytoplasmic serine/threonine kinases and enhances
receptor internalization.

downstream signaling is abrogated. Cross-phosphorylation of
Ser-782 in GP130 downstream of pro-inflammatory cytokines
and subsequent enhanced internalization of GP130 therefore
represents a safe-guard mechanism to prevent exacerbated pro-
inflammatory signaling.

Similarly, internalization of LIFR is enhanced via ERK1/2-
dependent phosphorylation of Ser-1044 that lies upstream of
the di-leucine motif (Blanchard et al., 2000). Accordingly,
extracellular stimuli such as insulin and EGF enhanced LIFR
internalization (Schiemann et al., 1995; Blanchard et al., 2000).

Phosphorylation of GP130 Ser-782 and potentially also of
LIFR Ser-1044 is counterbalanced by the serine phosphatase
protein phosphatase (PP) 2A and inhibition of PP2A by okadaic
acid enhanced degradation of GP130 (Mitsuhashi et al., 2005).

Interestingly, mutations in IL6ST that lead to ligand-
independent GP130 activation resulted in differential localization
of GP130 to early endosomes, depending on the type of mutation
(Schmidt-Arras et al., 2014). Albeit Ser-782 phosphorylation of
these variants was not investigated in this study, it is possible
that either the amplitude of downstream signaling or receptor
ectodomain conformations modulate kinetics and routes of
internalization.

Most recently, IL6ST loss-of-function mutations (Figure 2A)
were identified in patients suffering from hyper-IgE syndrome
(Béziat et al., 2020). These mutations resulted in truncated GP130
variants I719 frameshift (fs) and T761fs lacking STAT3 binding
sites and the di-leucin motif. Consequently, these variants
displayed largely enhanced plasma membrane localization due
to impaired internalization. Interestingly, these GP130 variants
exhibited a dominant negative effect over wildtype gp130 in
particular on IL-6 and IL-11 signaling. Accordingly, these
mutations appeared to be monoallelic in all patients in this study.
The authors demonstrated that this effect was at least in part
due to sequestration of α receptors. However, it is also plausible
that heterodimerization of an inactive variant with wildtype
GP130 prolongs the dwell time of wildtype GP130 at the plasma
membrane therefore further impairing downstream signaling.

While internalization seems to occur ligand-independently,
lysosomal localization of GP130 was enhanced by IL-6 in
overexpressing HeLa cells (Flynn et al., 2021). Also in murine
CD4+ and CD8+ T-cells, IL-6 stimulation reduced plasma
membrane localization of GP130. Accordingly, GP130 was barely
detectable in IL-6/sIL-6R double transgenic mice that exhibit
constitutive GP130 signaling (Wang et al., 1998), indicating
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that GP130 phosphorylation and downstream signaling not only
enhances internalization but also induces GP130 degradation.

Degradation of GP130 can be mediated by both, lysosome
and proteasome. It was demonstrated that the E3 ubiquitin
ligase CBL is recruited to GP130 via the associated and tyrosine-
phosphorylated PTPase SHP-2. The subsequent trafficking of
GP130 to early and then late endosomes is mediated by
the sorting protein HGS/Hrs. This protein can engage the
ESCRT-0 complex that has been shown to mediate sorting to
the endosomal compartment (Vietri et al., 2020). GP130 is
subsequently degraded in lysosomes. Deficiency in c-Cbl or
HGS results in enhanced and prolonged IL-6 signaling (Tanaka
et al., 2008). However, this report did not investigate ligand-
independent internalization and degradation.

Independent of ligand-binding IL-6R and IL-11R are
endocytosed via clathrin-coated vesicles (Monhasery et al.,
2016). Beside internalization, α-receptors can be removed
from the cell surface via limited proteolysis (Müllberg et al.,
1993; Lokau et al., 2016). The ectodomain of both, IL-6R and
IL-11R can be proteolytically processed primarily by membrane-
bound proteases of the a disintegrin and metalloprotease
(ADAM) family (Zunke and Rose-John, 2017). While this
abrogates cytokine signaling in the donor cell, it enables trans-
signalling of GP130 in a paracrine fashion on neighboring cells
(Peters et al., 2000).

SIGNAL TRANSDUCTION AT
ENDOMEMBRANES

Under physiological conditions, signal transduction of
cytokine receptors is initiated at the plasma membrane
upon ligand binding. It has become evident that membrane
compartmentalization contributes to the regulation of receptor
activation. Lipid rafts are dynamic membrane microdomains
that are enriched in cholesterol, sphingolipids and GPI-anchored
proteins (Le Roy and Wrana, 2005). Due to its hydrophobic
nature and its planar and rigid structure, cholesterol favors
interaction with saturated lipids with polar headgroups such
as sphingolipids yielding the formation of dynamic nanoscale
lipid assemblies. Membrane proteins were shown to have
sphingolipid binding motifs. It was therefore speculated that
protein interaction with “raft lipids” facilitates assembly and
functionalization of ordered membrane rafts. Clustering of
membrane proteins such as GPI-anchored proteins were
shown to promote larger cholesterol-containing spatial and
temporal assemblies which are often stabilized by cortical actin
(Lingwood and Simons, 2010).

CNTFR but not LIFR and GP130 was shown to reside in the
plasma membrane inside lipid rafts in a neuroblastoma cell line.
However, upon CNTF but not LIF-stimulation, both, GP130 and
LIFR translocated to lipid rafts (Port et al., 2007). In multiple
myeloma cells, GP130 was found to be constitutively bound
to caveolin-1 that is associated with lipid rafts (Podar et al.,
2003). Interestingly, STAT1 and STAT3 were also found to be
pre-associated with lipid rafts (Sehgal et al., 2002). Disruption
of lipid rafts by methyl-β-cyclodextrin abolished IL-6 induced

STAT activation in these cells (Sehgal et al., 2002; Podar
et al., 2003), while it did not impair CNTF- or LIF-induced
STAT3 phosphorylation in neuroblastoma cells (Port et al.,
2007). It can therefore be concluded that residency of GP130
within membrane microdomains and the associated downstream
signaling depends on the type of the receptor complex and
the cellular context. However, further research is warranted
to clarify the mechanisms that regulate sorting of GP130 into
different microdomains and its consequences for downstream
signaling and biological outcome. Interestingly, also SOCS3 was
found to directly bind to caveolin-1 and regulate its stability.
Thereby caveolin-1 recruits SOCS3 independent of its SH2
domain. Surprisingly, genetic deficiency of caveolin-1 resulted
in enhanced STAT3 phosphorylation upon IL-6 stimulation
(Williams et al., 2018). Therefore, caveolin-1 mediates efficient
feedback inhibition of STAT3 activation at the plasma membrane.

Signaling of receptor molecules does not terminate at the
plasma membrane but can continue throughout the endocytic
pathway. There is compelling evidence that receptor tyrosine
kinases continue to signal from endomembranes, including the
endosomal compartment (Schmidt-Arras and Böhmer, 2020).
Also for the IL-6 family cytokine receptors an increasing number
of studies demonstrate continuation of signaling from within the
endosomal compartment (see below).

The notion that signal emission from endosomes involves
ER-endosome contacts stems from the observation that
dephosphorylation of several ligand-stimulated receptor
tyrosine kinases such as the epidermal growth factor receptor
(EGFR), c-Met and the granulocyte colony-stimulating factor
receptor (G-CSFR) is mediated by the ER resident protein
tyrosine phosphatase (PTP) PTPN1/PTP1B (Ostman and
Böhmer, 2001). This has been in particular demonstrated
for the EGFR, where internalized EGFR co-localized with
PTP1B at ER-endosome contact sites (Haj et al., 2002; Eden
et al., 2010). PTP1B was also identified as PTPase for JAK2
and Tyk2 (Myers et al., 2001) and as a regulator of leptin- or
G-CSF-induced STAT3 activation (Cheng et al., 2002; Zabolotny
et al., 2002; Palande et al., 2011). Downregulation of PTP1B
expression resulted in enhanced downstream signaling of GP130,
suggesting that inactivation of GP130 signaling also occurs at
ER-endosome contact sites (Figure 4A; Fukada and Tonks,
2003). However, experimental evidence for this assumption
is still lacking.

ER-endosome contact sites are established during the
maturation of the endosome and it is thought that the majority of
late endosomal (LE) vesicles are in contact with the ER (Raiborg
et al., 2015). ER-endosome contact sites are established through
interaction of the integral ER protein vesicle-associated protein
(VAP) A with endosomal membrane-associated proteins. Among
those, the cholesterol-sensing protein ORP1L is recruited to the
late endosome via direct interaction with the small GTPase RAB7
(Figure 4A; Raiborg et al., 2015).

Activation of STAT Proteins
Recruitment and activation of STAT proteins is a key signaling
event in IL-6 family cytokine receptors (Heinrich et al., 2003;
Rose-John, 2018) and plasma membrane recruitment of STAT3
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FIGURE 4 | Potential mechanisms regulating signaling of IL-6 family cytokine receptors at endosomes. (A) ER-contact sites might regulate JAK activity. The
ER-resident PTPase PTPN1/PTP1B was demonstrated to deactivate STAT signaling through dephosphorylation of JAK2 or TYK2. This might occur at ER-endosome
contact sites as was demonstrated for the EGFR. These contact sites are mediated via interaction of the integral ER protein VAP-L and the endosomal associated
protein ORP1L which is a RAB7 effector. (B) Selective and sustainable STAT activation at endosomal membranes. STAT proteins with high receptor affinity are readily
activated at the plasma membrane. Activation of lower affinity STAT proteins might depend on endosomal localization of the receptor. STAT activation by IL-6 family
cytokines at endosomes might be facilitated by the endosome-associated protein OCIAD1/ASRIJ and OCAID2. Recruitment of PYK2 to endosomes might prolong
STAT activation as was demonstrated for the EGFR and HGFR/MET. (C) Compartment-specific AKT activation. The generation of PIP3 occurs in two waves: a first
short peak at the plasma membrane and a second peak during clathrin-mediated endocytosis. Recruitment of PI3K isoforms to endosomes is mediated via RAB5.
Activation of AKT by IL-6 family cytokine might be facilitated by the endosome-associated adaptor protein APPL1 that helps to recruit inactive AKT.

to the activated IL-6 receptor complex has been observed
(Shah et al., 2006).

However, there are multiple indications that STAT activation
can occur from endosomes and might be initiated after cytokine
receptor internalization. A small fraction of STAT3 proteins were
found to be constitutively associated with early endosomes (Shah
et al., 2006) and it is therefore conceivable that internalized
receptors can activate STAT proteins in endosomes “en passant.”
The endosomal proteins OCIA domain-containing protein
(OCIAD) 1/ASRIJ and OCIAD2 are members of the ovarian
carcinoma immunoreactive antigen (OCIA) protein family. Both,
OCIAD1/ASRIJ and OCIAD2 directly interact with STAT3 at
endosomal vesicles (Figure 4B; Sinha et al., 2013, 2018). While
OCIAD1 facilitates STAT3 phosphorylation (Sinha et al., 2013)
OCIAD2 is essential for STAT3 activation (Sinha et al., 2018).

Activation of STAT1 and 3 downstream of the receptor
tyrosine kinases EGFR, platelet-derived growth factor
receptor (PDGFR)β and hepatocyte growth factor receptor
(HGFR/MET) was observed to occur exclusively from

endosomes (Bild et al., 2002; Kermorgant and Parker, 2008;
Sadowski et al., 2013; Parks and Ceresa, 2014; Jastrzębski et al.,
2017). Interestingly signaling outcome for HGFR/MET differs
depending on the localization of endosomal vesicles (Ménard
et al., 2014), further suggesting that contact of endosomal
vesicles to the ER modulates receptor signaling. Endosomal
STAT3 activation by EGFR and HGFR/MET is further enhanced
through the recruitment of the cytoplasmic tyrosine kinase
PYK2 to early endosomes, representing a positive feedback
loop to sustain endosomal STAT3 activation and to promote
epithelial-to-mesenchymal transition (EMT) and therefore
tumor invasiveness (Verma et al., 2015).

There is strong evidence that IL-6-mediated STAT3
phosphorylation requires endosomal localization of GP130.
Upon IL-6 stimulation, a large fraction of STAT3 is recruited to
endosomal vesicles (Xu et al., 2007; German et al., 2011) and
inhibition of clathrin-mediated endocytosis impairs GP130-
induced STAT3 phosphorylation (Xu et al., 2007; Schmidt-Arras
et al., 2014). Also STAT3 activation through co-trafficking of
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IL-6/IL-6R/GP130 complexes in intracellular compartments of
dendritic cells occurred at endosomes (Verboogen et al., 2018).
Along this line, inhibition of PP2A by okadaic acid blunted
STAT3 activation downstream of IL-6 stimulation and correlated
with reduced internalization and proteasomal degradation of
GP130 (Mitsuhashi et al., 2005). GP130 was also found to activate
PYK2, which might contribute to sustained endosomal activation
of STAT3 (Figure 4B; Schaeffer et al., 2001). In contrast,
inhibition of clathrin-mediated endocytosis did not block
OSM-induced STAT3 activation (Kermorgant and Parker, 2008).

Therefore, it is not absolutely evident if STAT proteins
are primarily activated from the endosome or from the
plasma membrane. There is evidence that receptor complex
stability, receptor phosphorylation/dephosphorylation kinetics,
and affinity of STATs toward phosphorylated receptor chains
determines localization of STAT activation. As an example, while
STAT3 activation by OSM occurred rapidly and independent
of internalization, STAT3 phosphorylation downstream of
HGFR/MET occurred exclusively in endosomes at a later
time point after stimulation. This observation correlated
with phospho-STAT3 signal strength: while OSM induces
strong STAT3 phosphorylation, phospho-STAT3 signals induced
HGFR/MET are rather weak (Kermorgant and Parker, 2008).
Furthermore, the decision on which particular STAT protein
becomes activated seems to be spatially regulated.

These observations might be explained in part by the affinity
of STAT SH2 domains toward a phosphorylated tyrosine residue
in the receptor complex. Due to the different nature of their
SH2-domains, STAT proteins possess differential affinity for
phosphorylated tyrosine residues at receptor molecules. While
STAT3 can bind to multiple phosphotyrosine residues in GP130,
the binding of STAT1 is more restricted (Heinrich et al.,
2003). In addition, STAT1 and STAT3 bind with different
affinities to phosphorylated GP130 (Wiederkehr-Adam et al.,
2003). As a consequence, STAT1 and STAT3 compete in
particular for phosphorylated Tyr-905 and to a lower extent
for phosphorylated Tyr-915 in GP130 (Heinrich et al., 2003;
Martinez-Fabregas et al., 2019).

A very recent report used engineered IL-6 variants with
variable affinity for GP130 that where independent of IL-
6R binding. The affinity of ligands correlated with receptor
complex dwell times and with internalization rates. As a
consequence, short lived receptor complexes induced a high
phospho-STAT3 to phospho-STAT1 ratio. Activation of STAT1
was lowered in intermediate affinity receptor complexes but
not low or high affinity complexes, when clathrin-mediated
endocytosis was impaired (Martinez-Fabregas et al., 2019).
This suggests that internalization of lower affinity complexes
enhances ligand-receptor dwell time and enables the low-affinity
binder STAT1 to get activated at endosomes. Unfortunately, the
impact of internalization on IL-6- or HyperIL-6-mediated STAT1
phosphorylation was not addressed in this study.

Activation of the Ras/MAPK Pathway
Similar to receptor tyrosine kinases, upon ligand-stimulation
at the plasma membrane, cytokine receptors induce several
signal transduction modules including the activation of the small

membrane-bound GTPase Ras and downstream activation of the
mitogen activated protein kinase (MAPK) cascade.

There has been agreement that activation of the small GTPase
RAS occurs at the plasma membrane. However, there is a
growing number of reports demonstrating that among the four
different RAS isoforms N-RAS, H-RAS, KRAS4A and K-RAS4B,
N- and H-RAS are also localized to endomembranes, including
the endosomes (Fehrenbacher et al., 2009). Activation of RAS
isoforms at endomembranes can vary in amplitude (Aran and
Prior, 2013) and have different biological outcomes (Daniels
et al., 2006; Matallanas et al., 2006). As an example, activation
of ERK downstream of EGFR activation initiates at the plasma
membrane but continues in endosomes, where the signal strength
is even increased (Anastasi et al., 2013).

IL-6 family receptors activate RAS and MAPK cascade by
two different mechanisms. Phosphorylation of Tyr-759 in GP130
and Tyr-974 in LIFR, respectively, leads to the recruitment
of tyrosine-protein phosphatase non-receptor type (PTPN)
11/SHP2. Subsequent phosphorylation of PTPN11/SHP2 creates
a binding site for GRB2/SOS and subsequent immediate
activation of RAS/MAPK pathway (Schiemann et al., 1997).
In contrast, phosphorylation of Tyr-861 in OSMR recruits
the adaptor protein SHC that gets phosphorylated and bound
to GRB2/SOS (Hermanns et al., 2000). PTPN11/SHP2 can
dephosphorylate GP130 (Lehmann et al., 2003), however its role
as feedback inhibitor is under debate (Dittrich et al., 2012).
However, GP130 Y759F substitution or genetic deficiency of
PTPN11/SHP2 results in hyperactivation of STAT3 (Tebbutt
et al., 2002; Jenkins et al., 2005; Bard-Chapeau et al., 2011).
Interestingly, inactivation of SHP2 catalytic activity by NADPH
oxidase (NOX) 1/4-induced ROS production downstream of
the PDGFR occurred on early endosomes. While it is known
that GP130 can activate the small GTPase Rac1 (Arulanandam
et al., 2010), little is known if this also leads to NOX activation
and ROS production.

Inhibition of dynamin-mediated internalization enhanced
ERK phosphorylation after short term stimulation with IL-6
(Schmidt-Arras et al., 2014), indicating that endocytosis blunts
the initial phase of GP130-mediated RAS/MAPK activation
at the plasma membrane. Sustained RAS/MAPK activation
downstream of GP130 needs the recruitment of the multi-
site docking protein GAB1 to GP130 via PTPN11/SHP2
(Bongartz et al., 2019). Interestingly, sustained RAS/MAPK
activation downstream of the EGFR is also mediated via
GAB1 and recruitment of GAB1 to EGFR occurred at early
endosomes (Kostenko et al., 2006). It is therefore likely,
that sustained RAS/MAPK activation via GAB1 downstream
of GP130 also occurs at endosomes. Further studies are
warranted to dissect GP130-dependent spatial RAS/MAPK
activation, resulting differences in signal quality and its
biological consequences.

The PI3Kinase Pathway
Beside STAT protein activation, activity of phosphoinositide-
3 kinase (PI3K) and phosphorylation of phosphoinositol
4,5,-bisphosphate (PIP2) to generate the second messenger
phosphatidylinositol 3,4,5,-trisphosphate (PIP3) is important
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for the biological effects of IL-6 type cytokines, in particular
GP130. As such, PI3K was shown to be essential for GP130-
induced pro-inflammatory signaling in endothelial cells (Morris
et al., 2008; Suzuki et al., 2011; Zegeye et al., 2018), or
tumorigenesis (Heinrich et al., 2003; Thiem et al., 2013;
Werner-Klein et al., 2020).

It is common knowledge that generation of PIP3 occurs
during clathrin-mediated receptor endocytosis due to RAB5-
mediated recruitment of PI3K (Zerial and McBride, 2001; Sato
et al., 2003). Generation of PIP3 occurs in two waves due
to differential recruitment of PIP3 phosphatases to endocytic
vesicles. Recruitment of PI3K to the plasma membrane induces
the occurrence of a short peak of PIP3 accumulation, which is
rapidly terminated by the PIP3 phosphatase SHIP2 just before
the clathrin-coated endocytic vesicles pinch off the membrane
(Figure 4C). Upon dissociation of the clathrin coat, receptor-
associated PI3K induces a second peak of PIP3. Endocytic vesicles
can fuse with a myriad of different types of endosomal vesicles.
One type of vesicles is decorated with the adaptor protein,
phosphotyrosine interaction, PH domain, and leucine zipper
containing (APPL) 1 (Naguib, 2016). APPL1 is a RAB5 effector
protein that directly interacts with protein kinase B (PKB)/AKT
(Mitsuuchi et al., 1999) and determines its substrate specificity
(Schenck et al., 2008). As such, APPL1 was demonstrated
to facilitate AKT activation downstream of the EGFR (Jones
et al., 2006) and the insulin receptor (Saito et al., 2007) on
endosomal vesicles (Figure 4C). While recruitment of class I
PI3Kα to activated receptor tyrosine kinases at endomembranes
is mediated via microtubule-associated protein (MAP) 4 and
microtubules (Thapa et al., 2020), the liver-specific class II PI3K-
C2γ directly interacts with RAB5 to mediate AKT activation
downstream of hepatic insulin signaling (Braccini et al., 2015).
Albeit APPL1 strongly interacts with PI3K in thymic T cells,
APPL1 is dispensable for AKT activation in these cells (Tan et al.,
2010, 2016). In contrast, HGFR/MET-induced AKT activation in
fibroblasts depends on APPL1 (Tan et al., 2016).

Unfortunately, only little is known about spatial regulation
of PI3K signaling upon IL-6 family receptor activation. Given
its dominant expression in T-cells and hepatocytes, it is possible
that GP130 employs RAB5 and APPL1 for PI3K activation and
endosomal membranes. There are indeed some indications that
GP130 induces PIP3-dependent signaling from endosomes. In
response to IL-6 stimulation, recruitment of PI3K regulatory
subunit p85 to GP130 occurs via phosphorylated GAB1 (Heinrich
et al., 2003). As outlined above, it is likely that GAB1 is
recruited to GP130 at endosomes. Furthermore, activation of the
mammalian target of rapamycin complex (mTORC) by GP130
requires PI3K activity (Thiem et al., 2013) and mTORC1 and
2 were found to be associated with endosomal vesicles and
the lysosome (Ögmundsdóttir et al., 2012; Ebner et al., 2017;
Marat et al., 2017). While accumulation of plasma membrane
PIP3 is linked to cellular migration (Devreotes and Horwitz,
2015; Yan et al., 2021), was mTORC activation shown to
mediate autophagy and survival (Kim and Guan, 2019). It
is therefore conceivable that differential spatial activation of
PI3K downstream of GP130 has differential biological outcomes.
Hence, detailed temporal and spatial analysis of GP130-induced

PI3K signaling is highly warranted, in particular dependent on
the cellular context.

CONCLUSION AND PERSPECTIVES

The concept of spatial regulation of intracellular signaling
has only recently emerged. While data on spatial signaling of
receptor tyrosine kinases is increasing, only little is known about
compartmentalization of cytokine signaling, in particular for IL-
6 family cytokine receptors and warrants further investigation.
Given the fact that biological outcome is dependent on
compartment-specific signaling (Daniels et al., 2006; Matallanas
et al., 2006; Martinez-Fabregas et al., 2019), a more detailed
knowledge on the mechanisms of spatial regulation of cytokine
receptor signaling would open up a new avenue for therapeutics
design. In this respect, it is not only interesting to answer the
question e.g., on the spatial activation of STAT proteins but to
investigate if compartment-specific signals alter signal quality.
As an example, kinetics of STAT activation might not only
determine nuclear shuttling rates but as a direct consequence
could alter on-off rates on STAT-responsive promoters and
therefore regulate expression of STAT-responsive genes in a
specific manner. A recent report has demonstrated that fine-
tuning of STAT3 resident time at STAT-responsive genes indeed
alters gene expression (Martinez-Fabregas et al., 2020). The
design of cytokine variants that favor particular compartment-
specific receptor signaling would be an elegant way for the design
of future therapeutics.

Targeting of the artificial LGP130 variant to different
subcellular compartments would allow to identify GP130-
initiated, compartment-specific signaling pathways independent
of ligand stimulation and without the need of receptor
endocytosis. When inserted into the ROSA26 locus, expression
of these variants could be initiated in a Cre-/Flp-recombinase-
dependent and cell type-specific manner. This would allow
analysis of the impact of compartment-specific signaling modules
on biological outcomes of a particular cell type.

In combination with the aforementioned novel designer
cytokines we would be able to fine-tune GP130 signaling
in preclinical disease models and open up the avenue for
novel therapeutics.
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