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Abstract Recent advances in genomic and post-genomic technologies have provided the opportu-

nity to generate a previously unimaginable amount of information. However, biological knowledge

is still needed to improve the understanding of complex mechanisms such as plant immune

responses. Better knowledge of this process could improve crop production and management. Here,

we used holistic analysis to combine our own microarray and RNA-seq data with public genomic

data from Arabidopsis and cassava in order to acquire biological knowledge about the relationships

between proteins encoded by immunity-related genes (IRGs) and other genes. This approach was

based on a kernel method adapted for the construction of gene networks. The obtained results

allowed us to propose a list of new IRGs. A putative function in the immunity pathway was pre-

dicted for the new IRGs. The analysis of networks revealed that our predicted IRGs are either well

documented or recognized in previous co-expression studies. In addition to robust relationships

between IRGs, there is evidence suggesting that other cellular processes may be also strongly related

to immunity.
-Kleine L).
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Introduction

Recent advances in genomic and post-genomic technologies
have provided the opportunity to generate vast datasets. How-
ever, the data stored in genomic databases does not itself pro-

vide an understanding of biological processes and has not
always been generated under biological conditions of interest.
Nevertheless, available data could be combined with own data

generated in-house for the biological condition of interest to
improve results and generate more confident biological conclu-
sions. The new challenge is to develop mathematical methods
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to assess biological problems or phenomena from a holistic or
system-level perspective and to use own and other information
available. Approaches to extract knowledge from genomic dat-

abases and combine these data with new experimental data
should allow the integration, interpretation and analysis of
genomic and post-genomic data and should represent the ac-

quired biological knowledge in the form of gene or protein net-
works showing functional/co-expression relationships or other
structured representation. This representation should reflect

relationships at the individual and categorical levels, which
would assemble genes/proteins of known, unknown and hypo-
thetical functions.

Several different approaches have been developed in recent

years to assess relationships between functionally known and
unknown genes/proteins through biological networks and pre-
dict new functions of genes/proteins, especially in humans [1].

These methods are often supervised and allow the integration
of multiple genomic data sources in different ways [2,3], thus
generating reliable and robust results, often including the pre-

diction of new protein functions [4]. Due to the specific and
complicated characteristics of genomic data, proper analysis
and generation of useful inference represent real mathematical

and statistical challenges.
Predictions of function are better conducted using methods

that allow the integration of prior knowledge (supervised
methods), the identification of non-linear relationships and

the fusion of heterogeneous genomic and post-genomic data.
Kernel methods [5] have these characteristics and among them,
kernel canonical correlation analysis (KCCA) can be useful in

relating proteins of known function with those of unknown
function to predict participation in processes of interest.
Earlier studies have reported the use of KCCA methods to

predict the functions of unknown proteins [4,6,7]. KCCA of-
fers a rigorous mathematical but also intuitive framework to
represent biological data through kernel functions [4,5].

KCCA provides a methodology for supervised network infer-
ence and does not require exhaustive data assumptions [8]. It is
therefore in contrast to alternative strategies such as Naı̈ve
Bayes (NB) models [9], which require regularization methods

and have challenges of computational efficiency in the presence
of many data sets [10].

Losses caused by plant pathogens represent one of the most

important limitations in crop production, which can compro-
mise the food supply [11]. Plant immunity depends on the rec-
ognition of conserved microbe-associated molecular patterns

(MAMPs) or strain-specific effectors by pattern recognition
receptors (PPRs) or resistance (R) proteins, leading to
MAMP-triggered immunity (MTI) and effector-triggered
immunity (ETI), respectively [11,12]. Upon recognition, plants

activate a complex network of responses that includes signal
transduction pathways, novel protein interactions and coordi-
nated changes in gene expression [13]. Detailed information

concerning specific and punctual interactions between effector
and resistance proteins has been accumulated in the recent
years; in some cases, a global picture for some of these interac-

tions has been established [9,14]. Immunity networks have
been described for model plants such as Arabidopsis and rice
primarily using yeast-two hybrid experiments [15,16].

In this study, we employed a kernel-based approach to
reconstruct functional relationships between genes based on
genomic and post-genomic data from various sources (primar-
ily extracted from databases but also produced by laboratory
experiments) for a group of well-characterized immunity-re-
lated genes (IRGs). We employed this approach to analyze
Arabidopsis and cassava (Manihotesculenta), a staple crop with

little genomic information available, following challenge with
bacterial pathogens. This approach allowed us to identify a
group of new IRGs in both species. Many of the identified

genes were of unknown function. Based on our further detailed
analyses and literature knowledge, we established a list of top
gene candidates potentially related to immune responses.

These results indicate that publically-available data can be
combined with in-house generated data using novel data-min-
ing methods to potentially answer challenging biological
questions.

Results

Exploratory analysis of categorical data

A total of 22 datasets were collected for Arabidopsis and cas-
sava (see Materials and methods section for more details).
Number of genes and the number of columns for each dataset

are listed in Tables S1 and S2. To obtain a preliminary archi-
tecture of the data, we conducted classical descriptive multi-
variate analyses using multiple correspondence analysis
(MCA), clustering and principal component analysis (PCA)

[17] as a first step to evaluate the data structure, reveal un-
known relationships and reveal clusters of genes potentially in-
volved in immune responses. Our results showed that no

groups of IRGs were clearly detected, indicating that func-
tional relationships cannot be extracted using linear descriptive
methods. Nevertheless, we were able to summarize the infor-

mation of microarray data with fewer variables using an
exploratory descriptive analysis. We found that most of the
information contained in the microarrays is correlated and
can be represented with two new variables (principal compo-

nents). Accordingly, only a small portion of genes have differ-
ent expression behaviors across experiments, which could be
new IRGs. Furthermore, we found that RNA-seq data con-

tains information that complements the microarray data.
These results are useful and indicate that expression data con-
tains valuable information to differentiate IRGs from non-

IRGs if a more appropriate method is implemented.
All in all, the exploratory analyses showed that IRGs can-

not be grouped together using only linear methods and meth-

ods such as KCCA (introduced in following section) are
desired. For details on the procedure and the results of explor-
atory analyses, see the Supplementary File 1.

Relationship between genes/proteins obtained using KCCA

Since linear relationships between gene expression variables
did not show any structure or pattern that allowed the group-

ing of IRGs based on either categorical or continuous data, we
used non-linear kernel methods to integrate both types of data
for extraction of relationships between genes. We used the

supervised KCCA method [6] to predict functional relation-
ships between genes. To do this, two reference datasets were
used in the KCCA, including the real reference dataset and a

random reference dataset of IRGs constructed by randomly
placing a similar number of IRGs from the real reference in
five categories to emulate five types of IRGs.



Table 1 Threshold and percentage of correct predictions using

KCCA

Reference

dataset

Arabidopsis Cassava

Correct

predictions (%)

Threshold Correct

predictions (%)

Threshold

Real 74 28.2 72 55.6

Random 61 53.0 57 77.5
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The KCCA allowed us to project the genes in a new space
and to assess distances between IRGs and other genes. We pre-
dicted ‘‘partners’’ or new IRGs per each known IRG. New

IRGs were identified when they were projected closer to
known IRGs with a chosen distance threshold (Table 1). This
procedure provided a network and therefore a list of partners

per IRG. Networks were drawn using Cytoscape 3.0 [18] for
Arabidopsis and cassava (Figure 1).

Some types of interactions in the networks were identified

(Figure 2). These include direct interaction between a known
IRG with another known IRG or newly-predicted IRG (Fig-
ure 2A). Indirect interaction between two known IRGs was
also observed via bridging effect of a newly-predicted IRG

(Figure 2B). In addition, ternary direct interaction among
known IRGs was also noticed (Figure 2C). The statistics of
these types of interactions are summarized in Table 2. KCCA

relationships and their interpretation showed differences be-
tween species. There are 19 partners on average for each
IRG in Arabidopsis and 30 in cassava. However, in Arabidop-

sis, IRGs were mainly connected to other IRGs, where as such
pattern was not observed in cassava. Moreover, the global
clustering coefficient for Arabidopsis was much higher than

that for cassava, showing high connectivity among IRGs.
The results obtained using random reference datasets showed
different patterns, compared to the real reference datasets of
IRGs. In both species, the average number of partners per
Figure 1 IRG networks for Arabidopsis and cassava

Network representation of functional relationships obtained for Arab

Cytoscape 3.0. Genes coding for LRR or Pkinase-domain-containing p

partners of each gene are shown.
IRG regarding the total interaction was much higher. In addi-
tion, 20,305 non-IRGs in Arabidopsis were predicted to be
partners of IRGs, which include almost all genes in this species

(approximately 27,000 genes in total). In cassava, a less dense
network was generated, possibly due to the low number of
microarray experiments that only cover a small spectrum of

conditions. These results indicate that our method showed
higher selectivity with real datasets than with random datasets,
thus the identified interactions would be unlikely random but

instead specific.
The average degree of the nodes and the global clustering

coefficients are plotted in Figure 3. High level of connectivity is
detected when an IRG is excluded from the network and both

the average node degree and clustering coefficient decrease
(large downward peaks for the same IRG). According to our
analysis, some IRGs and their predicted neighbors are highly

connected with each other. IRGs that have a low number of
partners (small downward peak in Figure 3, left panels for aver-
age node degrees) and belong to many triplets (large downward

peaks in Figure 3, right panels for clustering coefficients) are
thought to have highly specific interactions to form small clus-
ters. In contrast, IRGshavingmanypartners (large peaks inFig-

ure 3, left panels) could be identified as hubs in the network.
Median (middle line) in boxplots in Figure 3 shows thatArabid-
opsis IRGs (top panels) have fewer but more highly intercon-
nected partners than cassava IRGs (bottom panels).

Common features in the predictions for both species

Fisher’s exact test [19] was applied and it allowed us to identify

89 and 87 GO terms that were overrepresented in the networks
from Arabidopsis and cassava, respectively. Among them, 61
terms were overrepresented in both networks, suggesting that
the genes identified in both plants are functionally similar.

The most overrepresented terms in both networks included
various types of kinase activity, stress responses, immune re-
sponses and processes related to cell death. However, these
idopsis (A) and cassava (B). Representations were plotted using

roteins were excluded from representation. Only the top five closest



Figure 2 Types of interactions in IRG networks

There are mainly three types of interactions between genes,

including simple interactions (A), indirect interaction (B) and

triplets (C).
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data should be taken with caution, since some genes sharing

the same GO category could be orthologous genes.

Analysis of predicted relationships in Arabidopsis

We then focused on some of the most important IRGs and

performed a detailed analysis of the predicted partners of 12
well-known IRGs described in the literature and gene network
databases (Table 3). Based on the data, we were able to show
that BRI1, for example, is one of the partners of BAK1. BAK1

is a regulator of the tradeoff between immunity and responses
to hormones [20] and a co-receptor of FLS2 that triggers plant
immunity after the recognition of flagellin [21]. Interestingly,

previous studies indicated that BAK1 interacts with BRI1, a
Figure 3 Average degree and clustering coefficient for Arabidopsis an

Average node degree (left panels) and clustering coefficient (right pane

for Arabidopsis (A, B) while the network analysis for cassava is show

removing one IRG at each step. The negative peak appears when a h

Table 2 Statistics of the networks reconstructed from KCCA

Dataset Species No. of IRGs in

the network

No. of new IRGs

(predictions)

Ratio Aver

With

Real Arabidopsis 1606 6085 1:4 5

Real Cassava 2272 3340 1:2 2

Random Arabidopsis 1606 20,305 1:13 11

Random Cassava 2272 1464 2:1 100

Note: GCC stands for global clustering coefficient.
receptor for the growth hormone brassinosteroid [22].
Therefore, our prediction is strengthened with the biological
data reported in the literature. Similarly, we found that

CLV2 was among the top 10 partners for CLV1. CLV1 is a
receptor kinase expressed in the center of the shoot apical mer-
istem and interacts with CLV2 and other proteins to control

meristem development [23]. Furthermore, a link between mer-
istem development and plant immunity in the shoot was re-
cently established [24]. A third example is extracted from the

partners of CERK1. CERK1 is achitin receptor that triggers
a response to fungi [25]. Arabidopsis plants expressing a mu-
tant CERK1 also exhibited compromised resistance to bacteria
[26]. Among the top 10 partners for CERK1 are the genes

NDF4 and GSTL2, which code for an electron carrier and a
glutathione S-transferase, respectively. The expression of these
two genes is co-regulated, as reported in the CoEXpression

network [27]. GSTL2 is a protein involved in the redox balance
and the metabolism of reactive oxygen species (ROS), which
are central to plant immunity. Besides, ROS production is

one of the primary responses mediated by CERK1 [25].
In addition to analyzing the data presented in the literature,

we also searched for the functions of the top 10 partners

through BLASTX to complement the information about rela-
tionships of predicted IRG partners. Based on BLASTX re-
sults, a putative function in the immunity pathway was
d cassava networks

ls) are shown in plot and boxplot. The top panels indicate the data

n in the bottom panels (C, D). Both variables were calculated by

ighly connected or clustered IRG is removed from the network.

age No. of interactions per IRG Total No. of

interactions per IRG

GCC (·10�4)

other IRGs With new IRGs

14 19 7

28 30 1

137 148 39

65 165 224



Table 3 A selection of well-known Arabidopsis IRGs described in the literature and gene network databases

Name of IRG ID of IRG Summary The 10 closest partners

RPS2 AT4G26090 Confers resistance to Pseudomonas syringae

strains that carry the avirulence gene avrRpt2

AT3G28620, TRFL1, ATCG00570,

ATATG18G, DREB1A, PDF1A, AT3G46070,

ACOS5, AT1G61190, AT4G08850

RPM1 AT3G07040 Confers resistance to Pseudomonas syringae

strains that carry the avirulence genes avrB

and avrRpm1

AT1G72580, AT5G11700, AT3G06035,

ATCNGC7, AT4G00940, AT3G56130,

VPS28–2, HAP13, CRA1, scpl29

WRKY31 AT4G22070 Member of WRKY transcription factor

family; group II-b

AT3G27090, anac052, AT3G51050, NBP35,

ATEXO70E1, AT1G14150, AT2G03500,

AT3G14800, AT4G18250, AT5G39020

MPK9 AT3G18040 Expressed preferentially in guard cells and

appears to be involved in reactive oxygen

species-mediated ABA signaling

AT3G06610, AT3G13980, IQD12,

AT3G05280, HCF153, AT3G46610, ERF1–2,

AT2G41820, AT5G09890, AT4G31110

BAK1 AT4G33430 Leucine-rich receptor serine/threonine protein

kinase; component of BR signaling that

interacts with BRI1 in vitro and in vivo to

form a heterodimer

AT5G01350, AT4G03820, AT4G33780,

AT1G23280, SPK1, SULTR3;2, AT4G37090,

AT5G56790, AT3G22800, BRI1

WRKY33 AT2G38470 Regulates the antagonistic relationship

between defense pathways mediating

responses to P. syringae and necrotrophic

fungal pathogens

AT1G52100, AT1G19370, AT1G77090,

AT1G76070, DegP13, ATRER1A,

AT1G57570, AT1G36980, AT5G58790,

AT5G47435

FLS2 AT5G46330 LRR receptor-like serine/threonine-protein

kinase, recognizes peptide from flagellin

AT5G61520, AT1G47710, AT5G65960

CERK1 AT3G21630 LysM receptor-like kinase; essential in the

sensing and transduction of the chitin

oligosaccharide elicitor

AT2G18720, AOX1A, AT3G07020,

AT4G03153, AT1G72430, NDF4, ATPANK1,

GSTL2, AT2G30940, AtRLP24

CLV1 AT1G75820 Putative receptor kinase with an extracellular

leucine-rich domain. Controls shoot and

floral meristem size

AT1G72070, AT5G17760, UBC9,

AT5G26360, CLV2, AT4G09150,

AT1G63280, AT2G33600, AT3G43890,

AT1G24650

RPS4 AT5G45250 TIR-NBS-LRR class disease resistance

protein

APX3, BAM1, AT1G20530, ATKDSA2

ER AT2G26330 Homologous to receptor protein kinases;

contains a cytoplasmic protein kinase

catalytic domain, a transmembrane region

and an extracellular LRR

AT2G20110, TUBG1, TSD2, AT4G04170,

AT2G38000, AT1G17210, AT3G06540, SWI2,

AT1G63110, AT2G21160

RPP13 AT3G46530 Confers resistance to the biotrophicoomycete,

Peronosporaparasitica; encodes an NBS-LRR

type R protein with a putative amino-terminal

leucine zipper

CRF1, AT2G25610, AT1G18700,

AT2G47970, AT2G34300, NUB, AT5G37570,

AT5G43680, BZIP34, AT5G47250

Note: The summary of IRGs was obtained from NCBI (http://www.ncbi.nlm.nih.gov/guide/genes-expression/).
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assigned to 51 of 107 predicted partners in Arabidopsis (see
Supplementary File 2). This information is also useful to filter

the partners and to select the best ones for future experiments
that employ the corresponding Arabidopsis mutants. The
BLASTX results allowed us to reinforce the results of our pre-

dictions. An example is given for RPS2. RPS2 is a very well-
known NBS-LRR resistance protein that mediates resistance
to strains of Pseudomonas syringae expressing the avirulence

protein avrRpt2 [28]. We identified important genes that are
related to plant immunity among the top 10 partners for this
particular R gene. These include ACOS5, transcription factor
DREB1A and AT1G61190, an NBS-LRR-coding gene.

ACOS5 is a protein carrier involved in the reinforcement of
the cell wall and in vesicular trafficking [29]. Vesicular traffick-
ing is proposed to transport specific enzymes involved in the

production of compounds such as 1,3 b-glucans to reinforce
the cell wall and prevent colonization by the pathogen
[29,30]. In addition, DREB1A is involved in the response to

dehydration and in the response of Arabidopsis to Hyalopero-
nospora arabidopsidis [31], indicating that this protein plays a
role in responses to both biotic and abiotic stresses. In addi-
tion, AT1G61190, an NBS-LRR-coding gene was also among

the top 10 partners of RPS2, suggesting a network connection
between proteins of this large class of resistance proteins.

Analysis of predicted relationships in cassava

We analyzed the predicted IRGs in cassava to identify their
roles in defense. In particular, we analyzed the gene RXam2
(cassava4.1_031234 m), which is an NBS-LRR gene that colo-

calizes with a quantitative trade loci (QTL) associated with
resistance to Xanthomonas axonopodis pv manihotis [32,33].
RXam2 was predicted to be associated with a serine-threonine

protein kinase (cassava4.1_027765), an NAD-dependent epi-
merase (cassava4.1_023284) and a transcription factor (cas-
sava4.1_014914). Associations with this type of gene were
commonly found for known immunity genes in Arabidopsis.

Six of the Arabidopsis partners analyzed in detail were associ-
ated with transcription factors and serine threonine kinases,
and among them, CLAVATA was associated with an NAD-

dependent epimerase. These interactions suggest that RXam2

http://www.ncbi.nlm.nih.gov/guide/genes-expression/
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could be involved in pathways in cassava that are similar to
those in Arabidopsis (Supplementary File 3).
Discussion

We were able to gather a large amount of genomic and post-

genomic information from public and private databases on
both Arabidopsis and cassava, with each dataset represented
as a kernel matrix to apply KCCA. In the newly-projected

space, we calculated relationships between IRGs and other
genes to predict a potential IRG network. We showed, after
a functional analysis, that these relationships are useful as a
starting point to predict potential IRGs or genes coding for

proteins strongly related to immune processes in both plant
species.

The quality of genomic information depends primarily on

genome annotation and the connection of this information
to other databases, including literature data. The data on the
model plant Arabidopsis are much more reliable than the data

on cassava due to more genomic data available and better gen-
ome annotation. The quality of predictions and the ability to
interpret them biologically also depends on the quality of the
data. The level of confidence in the predictions, independent

of the estimated statistical error, is higher for Arabidopsis. Pre-
dictions for Arabidopsis can be verified and explored to gener-
ate biological hypotheses for validation, although predictions

for cassava should be taken more cautiously. Nevertheless,
the predictions and findings for cassava are very valuable be-
cause they constitute one of the first predictions for this plant

species.
The quantity of data is often directly proportional to the

amount of redundancy found in the databases [17], which

can be observed in the preliminary cluster analysis and
PCA. In both cases, the original variables were reduced
more efficiently for Arabidopsis than for cassava, suggesting
that variables of Arabidopsis are more correlated. In the

PCA we found that microarray and RNA-seq data behave
orthogonally, meaning that, for the same genes, the gene
expression levels measured using these two techniques are

different. Although very few RNA-seq experiments were
used, this result could indicate that these gene expression
measurements are indeed complementary and do not contain

the same type of information. RNA-seq is a novel strategy
to obtain information about gene expression, and although
not much information has been generated by this strategy,

some data suggest that there is not a direct relationship be-
tween the data from microarrays and the data from RNA-
seq. The percentage of information obtained by the linear
PCA was more or less maintained in the KCCA, where

RNA-seq was calibrated to a weight of 0.01, in contrast to
the microarray data, which had a weight of 0.6. The applied
procedure suggests that the reconstruction of biological net-

works is successful when data from different sources are
used but it is important to weigh the importance of each
variable.

We investigated the importance of the reference category by
conducting predictions based on a random reference category.
We obtained �61% of correct predictions (Table 1) when the
random reference was used in Arabidopsis. Accordingly, the

predictions are almost random and less accurate when a ran-
dom category is used.
Other studies [15,16,27] have shown that the accuracy of
functional predictions is relatively high. For example a rice
network proposed by Lee and colleagues [16] allowed the pre-

diction of 14 genes involved in XA21-mediated immunity, and
3 of which were in fact validated biologically to be important
for plant defense against Xanthomonasoryzae pv. oryzae. Here

we obtained a prediction precision of five new genes among the
top 50 candidates for each biological process. For Arabidopsis,
a pathogen stress network modeled by Atias et al. [27] was the-

oretically validated through GO enrichment and a cluster was
revealed, in which 8 of 45 genes were associated with the ‘‘re-
sponse to biotic stimulus’’ and ‘‘defense response’’ GO terms.
Additionally, Mukhtar et al. [15] experimentally validated 9 of

18 proteins predicted to be targets of effectors from two patho-
gens for Arabidopsis. Although our strategy was different, we
expect that a relatively high percentage of the predicted genes

in this study are most likely important in plant immunity.
The overall shape and topological features of the obtained

IRG networks were different between Arabidopsis and cassava.

The average number of interactions between IRGs was higher
in Arabidopsis than in cassava (Table 2). Furthermore, in Ara-

bidopsis, a higher global clustering coefficient of IRGs was ob-

served (Figure 3C and D). These data could have a biological
meaning suggesting that genes involved in immune processes
are a much more defined group in Arabidopsis and other cellu-
lar functions (i.e., metabolic functions) are less involved in im-

mune processes in Arabidopsis than in cassava. Thus, in
cassava, the IRGs seem to be connected with more non-IRGs.
Nevertheless, this conclusion needs to be used with caution,

since it could be due to the lack of information on non-IRGs
in cassava.

Some summary statistics were calculated when each IRG

was removed from the network (Figure 3). The relatively fewer
negative peaks for degree of nodes are an indicative that Ara-
bidopsis network seems to have fewer hubs than cassava net-

work, while IRGs from Arabidopsis appear to be better
clustered than in cassava as shown by the higher clustering
coefficient. Again, biological explanations of these topological
differences should be taken cautiously. Effector proteins are

directed to hubs of plant immunity networks [15]. Conse-
quently, an interpretation is that Arabidopsis network has few-
er hubs but removing of them as is done using the tolerance

algorithm does not obviously affect the overall connectivity.
Thus, the immunity network in Arabidopsis might be consid-
ered as a robust or tolerant network against attacks, where

other IRGs can be imputed the same functional relationships
of those IRGs suppressed. On the other hand, the clustering
coefficient of the cassava network is reduced when IRGs are
removed. Therefore, immunity processes in cassava could be

more vulnerable to be fragmented when hubs are preferentially
attacked.

In-depth analysis of for 12 well-known IRGs and their pre-

dicted interaction partners in Arabidopsis yielded interesting
findings. Our results indicate that strong relationships between
IRGs exist and that other cellular processes are also strongly

related to immunity. Partners either well documented or pro-
posed in previous co-expression studies were verified by our
predictions. The putative functions of some partners were rec-

ognized inside the immune pathway based on BLASTX
searches and biological annotations.

The methodology applied in this study allowed constructing
networks which would be useful for functional prediction in
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Arabidopsis and cassava. Although the data quality was very
different from the beginning, predictions in both species would
facilitate generating new biological hypotheses for further

investigation.

Materials and methods

Construction of genomic datasets

A reference dataset of IRGs was constructed with the genes
coding for canonical immune protein domains (WRKY,
TIR, NBS, kinase and LysM). These domains were

downloaded from Pfam [34] and searched in the proteomes
of Arabidopsis and cassava. HMM search [35] was used to
examine the occurrence of these domains using an e-value

of 1E-10 and the default parameters [36]. The reference data-
set for Arabidopsis was complemented with a graph of 119
IRGs extracted from BAR (http://bar.utoronto.ca/welco-

me.htm). To test the reliability of the reference dataset, we
constructed a random reference dataset by randomly assign-
ing genes to five non-sense categories (emulating five types of

IRGs).
Other genomic datasets were obtained as follows. Catego-

ries obtained from KEGG (http://www.genome.jp/kegg/)
were used to construct a dataset indicating the participation

of a gene product in all metabolic categories from this data-
base. The cellular localization of the proteins was assessed by
searching the proteomes of Arabidopsis and cassava for sig-

nal peptides using the program TargetP, including ChloroP
and SignalP [37]. The assigned GO ID (gene ontology),
KOG ID (eukaryotic orthologous groups) and PfamID

(protein families) for proteins of both species were queried
using a BioMart tool accessible from the Phytozome project
version 7.0 (http://www.phytozome.net). GO annotations for
cassava are not currently available. Data for experimentally

validated miRNA target genes from Arabidopsis were
obtained from the MPSS Arabidopsis PARE Database [38].
Target genes for the identified miRNAs in cassava were

obtained from predictions made by Pérez-Quintero and
colleagues [39]. Sequences up to 1000 nucleotides upstream
of each identified cassava and Arabidopsis gene was extracted

from the Phytozome database v7.0 (www.phytozome.net) for
identification of transcription factor binding sites (TFBS) as
described by Megraw and Hatzigeorgiou [40] using Java

scripts.

Construction of post-genomic datasets

The Arabidopsis microarray dataset related to pathogen resis-

tance was obtained by downloading GEO datasets, which
are publicly available at the National Center for Biotechnology
Information (NCBI) website (http://www.ncbi.nlm.nih.gov/).

In addition, genes present in these datasets were assessed with
the TAIR gene annotation (also publicly available at http://
www.arabidopsis.org). A total of 51 datasets related to patho-

gen resistance were collected for analysis (see Supplementary
File 3). The cassava microarray dataset was obtained from a
previous study [41].

The RNA-seq data for Arabidopsis were generated at the
Ohio State University using libraries obtained from Arabid-
opsis plants (wild-type Col-0 (C) and the R-gene mutant
(rps4–1)). Plants were either hand-inoculated with Pseudo-
monas syringae pv phaseolicola strain NPS3121, which ex-
presses the AvrRps4 resistance protein recognized by

RPS4, at 1 · 108 CFU/mL [42] or mock inoculated and
plant stem tissues were collected at three different time
points post-inoculation (6, 12 and 24 h). RNA-seq data

for cassava were generated by the Manihot Biotech re-
search group at the Universidad Nacional de Colombia
(Muñoz et al., unpublished) using libraries obtained from

cassava leaf tissues inoculated with Xanthomonas axonopo-
dis pv manihotis (Xam) or a Xam strain lacking the TAL
effector, TALEXam1.

The quality of RNA-seq libraries was evaluated using Fast-

QC and in-house Perl scripts (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc/). Reads were unpaired
and 50 bp in length. Adapters and reads containing ‘‘N’’s were

removed. Reads with more than 50% of their bases having
Phred scores lower than 30 were also removed.

Sequencing reads were mapped onto coding sequences from

the respective plant genome obtained from Phytozome v7.0
(www.phytozome.net) using seq-map [43] with no mismatches,
and the final expression values (RPKM) for each gene were ob-

tained using R-seq with default parameters [44]. RPKM values
were used for the network.

Data preprocessing

Microarray and RNA-seq RPKM data were normalized using
the R [45] vsn library through the glog transformation pro-
posed by Huber [46].

Kernel canonical correlation analysis

Kernel canonical correlation analysis (KCCA) uses kernels

(similarity matrices between objects, here genes) for each type
of data to conduct a regularized canonical correlation analysis
[5]. We used polynomial kernels for categorical data, Gaussian

radial basis function (RBF) kernels for continuous data and
diffusion kernels for graphs as described previously [4,6].
The sigma parameters for the RBF kernel, regularization for
the diffusion kernel and degree for the polynomial kernel were

obtained by leave-one-out cross validation following Yamani-
shi et al. [6] (Tables S1–S3).

To combine genomic data, we fused kernels by weighted

addition [6]:

K ¼ w1K1 þ w2K2 þ :::þ wiKi; ð1Þ

where Ki denotes the kernel and wi denotes the weight of each
kernel. The weights must add up to 1 to preserve the value on

the diagonal of the final kernel.

KCCA was conducted and their parameters were obtained
by cross validation (Tables S3, S4 and S5). We calculated dis-

tances between genes in the new space obtained by KCCA.
Gene ‘‘predictions’’ were retained when they were under a cho-
sen distance threshold, which was calculated as the 25% of the
maximum distance between IRGs (Table 1).

A theoretical percentage of correct predictions was calcu-
lated with the KCCA results (Table 1). The percentage re-
flects how closer the IRGs in the new space are. Therefore,

a high percentage is an indicative that KCCA accurately

http://bar.utoronto.ca/welcome.htm
http://bar.utoronto.ca/welcome.htm
http://www.genome.jp/kegg/
http://www.phytozome.net
http://www.phytozome.net
http://www.ncbi.nlm.nih.gov/
http://www.arabidopsis.org
http://www.arabidopsis.org
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.phytozome.net
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reconstructs the functional relationships between IRGs. The
percentage was calculated as follows. (i) The distances be-
tween genes were arranged in increasing order and ranked.

For example, if 100 genes (30 IRGs and 70 other genes) were
projected in the new space, we calculated and ordered the
10,000 distances between them. (ii) A rank threshold for

IRGs distances was assessed. For example, 900 distances
were obtained if 30 IRGs were projected and thus, the rank
threshold is 900 in this example. (iii) The distances between

IRGs that were under the threshold rank were considered
correct. For example, if only 90 distances between IRGs were
found under the rank of 900, we concluded that 10% of the
predictions were correct.

All of the IRGs and their partners under the chosen dis-
tance threshold (Table 1) were assumed to be part of a net-
work. Genes were represented by nodes, which were joined

by edges. These edges were obtained by using the KCCA.
The network was described by an adjacency matrix A:

A ¼ ðau;vÞ ð2Þ

where u and v are two genes, and au,v = 1 if and only if u and v
are joined by a prediction; in other cases, au,v = 0.

From the adjacency matrix, the average node degree was

assessed [47]:

�degðvÞ ¼ 1

nv

X

A

au;v ð3Þ

where nv is the number of genes in the network.

The global clustering coefficient (CC) was used to deter-
mine how many IRGs are clustered together based on IRG
triplets:

CC ¼ 3 � nD

nIRG
ðnIRG�1Þ

2

ð4Þ

where nIRG is the number of IRGs and nD is the number of
triplets formed only by IRGs.

To determine whether the cassava network had features

similar to that of the Arabidopsis network, a singular
enrichment analysis (SEA, Fisher’s exact test, P < 0.005)
was performed to identify overrepresented GO terms in the

sets of genes related to resistance in the genome using
AgriGo [19].

Through a bibliographic search using PubMed, the

functions of 12 well-known IRGs and their 10 closest partners
were established. In addition, a search for co-expression
networks in the public Arabidopsis databases ATTED-II [48],
CoEXpression [27] and GeneCat [49] was carried out. A

BLASTX search of the first 10 predicted partners was
performed.
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