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Abstract

Long-term blood pressure variability (BPV) is a risk factor for cardiovascular diseases,

dementia, and stroke. However, its genetic architecture is not fully understood. This

study aims to explore its genetic factors andprovidemore evidenceon themechanisms

and further pathological study of BPV. The genome-wide association study (GWAS) is

based on theUKBiobank cohort. Therewere four data collection rounds from 2006 to

2020, and 9370participantswithmore than three blood pressuremeasurementswere

included. They had a median age of 55 and a male percentage of 50.1%. The pheno-

types (BPV) were calculated by four methods and the genetic data contains 6 884 260

single nucleotide polymorphisms (SNPs) after imputation and quality control. A linear

regression model was performed with adjustments for sex, age, genotype array, and

a significant principal component. Subgroup analysis was performed on hypertension-

free participants. The significant and suggestive significant P thresholds were set as

5 × 10−8 and 1 × 10−6. Six genetic loci (BAD, CCDC88B, GPR137, PLCB3, RPS6KA4 for

systolic BPV, and WWC2 for diastolic BPV) were identified by coding region SNPs at

the suggestive significant P threshold (1 × 10−6). Among them, gene CCDC88B and

RPS6KA4 reached the significant P threshold (5 × 10−8), with the strongest signal of

SNP rs1229536170 (P = 6.36 × 10−8, β = –.29). The annotation results indicate that

genes CCDC88B, GPR137, RPS6KA4, and BAD are associated with long-term SBPV.

Their functions of inflammation, epithelial dysfunction, and apoptosis are related to

artery stiffness, which was reported as potential mechanisms of BPV.
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1 INTRODUCTION

Blood pressure variability (BPV) means the variation between dif-

ferent blood pressure measurements during a period, such as hours,

days, months, or years.1 Accumulating evidence demonstrated that

BPV might contribute to end-organ damage (EOD) independent of

blood pressure levels,2–4 increasing the risk of cardiovascular dis-

ease, cerebrovascular disease, and dementia.5–8 In clinical settings, the

necessity of hypertension treatment was widely accepted for prevent-

ing EOD and avoiding consequent lethal complications associatedwith

hypertension,9 while BPV is seldom considered. However, observa-

tional studies suggested that hypertensive persons with high BPV had

a higher risk of EOD,10 and some animal studies indicated that BPV

might play a more critical role than blood pressure level in EOD.2–4

Both genetic and environmental factors can influence BPV,11 while

exploration of the genetic factors of BPV is challenging due to the com-

plex requirement of obtaining longitudinal bloodpressure readings and

genetic sequences on the same population. To the best of our knowl-

edge, several GWAS studies focused on the time-age changing of blood

pressure,12 ,13 and only oneGWAS study explored the genetic factor of

BPV.14 Itwasperformed in2013basedon theAnglo-ScandinavianCar-

diac Outcome Trial study, with a sample size of 3802 and a phenotype

of Variation Independent of Mean (VIM, calculated by fitting a model

for SD of blood pressure and mean blood pressure for all individu-

als), identifying 17 correlated single nucleotide polymorphisms (SNPs)

within geneNLGN1 on chromosome 11.

The UK Biobank is a prospective cohort study conducted in the

United Kingdom with four rounds of data collection between 2006

and 2020. Blood pressure readings and genotyping data were included

in the UK Biobank cohort. This GWAS was conducted based on

UK Biobank data to identify the significant genetic variants and

related genes that determine blood pressure variation. To better tar-

get the causal SNPs, downstream fine-mapping methods were also

performed.15 Functional annotation and expression quantitative trait

loci (eQTLs) analysis were included in this study to understand better

the role of genetic variants in the biological mechanisms of BPV. This

study aims to explore the genetic factors of BPV and provide insight

into further pathological and therapeutic studies of BPV.

2 METHOD

2.1 Data source and study setting

The analysis relied on the UK Biobank datasets (approved applica-

tion number: 65563). The UK Biobank is a prospective cohort study

conducted in the United Kingdom. More than 500 000 people aged

from 40 to 69 years old were recruited from England, Scotland, and

Wales between 2006 and 2010 and underwent a range of surveys,

physical measurements, and chemical tests. Blood, urine, and saliva

were also collected. There were four rounds of data collection, and

the median dates of four visits were January 2009, January 2013, May

2018, and February 2020. Genotyping was based on the UK BiLEVE

array (50 000 participants) and the UK Biobank Axiom array (450 000

participants).

During each visit, the resting blood pressure was measured by

Omron 705 IT electronic blood pressure monitor. The participant was

asked to sit with their feet parallel, toes pointing forward, and the soles

of their feet flat on the floor. The right arm was only used if the left

was not practical. During each data collection round, the mean value

of blood pressure readings would be calculated if there were more

than onemeasurement inUKBiobank data collectionwithin a fewmin-

utes. Before calculation, abnormal blood pressure (more than 200 or

less than 20 mmHg) values were removed. Electronic blood pressure

monitor values were preferred, and manual readings would be used if

there were no electronic blood pressure readings. Hypertension diag-

nosis was derived from baseline self-report, including hypertension

diagnosis andmedication.BMIwas constructed fromheight andweight

measured during the initial Assessment Centre visit. If either height or

weight readings were omitted, BMI would be estimated by impedance

measurement.

2.2 Inclusion criteria

The cohort used for this GWAS study consisted of UK Biobank par-

ticipants with “white British” ancestry, which is derived from both

principal component (PC) analysis and self-declared ethnicity. Genetic

ethnic grouping showed that 409 585 participants had white British

ancestry, and all of them were self-reported as “white British” in the

baseline survey.Only thosewhohad at least three blood pressuremea-

surements were included in the genome-wide analysis study among

white British ancestry participants (Figure 1).

Totally 501 136, 20 332, 43 047, and 3859 participants hadBPmea-

surements during different data collection rounds. Eventually, 10 891

participants had more than three BP measurements, and 9413 were

white British. Participants who withdrew from UK Biobank were also

excluded.

2.3 Phenotype

The interested phenotypeswere systolic anddiastolic BPV,whichwere

calculated using different blood pressure readings measured in differ-

ent follow-up visits. We applied different methods in this study: (1)

Standard Deviation (SD); (2) Coefficient of Variation (CV), defined as

SD/mean; (3) Average Real Variability (ARV), calculated as the average

absolute difference between consecutive measurements; (4) Succes-

sive Variation (SV), defined as the square root of the average squared

difference between successive blood pressuremeasurements.

2.4 Genotyping

2.4.1 Pre-individual quality control

Removed individuals that meet any of the following conditions:

(1)missing SNPsmore than2%; (2) had sexdiscrepancybetweenhealth
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F IGURE 1 The flow chart of GWAS and downstream analysis

records and genotype data; (3) heterozygosity rate that deviatedmore

than 3 SD from the mean; (4) detected highly related individual pairs

(pi-hat more than .2) and removed individuals with a lower call rate.

2.4.2 Pre-marker quality control

Removed SNPs that meet any of the following conditions: (1) missing

rate more than 2%; (2) the minor allele frequency less than .01;

(3) Hardy-Weinberg equilibrium p-value less than 1× 10−6.

2.4.3 Imputation and post-quality control

Genotyping and imputation were performed based on 1000 Genomes

Project Phase 3 Reference Panel on Michigan Imputation Server.16 ,17

Then, SNPs with MAF < .05 or missing rate >2% were excluded from

the analytical genetic data.

2.5 GWAS

The linear regression model was performed on those genetic data and

different phenotypes, with adjustments for sex, age, genotype array

(BiLEVE and Axiom array), and significant principal component (PC).

Principal component analysis (PCA) was conducted on EIGENSOFT

6.1.4, the most widely used implementation of PCA.18 Then the sig-

nificant PCAs was included as covariates instead of using first 10 or

20 PCAs empirically. GWAS on SD, CV, ARV, and SV were conducted

for SBP and DBP. If a SNP in any of the four results was significant,

then it would be included as a significant SNP.19 EachGWAS result was

summarized by Manhattan plots. Quantile-quantile (Q-Q) plots were

used to detect the systematic differences between actual p-values and

expected p-values. The significant p-value was set as 5 × 10−8, and the

suggestive significant p-value was 1 × 10−6. GWAS was conducted on

PLINK 1.9. Manhattan plots andQ-Q plots were plotted by R 4.0.5.

2.6 Downstream analysis

2.6.1 Heuristic fine-mapping

Heuristic fine-mapping and Bayesian fine-mapping were used in this

study.20 Heuristic fine-mapping method was conducted by examining

the correlation (r2) among the SNPs surrounding a lead SNP (SNPwith

the most significant p-value) in each region and remaining SNPs with

r2 ≥ .8.20,21 This method was based on 1000 Genome Project17 and

performed on FUMA GWAS,22 which is an online tool that merges

those related databases for convenient genetic analysis.

2.6.2 Bayesian fine-mapping

Bayesian methods was performed on PAINTOR23 by calculating

the posterior inclusion probability (PIP), ranking SNPs by their PIP

and selecting the top SNPs that with a sum probability of 95% (95%

credible sets). Higher weight would be given to SNPs in coding region.

Bayesian fine-mapping has advantages compared with other fine-

mapping methods15 ,20 ,21 ,24 and tends to select the minimum set of

SNPs as potentially causal SNPs.25 ,26

2.6.3 Conditional analysis

Conditional analysis was performed before Bayesian fine-mapping to

confirm the assumption that only one potential causal SNP exists in

each risk region. It means taking the leading SNP as a covariate and

running GWAS again to see the p-values of the remaining SNPs. The

significant threshold for conditional analysis was 1 × 10−4. If there

were no significant signals after conditional analysis, this region could

be considered as an independent region with only one potential causal

SNP. Otherwise, we need to partition the region into smaller ones to

ensure no significant signals in addition to the leading SNP.

2.6.4 Functional annotation and eQTL analysis

SNPs were annotated to the nearest gene within +200 kB with 1000

Genome Project Phase 3 as reference panel, and ANNOVAR as anno-

tation database.17 ,27 Then, the gene expression level was evaluated

from GTEx database28 in 30 general tissues and 54 tissue types, and

the results were presented by a heatmap plot. Those procedures were

also conducted on FUMAGWAS.22



JIA ET AL. 1373

F IGURE 2 Manhattan Plots andQ-Q plot for SBP ARV. Each dot signifies a single nucleotide polymorphism (SNP). Different chromosomes are
displayed along the X-axis and the negative logarithm of the association p-values are displayed on the Y-axis. The red line represents significant
threshold of p-value (5× 10−8), and blue line represents suggestive significant threshold (1× 10−6)

2.7 Subgroup analysis

A subgroup analysis was performed on participants without hyper-

tension to reduce the influence of high blood pressure. Hypertension

was defined according to diagnosis and blood pressure medication in a

health survey.

2.8 Sensitivity analysis

A looser P threshold was set as 5 × 10−6 both in the primary analysis

and subgroup analysis to see whether the results were robust.

3 RESULT

3.1 Population

Forty-three participants with more than 2% missing SNPs were

excluded from 9413 participants, and 9370 participants with 6 884

260SNPswere eligible forGWASanalysis. The population had an aver-

age age of 55, an average BMI of 26.56, and male proportion of 50.1%.

For SBP, the median value, ARV, SD, CV, and SV were 136.83, 3.16,

8.39, 6.17, 11.18 mmHg. For DBP, median value, ARV, SD, CV, and SV

were 79.67, 2.45, 5.03, 6.39, 6.60 mmHg. Among those participants,

32% of them were diagnosed with hypertension, 8.6% of them had

hypertension medication, and 9.7% participants had BiLEVE genotype

array batch. BPVwere calculated by four differentways using thoseBP

readings.

3.2 GWAS and downstream analysis

3.2.1 GWAS

The whole procedure of GWAS and downstream analysis are shown

in Figure 1. The 9370 participants and 6 884 260 SNPs remained

for GWAS analysis after imputation and quality control. Sixty-eight

SNPs (on chromosome 3, 7, and 11) achieved genome-wide suggestive

significance (1 × 10−6) for SBPV. Among them, 20 SNPs reached sig-

nificant p-value (5 × 10−8) and the strongest signal was rs574087 (11:

64102948: A: G, p = 3.19 × 10−10, β = –.097). The reference allele

was the minor allele G, which means this variant will increase SBPV

by .097 mmHg compared with major allele. The results were summa-

rized on Manhattan plot (Figure 2 and S1). For DBPV, 15 SNPs (on

chromosome 3, 4, 5, and 15) were identified at suggestive significant

p-value (1 × 10−6), with the strongest signal of SNP rs1229536170

(3: 11093952, p = 6.36 × 10−8, β = –.29), while there was no SNP

reaching significant p-value.

3.2.2 Fine-mapping

GWAS result with P threshold of 1 × 10−6 was used for further down-

stream analysis. Ninety-five and 62 SNPs were identified respectively

for SBPV and DBPVwhen heuristic fine-mapping was applied on SNPs

identified fromGWAS. Conditional analyseswere performed on differ-

ent regions, and all p-value were larger than 1 × 10−4, which means

there was no significant SNP after taking lead SNP as covariates. It
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could be assumed that each region had only one potential causal SNP.

An example of locusZoom plot was shown in Figure S2.

Then with the one potential causal SNP assumption, Bayesian fine-

mapping method was performed on different risk regions. The 95%

credible sets had 54 SNPs for SBPV and 62 SNPs for DBPV. The

detailed informationwas displayed in Tables 1 and 2. The strongest sig-

nals in SBPV (rs574087) and DBPV (rs1229536170) and the 20 SNPs

that reached significant p-value in SBPVGWASwere all remained after

fine-mapping.

3.2.3 Functional annotation and eQTL

For SBPV, 54 SNPs mapped 15 genes, and five were in the protein-

coding region of gene BAD, CCDC88B, GPR137, PLCB3, and RPS6KA4

on autosome 11. Annotation results are shown in Table 1. The expres-

sion of those different genes is displayed in Figure 3. Gene CCDC88B

encodes a member of the hook-related protein family and is highly

expressed in the brain cerebellar hemisphere and cerebellum, cells

EBV transformed lymphocytes and spleen. Gene CPR137 has a broad

expression in the testis, brain, and other 24 tissues. Gene RPS6KA4 and

BAD are widely expressed in different tissues.

For DBPV, 10 genes were matched by 62 SNPs, and only gene

WWC2 was mapped by coding area SNPs (Table 2). Gene WWC2

encodes a member of the WW-and-C2-domain-containing family of

proteins. This gene has high expression in lungs, kidneys, and other 23

tissues.

Additionally, annotation was performed on all the SNPs identified

from the GWAS result, heuristic fine-mapping, and Bayesian fine-

mapping result, ensuring that the fine-mapping methods did not prune

essential SNPs.

3.3 Subgroup analysis

There were 3016 hypertensive patients and 6354 hypertension-free

participants among 9370 participants.We conducted a subgroup anal-

ysis on 6354 hypertension-free participants. The result showed that

14 SNPs reached a suggestive P threshold (1 × 10−6) for SBPV, with

three SNPs located in the coding region of gene CCDC88B. For DBPV,

15 SNPs reached a suggestive P threshold (1× 10−6), but none of them

were located in coding regions.

3.4 Sensitivity analysis

A looser significant P threshold was set as 5 × 10−6, and the results

were shown in Table 3. For SBPV, genes identified by coding region

SNPs coincided with the results of a threshold of 1 × 10−6 both in the

primary and subgroup analysis. For DBPV, geneWWC2 and CCD2D1A

were identified in the primary analysis, while gene ZBBXwas identified

in the subgroup analysis.

4 DISCUSSION

In this GWAS study, 54 SNPs within 15 genes and 62 SNPs within

ten genes were related to SBPV and DBPV, respectively. Gene BAD,

CCDC88B, GPR137, PLCB3, and RPS6KA4 were identified for SBPV by

coding regionSNPs, amongwhich the strongest signal of SNP rs574087

mapped gene CCDC88B. GeneWWC2 was associated with DBPV and

identified by coding region SNPs. Among these six loci, gene CCDC88B

and RPS6KA4 reached a significant P-value (5× 10−8).

A larger body of evidence showed that 24-h blood pressure varies in

response tohumoral influences (endothelial), local vasomotorphenom-

ena, arterial stiffness, behavioral factors, andother factors.29 However,

therewas little information about themechanisms of long-termBPV.29

Among that incomplete evidence, artery stiffening is one of the poten-

tial factors as it was known to be majorly responsible for BP variations

with aging.29,30 Previous studies reported that the possibly involved

genes for arterial stiffness included renin-angiotensin-aldosterone sys-

tem elastic fiber structural components, apoptosis of endothelial cells

and the immune response within the vascular wall.31 In this GWAS

study, the identified genes associated with systolic BPV play roles

in inflammatory functions, epithelial cell function, and cell death,

which were related to arterial stiffness, one of the suspected mech-

anisms of why blood pressure varies during a longer period.32 They

were also reported as potential mechanisms of how BPV influences

EOD and other diseases.9,33 Gene CCDC88B is related to inflamma-

tory functions34,35,36 and has high expression in the brain cerebellar

hemisphere and cerebellum (Figure 3). While gene RPS6KA4 encodes

proteins that phosphorylate histone H3 to regulate certain inflam-

matory genes and are also involved in phosphorylation.37,38,39,40 It is

worth noting that phosphorylation was found to be a regulator for

vascular tone and blood pressure.41 Gene GPR137 modulates epithe-

lial cell function and cell apoptosis,42 and has high expression in the

brain (Figure 3). Gene BAD has high expression in almost all tissues

and is related to cell death.43 These findings providemore evidence for

the previously proposedmechanisms and provide clues to pathological

research, advancing our understanding of BPV and its potential drug

targets for the preventing or treating unstable blood pressure.

The previous GWAS study of BPV had a sample size of 3802 and

applied VIM as BPV.14 There were six common methods to calculate

blood pressure variation: SD, CV, ARV, SV, VIM, and RSD (Residual

Standard Deviation, calculated as residual mean square after fitting a

linear regression to blood pressure against time).44 Several studies dis-

cussed the correlation between those different variations and blood

pressure levels45 but lacked evidence for which method could best

characterize the “real variation.” This study applied GWAS on SD, CV,

ARV, and SV for both SBP andDBP, althoughVIMandRSD could not be

calculated with the limitation of the frequency of BPmeasurements.

This study also has some limitations due to the difficulty of gaining

longitudinal blood pressure readings and genetic data simultaneously.

Although in previous observational studies on BPV and other diseases,

three times BP measurements were often used even in some large

population studies,46–48 it does not mean three times of BP measure-
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TABLE 1 Bayesian fine-mapping and annotation results for SBPV (54 SNPs)

CHR BP SNP A1 p β BPV nearestGene Freq Function

3 11090603 rs35696236 C 3.25E-07 −.78 SV SLC6A1 .17 intergenic

3 11092104 rs2138506 C 1.59E-06 −.70 SV .19 intergenic

3 11092264 rs11711623 T 1.72E-06 −.70 SV .19 intergenic

3 11093952 rs1229536170 T 1.71E-07 −.34 CV .27 intergenic

3 11095722 rs9854512 A 8.48E-07 −.71 SV .20 intergenic

3 11095837 rs9854424 A 1.25E-06 −.71 SV .20 intergenic

7 47041582 rs2189926 G 8.76E-07 .31 CV AC004901.1; AC004870.4;

AC004870.3

.32 ncRNA_intronic

7 47042254 rs6966942 G 8.00E-07 .31 CV .32 ncRNA_intronic

7 47047098 rs4720569 C 6.87E-07 .31 CV .32 ncRNA_intronic

7 47063000 rs2881492 T 7.17E-07 .31 CV .32 ncRNA_intronic

7 47064608 rs4724529 G 7.17E-07 .31 CV .32 ncRNA_intronic

7 72126227 rs569158324 G 3.01E-07 .86 SV TYW1B .14 intronic

7 72126231 rs55891215 G 3.83E-07 .85 SV .14 intronic

7 156411149 rs849074 C 4.50E-07 .37 CV LINC01006 .19 ncRNA_intronic

7 156413325 rs849071 G 6.09E-06 .48 SD .20 ncRNA_intronic

7 156416554 rs1100329 T 5.95E-06 .48 SD .20 ncRNA_intronic

7 156416810 rs1100328 C 5.95E-06 .48 SD .20 ncRNA_intronic

7 156423876 rs77573976 A 1.70E-05 .45 SD .20 ncRNA_intronic

7 156427201 rs1860157 C 3.12E-05 .44 SD .20 ncRNA_intronic

11 64102948a rs574087 G 3.19E-10 −.10 ARV CCDC88B .38 intergenic

11 64104488 rs61886886 T 4.68E-10 −.10 ARV .38 intergenic

11 64105929 rs499425 A 5.54E-10 −.10 ARV .38 intergenic

11 64106291 rs1783521 C 5.54E-10 −.10 ARV .38 intergenic

11 64106317 rs11231757 T 5.54E-10 −.10 ARV .38 intergenic

11 64109118 rs647152 G 3.88E-10 −.10 ARV .38 exonicb

11 64110668 rs574835 A 4.02E-10 −.10 ARV .38 exonicb

11 64110683 rs479552 C 3.89E-10 −.10 ARV .38 exonicb

11 64110422 rs11601860 T 3.39E-10 −.10 ARV .38 intronic

11 64089588 rs646153 T 3.38E-10 −.10 ARV PRDX5 .38 downstream

11 64039175 rs2286615 A 2.89E-07 −.10 ARV BAD;GPR137 .18 exonicb

11 64138805 rs11542299 C 3.67E-07 −.08 ARV RPS6KA4 .39 exonicb

11 64138905 rs17857342 G 3.67E-07 −.08 ARV .39 exonicb

11 64026639 rs12146487 A 4.75E-07 −.10 ARV PLCB3 .18 exonicb

11 64052447 rs2510066 T 5.01E-10 −.10 ARV GPR137 .38 UTR5

11 64053157 rs887314 G 4.50E-10 −.10 ARV .38 intronic

11 64087642 rs627425 T 5.39E-10 −.10 ARV PRDX5 .38 intronic

11 64097233 rs694739 G 6.89E-10 −.10 ARV AP003774.1 .38 upstream

11 79385728 rs7940535 T 2.28E-06 .94 SV .09 intergenic

11 79391059 rs34584627 A 9.10E-07 .97 SV .09 intergenic

11 79392577 rs34705210 T 1.03E-06 .97 SV .09 intergenic

11 79394392 rs12797948 A 1.03E-06 .97 SV .09 intergenic

11 79395583 rs7945511 G 1.05E-05 .90 SV .09 intergenic

11 79398748 rs11237967 A 1.52E-05 .89 SV .09 intergenic

(Continues)



1376 JIA ET AL.

TABLE 1 (Continued)

CHR BP SNP A1 p β BPV nearestGene Freq Function

11 79399466 rs11237968 C 1.29E-05 .89 SV .09 intergenic

11 79399607 rs11237969 A 1.72E-05 .88 SV .09 intergenic

11 79399623 rs11237970 A 1.29E-05 .89 SV .09 intergenic

11 79400940 rs7118863 A 1.67E-05 .88 SV .09 intergenic

11 79401271 rs56118860 A 1.51E-05 .89 SV .09 intergenic

11 79401362 rs55750340 A 1.69E-05 .88 SV .09 intergenic

11 79401429 rs56013986 A 1.51E-05 .89 SV .09 intergenic

11 79401612 rs12363915 T 2.11E-05 .87 SV .09 intergenic

11 79401886 rs12360999 A 1.69E-05 .88 SV .09 intergenic

11 79404322 rs11237971 A 2.00E-05 .87 SV .09 downstream

13 31813821 rs1441067441 C 7.12E-07 −.79 SD B3GALTL .08 intronic

aThe strongest signal.
bexonic: means coding region.

TABLE 2 Bayesian fine-mapping and annotation results for DBPV (62 SNPs)

CHR BP SNP A1 p β BPV nearestGene Freq function

3 11093952a rs1229536170 C 6.36E-08 −.29 SD SLC6A1 .27 intergenic

3 56246822 rs79211524 C 6.39E-07 −.50 SD ERC2 .06 intronic

4 184190233 rs11941467 T 2.80E-05 .46 SV WWC2 .10 exonicb

4 21088509 rs12506214 A 8.15E-07 .47 CV KCNIP4 .11 intronic

4 21105955 rs139184666 A 2.33E-07 .49 CV .11 intronic

4 21109682 rs147216662 T 3.06E-07 .49 CV .11 intronic

4 21111646 rs11938045 G 4.34E-07 .48 CV .11 intronic

4 21115516 rs16870400 C 2.96E-07 .49 CV .11 intronic

4 21120875 rs73802496 G 2.62E-07 .49 CV .11 intronic

4 184194442 rs75389451 C 6.96E-06 .49 SV WWC2 .10 intronic

4 184197460 rs79960663 C 3.22E-06 .51 SV .10 intronic

4 184197976 4:184197976 G 3.78E-06 .51 SV .10 intronic

4 184200189 rs528650186 C 3.20E-06 .51 SV .10 intronic

4 184200190 rs547122124 A 3.20E-06 .51 SV .10 intronic

4 184204777 rs10520555 T 3.10E-06 .51 SV .10 intronic

4 184207362 rs3749594 G 3.23E-06 .51 SV .10 intronic

4 184207778 rs11930293 C 3.23E-06 .51 SV .10 intronic

4 184208522 rs80202922 A 2.79E-06 .52 SV .10 intronic

4 184211478 rs60761033 A 3.27E-06 .51 SV .10 intronic

4 184216588 rs41457144 T 4.02E-06 .51 SV .10 intronic

4 184216958 rs1000514384 C 3.44E-06 .51 SV .10 intronic

4 184221986 rs73006721 A 2.60E-06 .52 SV .10 intronic

4 184222034 rs73006723 C 3.07E-06 .52 SV .10 intronic

4 184222089 rs73006725 C 2.60E-06 .52 SV .10 intronic

4 184222489 rs73006729 A 2.60E-06 .52 SV .10 intronic

4 184223548 rs11932929 C 2.60E-06 .52 SV .10 intronic

4 184224437 rs17074589 A 2.06E-06 .52 SV .10 intronic

4 184224692 rs17074592 A 1.89E-06 .53 SV .10 intronic

(Continues)
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TABLE 2 (Continued)

CHR BP SNP A1 p β BPV nearestGene Freq function

4 184227801 rs1299013576 T 1.70E-06 .53 SV .10 intronic

4 184229668 rs76627118 C 1.38E-06 .53 SV .10 intronic

4 184234815 rs17074601 A 2.95E-06 .52 SV .10 intronic

4 184236951 rs73006745 T 2.95E-06 .52 SV .10 UTR3

4 184242528 rs61272231 A 3.95E-06 .51 SV CLDN24 .10 upstream; downstream

4 184246068 rs111959824 G 2.58E-06 .52 SV .10 intergenic

4 184249613 rs1165104995 G 3.32E-06 .51 SV snoU13 .10 upstream

4 184251597 rs10025123 T 3.86E-06 .51 SV .10 intergenic

4 184257252 rs28408355 G 7.16E-07 .54 SV .10 intergenic

4 184262171 rs28669318 T 1.01E-06 .51 SV .11 intergenic

5 150250368 rs1277463 A 4.75E-07 −.39 SD IRGM .11 intronic

5 177401368 rs9329123 A 1.56E-05 −.40 SV RP11-1252I4.2 .15 ncRNA_intronic

5 177401382 rs9329124 A 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177401509 rs9329125 A 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177401630 rs200303279 G 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177401779 rs10050665 T 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177402307 rs7719781 A 1.55E-05 −.40 SV .15 ncRNA_intronic

5 177403389 rs34022638 G 1.87E-05 −.40 SV .15 ncRNA_intronic

5 177403407 rs6885719 A 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177403484 rs6861941 G 1.56E-05 −.40 SV .15 ncRNA_intronic

5 177403622 rs1772315630 C 1.75E-05 −.40 SV .15 ncRNA_intronic

5 177404089 rs7734819 T 1.95E-05 −.40 SV .15 ncRNA_intronic

5 177404647 rs12652175 A 1.96E-05 −.40 SV .15 ncRNA_intronic

5 177404716 rs11740074 A 1.76E-05 −.40 SV .15 ncRNA_intronic

5 177404751 rs11749194 G 1.44E-05 −.40 SV .15 ncRNA_intronic

5 177404814 rs11249785 A 1.76E-05 −.40 SV .15 ncRNA_intronic

5 177405068 rs6878595 A 1.51E-05 −.40 SV .15 ncRNA_intronic

5 177405075 rs12515422 G 1.33E-05 −.40 SV .15 ncRNA_intronic

5 177405145 rs10065231 A 3.50E-07 −.43 SV .18 ncRNA_intronic

5 177407687 rs11746388 A 1.77E-05 −.40 SV .15 ncRNA_intronic

15 24322045 rs11630824 T 2.35E-07 .56 CV PWRN4 .08 intergenic

15 71871160 15:71871160:TG:T TG 8.14E-07 −.06 ARV THSD4 .26 intronic

15 71871754 rs34865359 T 1.70E-06 −.06 ARV .26 intronic

15 71872351 rs11634676 A 2.73E-06 −.06 ARV .26 intronic

aThe strongest signal.
bExonic: means coding region.

ments were enough to measure BPV accurately. Secondly, there is no

standard definition for “variation” of blood pressure. Different meth-

ods calculated the phenotypes: SD, CV, ARV, SV, and the results of

those methods were different (Figure S1). Another limitation is the

lack of diversity in genetic samples due to exclusively including white

British ancestry. More GWAS studies with larger population and dif-

ferent ancestry population are needed on this topic to further confirm

and generalize those findings.

5 CONCLUSION

In summary, by performing a GWAS analysis and downstream analysis

on the trait of BPV, several SNPswere identified in coding areas of gene

BAD,CCDC88B,GPR137, PLCB3, andRPS6KA4 for SBPV, andWWC2 for

DBPV. Gene CCDC88B, GPR137, RPS6KA4, and BAD were involved in

inflammatory functions, epithelial cell function, and cell death, which

were reported to be potential mechanisms of long-term BPV. These
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F IGURE 3 Average expression per label (log2 transformed) for genes identified from fine-mapping. Different tissues are displayed along the
X-axis and genes are displayed on the Y-axis. The expression of genes is colored according to average expression per label (log2 transformed) and
red represents higher expression

TABLE 3 Identified coding area genes from different analysis

Genes identified by coding region SNPs

P threshold

Analysis 5× 10−8 1× 10−6 5× 10−6

Main analysis (N= 9370)

SBPV CCDC88B, RPS6KA4 BAD, CCDC88B, GPR137, PLCB3, RPS6KA4 BAD, CCDC88B, GPR137, PLCB3, RPS6KA4

DBPV / WWC2 WWC2, CC2D1A

Subgroup analysis (N= 6354)

SBPV / CCDC88B CCDC88B

DBPV / / ZBBX

findings support for further pathological research of BPV and poten-

tial drug targets for the prevention or treatment of unstable blood

pressure.
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