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The gastric X/A-like endocrine cell receives growing attention due to its peptide products
with ghrelin being the best characterized. This peptide hormone was identified a decade
ago as a stimulator of food intake and to date remains the only known peripherally produced
and centrally acting orexigenic hormone. In addition, subsequent studies identified numer-
ous other functions of this peptide including the stimulation of gastrointestinal motility,
the maintenance of energy homeostasis and an impact on reproduction. Moreover, ghrelin
is also involved in the response to stress and assumed to play a role in coping functions
and exert a modulatory action on immune pathways. Our knowledge on the regulation of
ghrelin has markedly advanced during the past years by the identification of the ghrelin acy-
lating enzyme, ghrelin-O-acyltransferase, and by the description of changes in expression,
activation, and release under different metabolic as well as physically and psychically chal-
lenging conditions. However, our insight on regulatory processes of ghrelin at the cellular
and subcellular levels is still very limited and warrants further investigation.
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INTRODUCTION
Several enteroendocrine cells have been identified in the stom-
ach and shown to influence physiological functions with a
predominant effect on gastric acid secretion, namely gastrin-
producing cells (G cells), somatostatin-releasing cells (D cells,
5–10% of gastric oxyntic endocrine cells in rats,>20% in humans),
enterochromaffin-like cells releasing histamine (ECL, 65% in
rats, 30% in humans), and much less abundantly the serotonin-
containing enterochromaffin (EC) cells (Rindi et al., 2004). In
addition, a distinct cell type has been identified in the stomach that
is distributed throughout the mucosa (Figure 1) that was termed
X/A-like cell in rats and P/D1 cell in humans (Date et al., 2000;
Mizutani et al., 2009). These cells were named X cells because of
their unknown functions and in addition termed A-like cells due
to their similarity with pancreatic A-cells (Rindi et al., 2004). They
account for 20–30% of the oxyntic endocrine cells and therefore
represent the second most abundant gastric endocrine cell type
(Rindi et al., 2004). Distribution studies in the rat gastrointestinal
tract indicate that the cell density (cells/mm2) of X/A-like cells is
10- to 100-times greater in the gastric body than in the lower
intestinal tract (Sakata et al., 2002). At the morphologic level,
the X/A-like cells exist as closed-type cells without contact to the
lumen and open-type cells with luminal contact. The open-type
cells are more prominent in the ileum, cecum, and colon, where
they account for more than 60% of ghrelin cells (Sakata et al.,
2002). The identification of ghrelin in rat X/A-like and human
P/D1 cells (Rindi et al., 2002) as the only peripherally produced
and centrally acting hormone known to increase food intake (Date
et al., 2000) dramatically increased the interest in this endocrine

cell type which is now commonly named ghrelin cell (Rindi et al.,
2002).

PEPTIDE PRODUCTS OF X/A-LIKE CELLS
Growing interest in ghrelin cells led to the discovery of addi-
tional peptide products derived from this cell type. These peptides
are either derived from the same ghrelin gene including desacyl
ghrelin and n-decanoyl ghrelin (Date et al., 2000; Hiejima et al.,
2009) as well as obestatin (Zhang et al., 2005) or from a different
gene, namely nucleobindin 2 (NUCB2)/nesfatin-1 (Stengel et al.,
2009a).

Ghrelin was discovered in 1999 by Kojima and colleagues
(reviewed in Kojima and Kangawa, 2011) and identified to be the
endogenous ligand of the growth hormone (GH) secretagogue
receptor 1a isoform (GHS-R1a; Kojima et al., 1999), which was
later renamed ghrelin receptor (GRLN-R; Davenport et al., 2005).
Ghrelin is a 28-amino acid peptide which has a unique n-octanoic
acid residue on the serine-3 thereby increasing its lipophilicity
(Kojima et al., 1999) and shown to be essential for binding to
the GRLN-R (Kojima et al., 1999; Kojima and Kangawa, 2005).
Structure-activity studies established that the first five N-terminal
amino acids that include the hydrophobic residue are able to
activate the receptor pointing toward the active core of ghrelin
(Bednarek et al., 2000). Studies in mice ingesting different concen-
trations of medium-chain fatty acids (MCFA) or medium-chain
triacylglycerols (MCT) established their direct use as a source for
ghrelin acyl modification (Nishi et al., 2005). Without this post-
translational modification desacyl ghrelin is obtained which does
not bind to the GRLN-R. The gastric endocrine X/A-like cells are
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FIGURE 1 | Immunohistochemical photomicrograph of X/A-like cells in

the rat gastric oxyntic mucosa of ad libitum fed male rats.

Ghrelin-positive X/A-like cells (arrows) are evenly distributed throughout the
entire length of the gastric oxyntic glands. The scale bar represents 50 μm.

the major source of circulating desacyl and acyl ghrelin and the
ratio of acyl and total (both acyl and desacyl) ghrelin in the cir-
culation has been initially reported to be between 1:15 (Hosoda
et al., 2000) and 1:55 (Raff, 2003). Recent improvements in blood
processing resulted in a markedly higher acyl/total ghrelin ratio
of 1:5 compared to 1:19 obtained after standard blood processing
(EDTA blood on ice; Stengel et al., 2009b) indicating that although
desacyl ghrelin represents the major form of circulating ghrelin,
previous values were skewed by suboptimal blood processing con-
ditions to preserve acyl ghrelin that is easily cleaved by a wide
range of cellular protease and during protein extraction. Recently,
another acylated form of ghrelin has been identified in humans
and rodents, n-decanoyl ghrelin, which is also derived from X/A-
like cells and circulates in considerable amounts in the mouse
blood (Hiejima et al., 2009).

The enzyme catalyzing the acylation of ghrelin was unknown
for a decade and recently identified in mice and humans as a mem-
ber of the superfamily of membrane-bound O-acyltransferases
(MBOATs), MBOAT4 that was renamed ghrelin-O-acyltransferase
(GOAT; Gutierrez et al., 2008; Yang et al., 2008). GOAT is thought
to octanoylate proghrelin before being transported to the Golgi
apparatus where it is cleaved by prohormone convertase 1/3 (PC
1/3; Yang et al., 2008). Recently, GOAT protein was also identi-
fied in rodent circulation (Stengel et al., 2010d) leading to the
possibility of an extracellular acylation of ghrelin. Both MCFAs
C8 and C10 are substrates for GOAT-catalyzed acylation result-
ing in octanoyl and decanoyl ghrelin (Gutierrez et al., 2008).
A current study reported the development of an antagonist of
GOAT, a peptide-based bisubstrate analog GO-CoA-Tat, shown
to be a useful tool in vitro and in vivo to assess the relevance
of GOAT in body weight and glucose regulation (Barnett et al.,
2010).

Alternative splicing and post-translational modification at a
computer-based predicted cleavage site of proghrelin was reported
to result in another biologically active peptide which was termed
obestatin and assumed to have opposite effects to those of ghrelin
(Zhang et al., 2005; Soares and Leite-Moreira, 2008). Obestatin
immunoreactivity is also found in human gastric endocrine P/D1

cells and localized in secretory granules (Gronberg et al., 2008;
Tsolakis et al., 2009). Similarly, in rats obestatin fully colocalized
with preproghrelin in intracellular dense core granules of gastric

endocrine cells, whereas only partial (60%) colocalization of ghre-
lin and obestatin have been described giving rise to differential
post-translational expression (Zhao et al., 2008).

NUCB2/nesfatin-1 was initially identified in the rat hypothala-
mus (Oh-I et al., 2006) but recently shown to be also expressed
in the gastric oxyntic mucosa, prominently in gastric oxyntic
endocrine cells (Stengel et al., 2009a). Colocalization of ghre-
lin and nesfatin-1 in rat gastric X/A-like cells was identified by
immunofluorescence within different pools of vesicles indicative
of a distinct subcellular distribution (Stengel et al., 2009a). Coex-
pression of these two peptides in X/A-like cells is also supported
by the presence of PC 1/3 in this cell type (Yang et al., 2008) which
is involved in the processing of both, ghrelin and nesfatin-1 (Yang
et al., 2008; Shimizu et al., 2009).

Despite the fact that the functions of obestatin remain highly
controversial (Goebel et al., 2008) and those of desacyl ghrelin
(Chen et al., 2009) and nesfatin-1 (Garcia-Galiano et al., 2010) are
just starting to be understood, all peptide products derived from
this cell seem to be involved in the regulation of food intake with
a stimulatory action of ghrelin and an inhibitory effect of desacyl
ghrelin and nesfatin-1 (Stengel et al., 2010c).

REGULATION OF GHRELIN RELEASE AND RECEPTOR
INTERACTIONS
Ghrelin-positive X/A-like cells represent by far the major source
of circulating ghrelin (Ariyasu et al., 2001) as demonstrated by
the sharp decrease of circulating ghrelin following gastrectomy
(Jeon et al., 2004). In addition, lower amounts of ghrelin are pro-
duced in the intestine (Date et al., 2000), pancreas (Date et al.,
2002b) and other peripheral organs including the kidney, liver,
heart, testis, adipose tissue, and skin (Barreiro et al., 2002; Gnana-
pavan et al., 2002). Circulating ghrelin levels vary with metabolic
status rising before and declining after a meal in various experi-
mental animals and humans (Cummings et al., 2001; Tschop et al.,
2001a). In addition, fasting increases gastric ghrelin mRNA expres-
sion in mice (Xu et al., 2009) and rats (Toshinai et al., 2001; Kim
et al., 2003), whereas gastric ghrelin peptide content is decreased,
indicative of increased synthesis and release of the peptide into
the circulation by feeding (Toshinai et al., 2001; Kim et al., 2003).
Likewise, gastric GOAT expression as well as circulating levels of
GOAT protein are increased under conditions of fasting (Gon-
zalez et al., 2008; Stengel et al., 2010d). Total ghrelin levels are
also influenced by fat mass and body weight with an increase in
anorexic and cachectic patients and a decrease under conditions
of overweight and obesity (Tschop et al., 2000, 2001b; Cummings
et al., 2002). Interestingly, acyl and desacyl ghrelin can be regu-
lated differently as shown by a recent study reporting the release
of desacyl ghrelin when the gastric pH is low whereas acyl ghrelin
is not affected (Mizutani et al., 2009). Conversely, a rapid decline
in fasting circulating levels of acyl ghrelin with less prominent or
no changes in desacyl ghrelin was induced in response to various
stressors either physical (strenuous physical exercise in humans;
Shiiya et al., 2011), immunological (intraperitoneal low dose of
lipopolysaccharide (Stengel et al., 2010b) or visceral (abdominal
surgery; Stengel et al., 2011b) in rats. This differential regulation of
ghrelin and desacyl ghrelin under various physiological conditions
is not well understood yet and warrants further characterization.
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The regulation of ghrelin secretion by peripheral administra-
tion of a large number of gut peptides or transmitters was tested
in vivo in rats and more recently in vitro using ghrelin pro-
ducing mouse ghrelinoma MGN 3-1 cells as well as in humans
(Mundinger et al., 2006; Hosoda and Kangawa, 2008; Zhao et al.,
2010; Iwakura et al., 2011). It is well established that somato-
statin inhibits ghrelin release in experimental and clinical studies
(Shimada et al., 2003; de la Cour et al., 2007; Iwakura et al.,
2011). Convergent anatomic and functional evidence indicates a
direct action of somatostatin on rat X/A-like and human P/D1

cells mediated through interaction with the somatostatin recep-
tor subtype 2 (sst2). This is supported by the expression of sst2

on ghrelin-positive cells in the rat (Figures 2A,B; Stengel et al.,
2011b) and human (Fischer et al., 2008) stomach along with the
potent inhibitory effect of intravenous injection of a selective
peptide sst2 agonist (Figures 2C,D; Stengel et al., 2011b). Stud-
ies with other gut peptides have yielded inconsistent results that
may be related to species differences or experimental conditions.
Inhibitory effects were reported for glucagon-like peptide (GLP-1)

in rat and human studies (Lippl et al., 2004; Hagemann et al., 2007;
Perez-Tilve et al., 2007) but not in other studies in rats or in vitro
testing (Mundinger et al., 2006; Hosoda and Kangawa, 2008; Zhao
et al., 2010), for CCK-8 in humans (Brennan et al., 2007) but not
in rats or in vitro (de la Cour et al., 2007; Iwakura et al., 2011),
and for insulin in humans and in vitro (Saad et al., 2002; Iwakura
et al., 2011) but not in rats although a trend was observed (de
la Cour et al., 2007). The decrease following administration of
bombesin/gastrin releasing peptide in rats (de la Cour et al., 2007)
has to be substantiated in further investigations. Other peptides,
namely calcitonin, gastrin, gastric inhibitory polypeptide, neu-
rotensin, pancreatic polypeptide, and vasoactive intestinal peptide
(VIP) had no effect on ghrelin release both in vivo in rats or in vitro
(de la Cour et al., 2007; Iwakura et al., 2011) while the increase
in ghrelin release induced by oxytocin and vasopressin reported
in vitro (Iwakura et al., 2011) and secretin (de la Cour et al., 2007)
as well as endothelin 1 and 3 (de la Cour et al., 2007; Thanthan
et al., 2009) in vivo still need replication. Among the neurotrans-
mitters increasing ghrelin levels are adrenaline, and noradrenaline

FIGURE 2 | Somatostatin could act directly on gastric X/A-like cells by

interaction with the somatostatin receptor subtype 2 (sst2) localized

on these cells. (A,B) Ghrelin-positive X/A-like cells in the gastric oxyntic
mucosa express the sst2a receptor in naive rats. Paraffin-embedded gastric
corpus sections of ad libitum fed rats were processed for
immunofluorescent double labeling. Confocal microscopy shows the
localization of sst2a-immunopositive cells throughout the gastric oxyntic
mucosa [(A), red], whereas ghrelin-positive cells are localized mostly in the
middle and the lower part of the glands [(A), green]. The higher
magnification (B) shows that ghrelin-positive cells express the sst2a

receptor (arrow). Lu, lumen; Mu, mucosa; Submu, submucosa. (C,D) The

sst2 agonist decreases circulating acyl and desacyl ghrelin levels in
overnight-fasted rats implanted with an intrajugular catheter. The sst2

agonist (100 μg/rat in 200 μl saline containing 0.1% BSA) or vehicle (saline
containing 0.1% BSA) was injected intravenously (iv) twice at 0 and 0.5 h.
Blood was withdrawn before the second injection at 0.5 and at 2 h and
processed for acyl (A) and total ghrelin measurement. Desacyl ghrelin (B)

was calculated as the difference of total minus acyl ghrelin for each
individual sample. Each bar represents the means ± SEM of number of
rats indicated at the bottom of the column. *P < 0.05, **P < 0.01, and
***P < 0.001 versus vehicle. Reproduced with permission from reference
(Stengel et al., 2011b).
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in rats and in vitro (Mundinger et al., 2006; de la Cour et al.,
2007; Iwakura et al., 2011) supporting the contention that the
sympathetic nervous system is an important stimulant of ghrelin
secretion although other evidence indicates that the neural, unlike
the neurohumoral component of the sympathetic nervous system
stimulates ghrelin secretion (Mundinger et al., 2006). Less consis-
tent results have been observed for dopamine resulting in ghrelin
increase at high concentrations (10−4 to 10−5) in vitro (Iwakura
et al., 2011) but not in vivo (de la Cour et al., 2007) while no effect
of γ-aminobutyric acid (GABA), serotonin, and histamine have
been reported both in vitro and in vivo (de la Cour et al., 2007;
Iwakura et al., 2011). Also activation of vagal cholinergic compo-
nents of the autonomic nervous system results in the stimulation
of ghrelin release in rats (Ao et al., 2006; Stengel et al., 2010a) and
in humans in response to sham feeding (Simonian et al., 2005).
However, in vitro carbachol as well as superfused onto the gastric
submucosa had no effect on ghrelin release (de la Cour et al., 2007;
Iwakura et al., 2011). Other studies reported a stimulatory effect
of cannabinoids (Zbucki et al., 2008) and an inhibitory action
of interleukin-1 (Wang et al., 2006) to be further characterized.
Prostacyclin induces a reduction of circulating total ghrelin levels
that may reflect a direct effect on the prostacyclin receptor (PGI2)
expressed on ghrelin containing cells (Madison et al., 2008). How-
ever, in general our knowledge on the regulation of acyl and desacyl
ghrelin release at the cellular level is very limited due to the lack
of cell isolation techniques of native ghrelin cells. Coexpression of
ghrelin and fluorescent dye (Kageyama et al., 2008) or immortal-
ized ghrelin cell lines (Iwakura et al., 2011) will help to advance
our understanding on the processing and regulation of ghrelin.

Ghrelin binds to the seven transmembrane domains GRLN-
R expressed in the periphery and brain in experimental animals
and humans (Howard et al., 1996; Guan et al., 1997; Nakazato
et al., 2001; Gnanapavan et al., 2002; Zigman et al., 2006). In
peripheral organs, the GRLN-R has been described in the pitu-
itary, on vagal afferents, pancreas, spleen, myocardium, adipose
tissue, thyroid, and adrenal gland (Hattori et al., 2001; Gnana-
pavan et al., 2002; Schellekens et al., 2010). Interestingly, in the
brain the GRLN-R is able to form heterodimers with other recep-
tors such as the cannabinoid 1 (CB1) receptor (Schellekens et al.,
2010) and the dopamine receptor subtype 1 (D1; Jiang et al., 2006)
possibly leading to amplified signaling. On the other hand, the
GRLN-R rapidly desensitizes after stimulation through endocy-
tosis via clathrin-coated pits and shows slow non-dissociation of
the ligand/receptor (Camina et al., 2004), mechanisms likely to
prevent over-stimulation of the receptor.

BIOLOGICAL ACTIONS OF GHRELIN
The peptide hormone ghrelin exerts pleiotropic biological actions,
prominently on the regulation of food intake, gastrointestinal
motility, and energy homeostasis. In addition, there is a growing
body of evidence that ghrelin is also involved in stress pathways
as recently reviewed (Stengel et al., 2011c). Lastly, ghrelin seems
to be involved in the modulation of reproductive, cardiovascular,
and immune functions. Although additional functions and phar-
macological effects have been described for ghrelin (Ueno et al.,
2010; Steiger et al., 2011; Ukkola, 2011) this review will focus on
those listed above.

OREXIGENIC EFFECT
Ghrelin is the only known peripherally produced and centrally
acting hormone that is well established to stimulate food intake
following peripheral or brain injection in various animal models
(Wren et al., 2000; Tang-Christensen et al., 2004) as well as after
peripheral administration in lean and obese humans (Druce et al.,
2005). Similar to acyl (octanoyl) ghrelin, n-decanoyl ghrelin stim-
ulates food intake in mice (Hiejima et al., 2009). These effects are
mediated by interaction with the GRLN-R as conclusively shown
by the suppression of ghrelin-induced food intake by GRLN-R
antagonists (e.g., JMV 3002, 2959, and 2810; Salome et al., 2009).
Further supporting these results GRLN-R knockout mice failed
to increase food intake following exogenous administration of
ghrelin (Sun et al., 2004; Zigman et al., 2005). Interestingly, mice
over-expressing both ghrelin and desacyl ghrelin do not display
stimulated but rather decreased food intake (Iwakura et al., 2009)
which is not related to the desensitization of receptors. This is
suggested to be related to the gastric hypertrophy under these
conditions, although the balancing role of desacyl ghrelin coun-
teracting the orexigenic effect of ghrelin could not be ruled out as
recently reviewed (Stengel et al., 2010c).

Ghrelin exerts its orexigenic effects via direct actions on food
regulatory brain nuclei after passage through the blood–brain bar-
rier (Banks et al., 2002; Pan et al., 2006). Moreover, the GRLN-R is
expressed on vagal afferents (Date et al., 2002a; Sakata et al., 2003)
and therefore a mediation of the food intake stimulatory signals via
the vagus nerve has been proposed. In line with this assumption,
the ghrelin-induced food intake following intravenous injection
in rats (4.9 μg/rat) is abolished after subdiaphragmatic or gas-
tric vagotomy (Date et al., 2002a). However, in contrast with
this finding another study reported that after selective subdi-
aphragmatic vagal deafferentation intraperitoneally injected ghre-
lin (40 μg/kg, approximately 12 μg/rat) still stimulates food intake
in rats (Arnold et al., 2006). Whether this merely represents a dose-
related effect with recruitment of both vagal and direct central
mechanisms with increasing doses of peptides warrants further
investigation. Collectively, existing data support the contention
that ghrelin is likely to increase food intake via both, direct brain
action and vagal pathways. Lastly, ghrelin is not only involved in
the homeostatic control of food intake but also in the rewarding
aspect of food as recently reviewed (Skibicka and Dickson, 2011).
This was established by showing that the peripheral injection of
ghrelin in mice increases the consumption of saccharin irrespec-
tive of the caloric content, an effect that is no longer observed in
mice lacking the GRLN-R (Disse et al., 2010).

INTERACTION WITH APPETITE-REGULATING PEPTIDES IN THE
HYPOTHALAMUS AND MOLECULAR MECHANISMS
Ghrelin is also produced centrally in the arcuate nucleus of the
hypothalamus (Lu et al., 2002) and in neurons adjacent to the
third ventricle (Cowley et al., 2003). The arcuate nucleus plays
a major role in the regulation of food intake (Schwartz et al.,
2000) and neuroanatomical studies showed that ghrelin contain-
ing arcuate neurons are connected with agouti-related peptide
(AgRP) and neuropeptide Y (NPY) positive neurons (Cowley
et al., 2003; Guan et al., 2003), two major central orexigenic pep-
tides (Abizaid and Horvath, 2008). Peripheral administration of
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ghrelin selectively activates NPY immunoreactive arcuate neurons
in mice (Wang et al., 2002). Likewise, acute and chronic intrac-
erebroventricular (icv) injection of ghrelin activates NPY/AgRP
positive neurons and upregulates the expression of NPY and AgRP
mRNA (Kamegai et al., 2001). Pharmacological studies showed
that ghrelin’s orexigenic action is abolished by an anti-NPY or
anti-AgRP antibody (Nakazato et al., 2001). Gene deletion exper-
iments further highlight these findings. Mice lacking NPY and
AgRP do not respond to peripherally injected ghrelin whereas
mice with a single peptide gene knockout still showed an increased
food intake giving rise to a compensation of NPY by AgRP and
vice versa (Chen et al., 2004). Taken together, these data along
with the expression of GRLN-R in over 90% of all NPY neu-
rons in the ARC while the GRLN-R is only present in less than
8% of pro-opiomelanocortin (POMC) neurons (Willesen et al.,
1999) show that the orexigenic effect of ghrelin is mediated
by central AgRP and NPY signaling. However, while the orexi-
genic NPY/AgRP neuronal activity is stimulated, the activity of
POMC containing neurons is suppressed via inhibitory GABA-
ergic inputs. This lowering of activity of POMC promotes ghrelin’s
orexigenic action by dampening melanocyte stimulating hormone
(the peptide product of POMC) and cocaine- and amphetamine-
regulated transcript (CART) anorexigenic pathways (Cowley et al.,
2003).

The downstream signaling mechanisms in arcuate neurons
activated by ghrelin have been recently unraveled and reviewed
(Andrews, 2011). They involve AMP-activated protein kinase
(AMPK) – carnitine palmitoyltransferase 1 (CPT1) – uncoupling
protein 2 (UCP2) pathways that promote mitochondrial efficiency
and shield reactive oxygen species in order to maintain an appro-
priate firing response of NPY. Ghrelin increased mitochondrial
respiration in NPY arcuate neurons, an effect that was dependent
on UCP2 as shown by the complete absence of these changes in
mice lacking the UCP2 gene (Andrews et al., 2008). Ghrelin also
increased the number of mitochondria in NPY neurons in wild
type but not Ucp2 knockout mice (Andrews et al., 2008). In mice
lacking Ucp2, ghrelin increases reactive oxygen species suggesting
a buffering system by UCP2 (Andrews et al., 2008). The activation
of these NPY neurons as indicated by the increased action poten-
tial firing induced by ghrelin was also attenuated in Ucp2 knockout
mice (Andrews et al., 2008). Lastly, the ghrelin-induced food intake
was blunted in Ucp2 knockout mice (Andrews et al., 2008). It has
been shown that fasting induces an increased phosphorylation of
AMPK in the hypothalamus resulting in decreased hypothalamic
levels of malonyl-CoA and increased CPT1 activity (Lopez et al.,
2008). This effect on AMPK signaling is mimicked by injected
ghrelin (Lopez et al., 2008) pointing toward a physiological mech-
anism of ghrelin to promote feeding. Further corroborating this
hypothesis, central blockade of AMPK signaling by dominant neg-
ative forms of AMPKα1 and α2 reduced the orexigenic effect of
ghrelin (Lopez et al., 2008). Moreover, fasting as well as injec-
tion of ghrelin decreases the hypothalamic expression of fatty acid
synthase (FAS; Lopez et al., 2008). This fasting induced decrease
of FAS mRNA expression is absent in GRLN-R knockout mice
(Lopez et al., 2008) indicating a physiological effect of ghrelin.
Lastly, inhibition of AMPK signaling blocked the ghrelin-induced
reduction of FAS mRNA expression (Lopez et al., 2008) providing
insight into the downstream signaling of ghrelin to mediate the

central orexigenic action. The activation of AMPK signaling by
ghrelin was still visible in Ucp2 knockout mice (Andrews et al.,
2008) pointing toward an effect upstream of UCP2. On the other
hand, inhibition of AMPK signaling reduced food intake in wild
type but not Ucp2 knockout mice indicating that UCP2 is relevant
downstream of AMPK (Andrews et al., 2008). Chronic treatment
with ghrelin results in greater body weight gain in mice lacking the
UCP2 gene compared to wild type littermates due to decreased fat
oxidation (Andrews et al., 2010) highlighting the importance of
UCP2 for the restriction of fat storage.

EFFECTS ON ENERGY HOMEOSTASIS
In addition to its effects on short term modulation of food intake,
ghrelin also affects long term body weight homeostasis. Chronic
infusion of ghrelin enhances body weight gain in rodents which is
not only due to increased appetite but also to fat storage (Tschop
et al., 2000; Strassburg et al., 2008; Davies et al., 2009) especially in
retroperitoneal and inguinal fat tissue (Davies et al., 2009; Sangiao-
Alvarellos et al., 2009). On the other hand, mice that over-express
desacyl ghrelin have a decreased body weight compared to their
wild type littermates (Ariyasu et al., 2005) associated with reduced
amounts of perirenal and epididymal fat tissue (Zhang et al., 2008).
Since the food intake was not changed in those mice (Ariyasu
et al., 2005), these alterations could reflect a direct effect of desacyl
ghrelin on fat storage. However, in humans both acylated and
desacyl ghrelin have been reported to stimulate lipid accumulation
in visceral adipocytes (Rodriguez et al., 2009). Besides the effect
on increased storage, ghrelin also increases fat depots by reduc-
ing lipid mobilization as indicated by an increased respiratory
exchange ratio (Davies et al., 2009). Conversely genetically modi-
fied mice lacking both ghrelin and the GRLN-R display increased
energy expenditure resulting in a decrease of body weight (Pfluger
et al., 2008). Interestingly, mice lacking either ghrelin (Sun et al.,
2003; Pfluger et al., 2008) or the GRLN-R (Pfluger et al., 2008)
genes do not show these alterations. However, GRLN-R knockout
mice fed a high fat diet (a.k.a. western type diet) gain less body
weight than their wild type littermates (Zigman et al., 2005). Addi-
tional support for a role of ghrelin in energy homeostasis comes
from ghrelin knockout mice fed a high fat diet that show a reduced
respiratory quotient indicating increased fat utilization (Wortley
et al., 2004). When ghrelin was infused chronically icv glucose
utilization was increased in brown adipose tissue (Theander-
Carrillo et al., 2006). Ghrelin increased the mRNA expression
of FAS, acetyl-CoA carboxylase alpha, stearoyl-CoA desaturase-1,
and lipoprotein lipase (Theander-Carrillo et al., 2006), all enzymes
involved in promotion of fat storage. On the other hand, the
mRNA expression of the major enzyme of fat oxidation, carnitine
palmitoyltransferase-1alpha was reduced. Supporting a physiolog-
ical relevance of these findings, ghrelin deficient mice showed an
opposite expression pattern of these enzymes (Theander-Carrillo
et al., 2006). Interestingly, mice lacking the β1-, β2-, and β3-
adrenoceptor treated icv with ghrelin did not gain body weight
and did not show an up-regulated mRNA expression of, e.g., FAS
as observed in wild type mice (Theander-Carrillo et al., 2006)
indicating a crucial involvement of the sympathetic nervous sys-
tem in the homeostatic effects of ghrelin. In summary, ghrelin is
involved in the maintenance of energy homeostasis and promotes
fat storage.
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The role of GOAT in energy homeostasis was investigated using
mice lacking Mboat4 or over-expressing human ghrelin and GOAT
(Kirchner et al., 2009). Mice lacking Mboat4 did not show changes
in body weight when fed a standard rodent diet but developed
a reduced body weight when fed a high fat diet compared to
their wild type littermates (Kirchner et al., 2009). Furthermore,
adding specifically medium-chain triglycerides to the diet results
in lowering of fat mass and body weight of Mboat4 knockout mice
(Kirchner et al., 2009) leading to the hypothesis that GOAT is
acting as a lipid sensor.

EFFECTS ON GASTROINTESTINAL MOTILITY
Several food intake regulatory peptides also influence gastroin-
testinal motility and therefore alteration of this function was early
on suspected for ghrelin. In addition, the variation of circulating
ghrelin levels is closely associated with the occurrence of gastric
migrating motor complexes (Ariga et al., 2007). When injected
intravenously, ghrelin increases antral motility in rats (Masuda
et al., 2000; Fujino et al., 2003), dogs (Yin and Chen, 2006), and
humans (Tack et al., 2006). Conversely, GRLN antagonists abolish
gastric phase III-like contractions in mice (Zheng et al., 2009a) and
rats (Ariga et al., 2007; Taniguchi et al., 2008a). In addition, ghrelin
stimulates the antropyloric coordination when injected intraperi-
toneally (Ariga et al., 2008). The increased gastric propagative
contractile activity could underlie the ghrelin-induced accelera-
tion of gastric emptying of liquid and solid food in rats (Trudel
et al., 2002; Fukuda et al., 2004; Depoortere et al., 2005; Wang et al.,
2006; Tumer et al., 2008), mice (Asakawa et al., 2001b; Dornonville
de la Cour et al., 2004; Kitazawa et al., 2005), and humans (Levin
et al., 2006). Therefore, ghrelin is also proposed to act as a gas-
troprokinetic under conditions of reduced gastric motility such as
diabetic gastroparesis or after abdominal surgery known to induce
postoperative gastric ileus (Camilleri et al., 2009; Sallam and Chen,
2010; Stengel and Taché, 2011). Interestingly, only pharmacologi-
cally high doses of ghrelin are able to provoke a gastroprokinetic
effect in humans with neurogenic, diabetic, or idiopathic gastro-
paresis (Murray et al., 2005; Tack et al., 2005; Binn et al., 2006),
whereas lower doses that have an effect on GH release do not
modulate gastric emptying (Cremonini et al., 2006).

In addition to these effects in the stomach, intravenous infusion
of ghrelin also increases small intestinal interdigestive contractions
(Edholm et al., 2004; Taniguchi et al., 2008b) resulting in an accel-
eration of small intestinal transit in rats (Trudel et al., 2002; Fukuda
et al., 2004). Likewise, also colonic transit is increased by intra-
venous (Shimizu et al., 2006), intrathecal (Shimizu et al., 2006) as
well as third intracerebroventricular injection (Tebbe et al., 2005)
of ghrelin or ghrelin agonists.

EFFECTS ON REPRODUCTIVE FUNCTIONS
Ghrelin has only recently emerged as a possible signal to participate
in the regulation of reproductive physiology by both hormonal
actions at different levels of the reproductive system as well as by
direct gonadal actions in males and females as recently reviewed
in detail (Muccioli et al., 2011). Supporting a local action, ghrelin
is expressed in the rat testis (Barreiro et al., 2002) and similar
to rodent models, ghrelin RNA expression was also detected in
human testis (Gnanapavan et al., 2002; Gaytan et al., 2004) with

a cellular distribution pattern in Leydig cells (Gaytan et al., 2004)
and Sertoli cells (Barreiro et al., 2003). Along with the ligand, the
GRLN-R has been localized in rat and human testis on differ-
ent cell types, namely the Leydig cells, Sertoli cells, and probably
germ cells (Barreiro et al., 2003; Gaytan et al., 2004). Likewise,
in several female animal species and humans, the expression of
ghrelin has been documented in ovary, hilus interstitial cells and
young and mature corpora lutea and that of GRLN-R protein in
oocytes, somatic follicular cells, hilus interstitial cells, and luteal
cells (Muccioli et al., 2011).

In keeping with high demand in energy of the reproductive axis,
ghrelin acting at central and peripheral levels is largely inhibitory.
When ghrelin is injected centrally in rats, the peptide suppresses
luteinizing hormone (LH) secretion in ovariectomized female rats
(Furuta et al., 2001) as well as cyclic female rats (Fernandez-
Fernandez et al., 2006). Similarly, gonadotropin releasing hor-
mone (GnRH) is significantly inhibited by ghrelin (Fernandez-
Fernandez et al., 2006). This inhibition could be, at least in part,
due to a suppression of Kiss1 gene expression (Forbes et al., 2009).
However, in vitro studies reported a stimulatory effect of ghrelin on
LH and follicle stimulating hormone (FSH) release from pituitary
tissue (Fernandez-Fernandez et al., 2006) indicating a differen-
tial mode of action when injected centrally versus applied locally
on the pituitary gland. Consistent with its inhibitory effects on
LH and FSH release, ghrelin delayed balano-preputial separation
(Zigman and Elmquist, 2003; Fernandez-Fernandez et al., 2005b;
Martini et al., 2006) and vaginal opening (Fernandez-Fernandez
et al., 2005a) as an indicator of puberty in male and female rats,
respectively.

EFFECTS ON CARDIOVASCULAR FUNCTIONS
Ghrelin and the GRLN-R are also expressed in cardiomyocytes
with decreased hormone and increased receptor expression in
patients with congestive heart failure (Beiras-Fernandez et al.,
2010) which supports the effects of ghrelin on cardiovascular func-
tions. In cultured H9c2 cardiomyocytes, ghrelin and the ghrelin
mimetic hexarelin increase proliferation as indicated by increased
thymidine incorporation, an effect that is likely to be mediated
by a receptor different than the GRLN-R due to binding of ghre-
lin and hexarelin also in the absence of the GRLN-R (Petters-
son et al., 2002). In addition, ghrelin also exerts antiapoptotic
effects on mouse and rat cardiomyocytes by acting on MAPK
and PI3K/Akt pathways, an effect also mimicked by desacyl ghre-
lin (Baldanzi et al., 2002; Lear et al., 2010). Moreover, hexarelin
reduces apoptosis of rat cardiomyocytes by blocking caspase-3
activity, reducing the expression of the proapoptotic Bax protein
and increasing expression levels of the antiapoptotic Bcl-2 (Pang
et al., 2004).

Besides the effects on proliferation and controlled cell death,
ghrelin also affects blood pressure and cardiac output. The GH
secretagogue induced an increase in cardiac output in rats (Nagaya
et al., 2001b) and humans (Bisi et al., 1999) which may be a direct
effect (Enomoto et al., 2003) but also be secondary to the vasodi-
latation or release of GH (Tajima et al., 1999). Ghrelin decreases
blood pressure (Nagaya et al., 2001a) likely through activating
endothelial nitric oxide synthase (eNOS; Shimizu et al., 2003) but
also nitric oxide independent mechanisms (Okumura et al., 2002).
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In addition, ghrelin also exerts a direct inhibitory effect on sympa-
thetic nervous activity when microinjected into the nucleus of the
solitary tract in rats, a major autonomic brain nucleus in the brain-
stem (Lin et al., 2004). Conversely, reduction of ghrelin signaling
by peripheral administration of the GRLN-R antagonist, [d-Lys-
3]-GHRP-6 increases heart rate and mean arterial pressure, an
effect blocked by inhibition of alpha- and beta1-adrenoreceptors
(Vlasova et al., 2009).

These effects mentioned above may have clinical significance
mainly under conditions of cardiac ischemia. Hexarelin (Locatelli
et al., 1999) and ghrelin (Frascarelli et al., 2003) protect against
cardiac damage as shown by a decrease in infarction size post
ischemia. In line with these findings, the injection of ghrelin dur-
ing reperfusion after an ischemic period in rats exerts beneficial
effects on heart functions as indicated by increased left ventricu-
lar contraction and improved left ventricular systolic pressure and
coronary flow (Chang et al., 2004). Ghrelin may also induce ben-
eficial effects in patients with congestive heart failure as suggested
by a pilot study reporting that these subjects treated with ghrelin
intravenously over a period of 3 weeks increased left ventricular
ejection fraction associated with lower left ventricular end-systolic
volume (Nagaya et al., 2004), an interesting finding to be followed
up in larger cohorts of patients. Based on growing evidence, the
administration of ghrelin might become a unique new therapy for
cardiovascular diseases (Kishimoto et al., 2011).

EFFECTS ON STRESS AND COPING FUNCTIONS
Recent studies investigated the role of ghrelin in the stress response
and a possible involvement in coping functions. In a model of
mice maintained under conditions of caloric restriction, circulat-
ing acyl ghrelin levels increased, and animals showed an anxiolytic
and antidepressant behavior (Lutter et al., 2008). These types of
behavior were mimicked by exogenous administration of ghre-
lin and not observed in mice lacking the GRLN-R (Lutter et al.,
2008). In a different animal model of chronic defeat stress, despite
the increase of blood ghrelin levels mice display depression-like
symptoms such as reduced social interaction (Lutter et al., 2008).
These behavioral alterations are more pronounced in mice lacking
the GRLN-R (Lutter et al., 2008) pointing toward a stress cop-
ing effect of ghrelin. In line with these findings, circulating levels
of ghrelin are increased after restraint stress in rats (Zheng et al.,
2009b). Moreover, Wistar Kyoto rats, a rat strain displaying more
anxiety than Sprague Dawley rats, have twofold lower fasting ghre-
lin levels compared to Sprague Dawley rats (Florentzson et al.,
2009). Lastly, a study in human subjects reported that intravenous
administration of ghrelin reduced the mental stress-induced rise
in blood pressure and sympathetic nerve activity (Lambert et al.,
2011).

Contrasting with the body of evidence described above, another
study reported that peripheral or direct brain injection of ghrelin
increases anxiety which is blocked by a non-selective corticotropin
releasing factor (CRF) receptor subtypes 1 and 2 antagonist, α-
helical CRF9–41 (Asakawa et al., 2001a). In addition, ghrelin stim-
ulates CRF release from hypothalamic cells in vitro (Kageyama
et al., 2011) leading to the hypothesis that ghrelin may increase
CRF signaling pathways and thereby some biological components
linked with the stress response. In summary, the role of ghrelin

in response to stress and possible coping modulatory properties
remain to be further characterized and may differ in states of acute
versus chronic stress.

EFFECTS ON IMMUNE FUNCTIONS
Expression and effect on cytokine production under acute
conditions
Ghrelin, like the expression of several other gut peptides is found
in immune cells encompassing B and T cells as well as monocytes
and natural killer cells (Hattori, 2009; Figure 3). In addition, also
the GRLN-R is expressed on rodent immune cells (Gnanapavan
et al., 2002) and has subsequently also been detected on human
monocytes and T cells (Dixit et al., 2004; Figure 3).

Ghrelin and ghrelin agonists have an immunomodulatory pro-
tective effect under conditions of acute endotoxinemia resulting
in reduced tissue infiltration by immune cells (Chen et al., 2008;
Li et al., 2010) and decreased mortality (Chang et al., 2003b). This
could be mediated directly via the interaction with immune cells
since ghrelin reduces the mRNA and protein production of the
proinflammatory cytokines, interleukin-1α (IL-1α), IL-1β, IL-6,
and tumor necrosis factor α (TNF-α) after an immune challenge,
an effect not observed with desacyl ghrelin (Dixit et al., 2004;
Figure 3). Ghrelin affects both the Th1 and the Th2 pathways as
shown by the suppression of IL-2 and interferon-γ and IL-4 and
IL-10 respectively in mice (Xia et al., 2004). Conversely, when ghre-
lin expression is knocked down in T cells by silencing RNA, levels
of proinflammatory cytokines such as interferon-γ and IL-17 were
increased giving rise to a physiological role of ghrelin in regulat-
ing the inflammatory response (Dixit et al., 2009). One important
regulatory pathway targeted seems to be the high mobility group
box 1 (HMGB1), a DNA-binding factor acting as late inflamma-
tory factor crucial for progression of sepsis (Chorny et al., 2008)
and activating peroxisome proliferator-activated receptor gamma
(PPAR gamma; Cheng et al., 2009), whose inhibition by ghre-
lin resulted in blunted circulating cytokine levels (Chorny et al.,
2008). Similar to the orexigenic effect, the vagus nerve seems to

FIGURE 3 | Schematic overview of ghrelin derived from gastric X/A-like

cells or immune cells and effect on cytokine production and release

from immune cells under immune challenge conditions.
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play a role in the mediation of ghrelin’s effects on immune actions
as after vagotomy IL-6 and TNF-α levels were not blocked by
ghrelin under immune challenge conditions (Wu et al., 2007a). An
overview of studies reporting the effects of ghrelin treatment on
cytokine levels is given in Table 1.

The use of the endotoxin LPS which is part of the mem-
brane of Gram-negative bacteria is a well established model of
acute immune stress. Under these conditions ghrelin reduces
NFκB activity and lowers the circulating levels of TNF-α, mono-
cyte chemotactic protein-1 (MCP-1), and IL-8 (Li et al., 2004).
This effect was also reproduced in human cells where ghrelin
blocked the expression of proinflammatory cytokines in human
monocytes following an LPS challenge (Dixit et al., 2004). Sev-
eral studies investigated the regulation of ghrelin under these
conditions and reported a decrease of circulating ghrelin lev-
els following endotoxin challenge or cytokine injection (Basa
et al., 2003; Hataya et al., 2003; Wang et al., 2006; Endo et al.,
2007; Vila et al., 2007). Similarly, after cecal ligation and punc-
ture in rats, the circulating levels of ghrelin were reduced as
well as the GRLN-R mRNA expression in the intestine, aorta,
and heart (Wu et al., 2005) indicating not only a regulatory but
also adaptive role of the ghrelin signaling system under these
conditions.

Effects on cytokine production under subacute and chronic
conditions
Contrasting to the acute regulation, under chronic conditions,
circulating ghrelin levels were reported to be increased during
postoperative sepsis (Maruna et al., 2005) as well as in a mouse
model of trinitrobenzene sulfate (TNBS)-induced acute colitis

(Gonzalez-Rey et al., 2006). In this colitis model, ghrelin injected
intraperitoneally improves clinical signs of illness along with his-
tological signs of colitis by reducing the mRNA and protein
expression of inflammatory cytokines such as TNF-α, IFN-γ,
IL-1α, IL-1β, IL-6, IL-12, IL-15, IL-17, and IL-18 and increas-
ing the colonic levels of the anti-inflammatory cytokine IL-10
(Gonzalez-Rey et al., 2006).

In a rat model of cardiac ischemia chronic ghrelin treatment
over a period of 4 weeks inhibited myocardial remodeling and
thereby improved cardiac functions (Huang et al., 2009). Similarly,
subcutaneous ghrelin treatment over a period of 5 weeks reduced
the clinical severity of experimental allergic encephalomyelitis, a
mouse model of multiple sclerosis which was associated with the
reduction of proinflammatory cytokines including TNF-α, IL-1β,
and IL-6 probably derived from microglia (Theil et al., 2009).

Lastly, the role of ghrelin signaling was also investigated in
the context of rheumatoid arthritis. Ghrelin mRNA and peptide
expression has been detected in mouse, rat, and human chondro-
cytes (Caminos et al., 2005). In addition, GOAT mRNA expres-
sion was detected in cultured murine and human immortalized
chondrocytes and found to be decreased by LPS (Gomez et al.,
2009). In a rat model of adjuvant-induced arthritis and in patients
with rheumatoid arthritis circulating ghrelin levels were reduced
(Otero et al., 2004). Exogenous administration of ghrelin was
shown to attenuate arthritis in the rodent model associated with
a decreased production of TNF-α and IFN-γ whereas expression
of the anti-inflammatory cytokine IL-10 was increased (Granado
et al., 2005a,b). These studies may be indicative of a potential
use of ghrelin or ghrelin agonists in the treatment of rheumatoid
arthritis.

Table 1 | Effects of ghrelin treatment on cytokine levels in animal models of inflammation.

Species Condition Effect of ghrelin Reference

Mouse LPS 10 μg/mouse Suppression of serum TNF-α, IL-1β, IL-6 Dixit et al. (2004)

Mouse LPS 400 μg/mouse, ip Suppression of serum TNF-α, IL-1β, IL-6, IL-12 Chorny et al. (2008)

Mouse LPS 3.5 mg/kg, ip Suppression of serum and kidney tissue TNF-α, IL-1β, IL-6 Wang et al. (2009)

Mouse TNBS-induced colitis Suppression of colonic mucosal and serum TNF-α, IL-1β, IL-6 Gonzalez-Rey et al. (2006)

Mouse Experimental allergic encephalomyelitis Suppression of spinal cord tissue TNF-α, IL-1β, IL-6 Theil et al. (2009)

Rat LPS 10 mg/kg, iv Suppression of serum TNF-α, IL-8, MCP-1 Li et al. (2004)

Rat LPS, it Suppression of bronchial alveolar lavage fluid TNF-α, IL-1β Chen et al. (2008)

Rat Cecal ligation and puncture Suppression of peritoneal fluid and serum TNF-α, IL-6 Wu et al. (2007a,b)

Rat Cecal ligation and puncture Suppression of liver MKP1 Jacob et al. (2010)

Rat Acetaminophen induced liver injury Suppression of liver TNF-α Golestan Jahromi et al. (2010)

Rat Bile duct ligation Suppression of serum TNF-α, IL-1β, IL-6 Iseri et al. (2008)

Rat Pancreatitis by sodium taurocholate injection Suppression of serum TNF-α, IL-1β, IL-6 Zhou and Xue (2009)

Rat Intestinal ischemia Suppression of serum TNF-α, IL-6 Wu et al. (2008)

Rat Cardiac ischemia Cardiac neighboring tissue levels of TNF-α, IL-1β Yuan et al. (2009)

Rat Cardiac ischemia Cardiac neighboring tissue levels of TNF-α, IL-1β mRNA,

MMP2, MMP9

Huang et al. (2009)

Rat Sciatic nerve ligation Suppression of spinal cord tissue TNF-α, IL-1β Guneli et al. (2010)

Rat Subarachnoid hemorrhage Suppression of serum TNF-α, IL-1β Ersahin et al. (2010)

Rat Cerebral ischemia Suppression of cerebral tissue TNF-α, IL-6 mRNA Cheyuo et al. (2010)

Rat Chronic renal failure by nephrectomy Suppression of serum TNF-α, IL-1β, IL-6 Deboer et al. (2008)

ip, Intraperitoneally; it, intrathecally; iv, intravenously; MKP1, mitogen activated protein kinase phosphatase-1; MMP, matrix metalloproteinase.
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ALTERATIONS OF CIRCULATING GHRELIN BY STRESS OR
IMMUNE CHALLENGES
A number of studies have investigated the impact of various
challenges on circulating levels of ghrelin and desacyl ghrelin in
experimental animals and humans as recently reviewed (Stengel
et al., 2011c).

PSYCHOLOGICAL STRESSORS
In a model of water avoidance stress, this psychological stres-
sor applied acutely (for 90 min) or continuously (over a period
of 5 days) increases circulating acyl (Ochi et al., 2008) and total
(Kristenssson et al., 2006; Ochi et al., 2008) ghrelin levels in rats.
This was associated with an increased expression of gastric ghrelin
mRNA (Zheng et al., 2009b). Such changes in ghrelin levels were
shown to play a physiological role in the restoration of gastric
emptying inhibited acutely by such a stress exposure (Ochi et al.,
2008). Similarly, in a mouse model of induced depression by daily
social defeat associated with exposure to aggressive CD1 mice over
a period of 10 days circulating ghrelin levels were increased after
the stress on day 11 and remained elevated for a period of 4 weeks
(Lutter et al., 2008). This increase contributes to the blunting of
deleterious effects of chronic stress such as reduced social interac-
tion and food intake (Lutter et al., 2008). Another model of chronic
unpredictable stress consisting of heterotypic stressors such as
noise, open field, aggressive male, novel aversive environment,
predator scent, and restraint over a period of 14 days results in an
increase of blood acyl ghrelin levels in mice (Patterson et al., 2010).
These effects are not restricted to animal models as the Trier Social
Stress Test, a well described stress test for humans where partici-
pants have to give a speech in front of an expert committee being
videotaped, leads to an increase of circulating total ghrelin levels
(Rouach et al., 2007; Raspopow et al., 2010). In summary, various
psychological stressors increase circulating ghrelin levels not only
in animals but also in humans. This increase could play a role in the
defense against depressive-like symptoms (Lutter et al., 2008) and
stress-induced eating and food-reward behavior (Chuang et al.,
2011) under conditions of chronic stress as recently hypothesized.

ENDOTOXIN
Injection of LPS at a low dose (100 μg/kg) mimics symptoms of
an acute infection including reduced appetite and increased body
temperature (Langhans, 1996, 2000; Wang et al., 2006). At the
same time, LPS decreases fasting levels of circulating total ghre-
lin in rats (Basa et al., 2003; Wang et al., 2006; Stengel et al.,
2010b). This decrease was rapid in onset and long lasting and
levels were completely restored at 24 h post injection (Wang et al.,
2006; Stengel et al., 2010b). Exogenous administration of ghrelin
under these conditions restored both gastric emptying and food
intake which may be indicative that alterations in circulating ghre-
lin could be part of the underlying mechanisms associated with
alterations of ingestive and gut function in response to bacterial
infections. Also, studies in human subjects reported a decrease of
circulating ghrelin at 5 h post injection (Vila et al., 2007). However,
this was preceded by a rapid increase of ghrelin at 2 h post injec-
tion (Vila et al., 2007). In addition, under conditions of chronic
infection with the Gram-negative bacterium, Helicobacter pylori,
circulating ghrelin levels are also decreased when compared to H.
pylori negative individuals (Jeffery et al., 2011) and eradication of

the bacteria was reported to restore ghrelin levels and to improve
appetite and increase body weight (Jeffery et al., 2011). In contrast
to these states of mild inflammation, when assessed under condi-
tions of septic shock, circulating ghrelin levels were increased in
fasted dogs after injection of high dose endotoxin (1 mg/kg; Yilmaz
et al., 2008) and in fasted rats after cecal ligation and perforation
(Chang et al., 2003a) that was associated with reduced mean arte-
rial blood pressure and blood glucose levels (Chang et al., 2003a).
Likewise, in humans ghrelin levels increased during the first days
of sepsis (Maruna et al., 2005). Whether this increase is merely
due to reduced ghrelin clearance observed under those conditions
(Wu et al., 2003) or also reflects increased production, activation,
and release warrants further investigation.

ABDOMINAL SURGERY
Abdominal surgery consisting of laparotomy and cecal palpation
is a well established model for visceral stress which induces a rapid
and long-lasting decline in fasted plasma acyl and desacyl ghre-
lin levels observed at 0.5, 2, and 5 h post surgery (Stengel et al.,
2010a, 2011b). Ghrelin levels were partly recovered at 7 h and fully
restored at 24 h post surgery (Stengel et al., 2011b). This decrease
was accompanied by a delay of gastric emptying and a reduction
of food intake (Stengel et al., 2011a). Interestingly, in humans an
increase of total ghrelin was observed at 24 h post surgery com-
pared to preoperative levels (Maruna et al., 2008), a difference that
remains to be further investigated.

SUMMARY
Ghrelin as new gastric hormone has attracted much attention
early on due to its stimulatory effects on food intake observed
across many species. Thereafter, fields of ghrelin investigation
expanded to encompass integrated actions of the orexigenic effect
with that on energy homeostasis and gastrointestinal motility.
More recently, our knowledge is increasing on the modulatory
actions of ghrelin on cardiovascular (antiapoptotic effects, pro-
tection against cardiac damage, increase of cardiac output) and
reproductive functions (largely inhibitory) along with inflamma-
tion (largely suppressing the production of cytokines). In addi-
tion, ghrelin, can restore various functions, e.g., gastric emptying
affected under conditions of inflammation and stress responses
(increases coping, blunts the effects of chronic stress). Although
several important questions were answered recently, highly rele-
vant cellular and molecular mechanisms remain to be investigated
and clearly defined. These include the receptor expression pat-
tern of the gastric X/A-like cell to characterize the possible direct
interactions with other transmitters modulating the expression
and release of ghrelin under different conditions. The subcellular
mechanisms of ghrelin expression, processing, and release lead-
ing to the altered circulating levels of the acyl and non-acylated
form of the peptide hormone need to be characterized. Genetic
approaches such as labeling with fluorescent dye followed by iso-
lation of the X/A-like cells for microarray as well as in vitro analyses
will be helpful to approach these goals.
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