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In the field of biology, researchers need to compare genes or gene products using semantic similarity measures (SSM). Continuous
data growth and diversity in data characteristics comprise what is called big data; current biological SSMs cannot handle big data.
Therefore, these measures need the ability to control the size of big data. We used parallel and distributed processing by splitting
data into multiple partitions and applied SSM measures to each partition; this approach helped manage big data scalability and
computational problems. Our solution involves three steps: split gene ontology (GO), data clustering, and semantic similarity
calculation. To test this method, split GO and data clustering algorithms were defined and assessed for performance in the first
two steps.Three of the best SSMs in biology [Resnik, Shortest Semantic Differentiation Distance (SSDD), and SORA] are enhanced
by introducing threaded parallel processing, which is used in the third step. Our results demonstrate that introducing threads
in SSMs reduced the time of calculating semantic similarity between gene pairs and improved performance of the three SSMs.
Average time was reduced by 24.51% for Resnik, 22.93%, for SSDD, and 33.68% for SORA. Total time was reduced by 8.88% for
Resnik, 23.14% for SSDD, and 39.27% for SORA. Using these threaded measures in the distributed system, combined with using
split GO and data clustering algorithms to split input data based on their similarity, reduced the average time more than did the
approach of equally dividing input data. Time reduction increased with increasing number of splits. Time reduction percentage
was 24.1%, 39.2%, and 66.6% for Threaded SSDD; 33.0%, 78.2%, and 93.1% for Threaded SORA in the case of 2, 3, and 4 slaves,
respectively; and 92.04% for Threaded Resnik in the case of four slaves.

1. Introduction

Massive data is generated daily from multiple sources such
as electronic devices or the Internet; network sensors and
healthcare and laboratory equipment; and sources of mobile
data. Data generated from the Internet comes from social
networking sites, governments, or large companies such
as Google and Yahoo. In recent years, these data sources
have grown continuously; traditional approaches to data
management cannot handle this growth. This phenomenon
is called “big data.”

Laney [1] defined challenges present in big data manage-
ment in three dimensions (a.k.a., the 3Vs): volume, variety,
and velocity. Volume refers to the increasing size of data.
Variety refers to the types of data including text, graphs,

images, video, audio, and other types. Velocity means that
data are generated continuously as a stream at high speeds
and needs to be processed as they are generated. Fan et
al. [2] added two more Vs to this model: variability and
value. Variability means there are changes in data structure
and interpretation. Value is the business value that gives
a competitive advantage to the organization. Volume and
velocity were the focus of previous research; the variety of
available data worldwide has received less attention. Abawajy
[3] discussed dimensions in the variety of big data, terming
them structure diversity, content diversity, source diversity,
and processing diversity. Structure diversity includes three
types of data: structured data, semistructured data, and
unstructured data. Content diversity means data are single-
media data, multimedia data, or graph data. Source diversity
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means data are machine-generated, human-generated, or
process-generated. Finally, processing diversity represents
the data processing types, namely, batch processing, stream
processing, interactive processing, or graph processing.

Genetics is one of the biggest sources of big data. A single
sequence of human genome is approximately 140 gigabytes;
therefore, storing and comparing human genomes require
more than a personal computer and online file-sharing
applications. The European Bioinformatics Institute (EBI),
one of the most important repositories of big data in biology,
stores more than 20 petabytes of data on genes, proteins, and
small molecules; one petabyte is 1015 bytes. Genomic data
represents two petabytes of that, and this number is doubled
every year. Biology labs access approximately one terabyte
(1012 byte) of big data stored at EBI or the National Center
for Biotechnology Information daily and generate more new
data. Therefore, small labs are also generators of big data [4].

Biological data increase not only in size but also in
diversity [5]. Biological data are produced via a wide range of
procedures; each procedure generates various pieces of infor-
mation such as those on genetic or protein interactions.These
data are analyzed within or across different heterogeneous
sources, providing information that cannot be found from
analyzing the literature or individual data sources. Therefore,
it is important that companies and researchers have the ability
to mine and analyze big data to find information, establish
patterns, and form hypotheses.

Calculating semantic similarity is essential for comparing
genes and gene products. A semantic similarity measure is
a function that takes two GO terms or two sets of terms
representing the annotations of two entities and returns
a numerical value representing the closeness in meaning
between them [6]. Standard SSMs such as Palmer’s [7], cosine
similarities [7, 8], and semantic proximity [9, 10] are suitable
for some fields of study but are inaccurate for calculating
semantic similarity between objects in other fields. In the
field of biology, for example, comparing GO annotation
terms is not enough; therefore, semantic similarity is mea-
sured by comparing features that describe the objects and
the hierarchal relationships between these features [11–13].
Consequently, some SSMs are defined specifically for biology
to measure the similarity between genes and gene products.
A biological SS measure can be used to compute: similarity
between gene ontology (GO) terms (term similarity), simi-
larity betweenGOproducts (where each product is annotated
with a set of GO terms), and gene product similarity.

There is no standard approach to determine the best
similarity measures for each application; therefore, litera-
ture and recent surveys [14–16] compare and test SSMs.
Recent reviews indicate that Resnik is the best SS measure
in certain settings, followed by SSDD and SORA. To the
best of our knowledge, no previous studies applied these
similarity measures to big data. However, using semantic
similarity measures to analyze large sets of biomedical data is
addressed in [17], in which they used parallel computation on
amulticore processor, and in [18], whereGO informationwas
stored in a hash table to avoid repeatedly traversing the GO
graph, thereby improving computational efficiency. Here, we
aimed to enhance the three best SSMs designed for biology

(Resnik, SSDD, and SORA), enabling them to handle big
data volume using a distributed processing system. Biolog-
ical SSMs cannot handle big data. Therefore, a distributed
processing system can be used to split data into multiple
partitions. SS measures are then applied to each partition.
This manages big data scalability and avoids computational
problems, leading to good performance. Consequently, in
this study, we investigated how using a distributed processing
system can improve the performance of Resnik, SSDD, and
SORA in the field of biology.

The rest of this paper is organized as follows. Section 2
introduces a background about gene ontology (GO) and
Semantic Similarity Measures (SSMs). Section 3 describes in
detail thematerials andmethods for enhancing the best three
biological semantic similarity measures. Section 4 discusses
and analyzes the results. Section 5 provides the conclusions
and future directions.

2. Background

2.1. Gene Ontology. GO is a valuable resource in bioinfor-
matics. GO provides a structured, precisely defined, and
controlled vocabulary to describe genes and gene products
according to three categories: biological process (BP), molec-
ular function (MF), and cellular components (CC) [19]. Each
of these categories is represented by a separate ontology of
terms such as rooted Directed Acyclic Graph (rDAG) [20]
(Figure 1). Each term in GO is associated with annotations
describing MF, biological role, and localization. Annotation
can be computationally inferred, such as Inferred from
Electronic Annotation (IEA), or experimentally determined,
which is indicated by an Evidence Code (EC). EC is more
reliable than IEA in representing the type of process that
generates the annotation [15].

2.2. SSM. A semantic similarity measure (SS measure) is a
function that takes two GO terms, or two sets of terms repre-
senting annotations of two entities, and returns a numerical
value representing the closeness in meaning between them
[6]. An SS measure can be used to compute similarity
between GO terms (term similarity), similarity between GO
products (where each product is annotated with a set of GO
terms), and gene product similarity. Term similarity and gene
product similarity are described below [21].

2.2.1. Term Similarity. This SS measure was developed by
Rada et al. [22], who proposed a metric called distance to
measure the distance between two concepts in a graph via
the shortest path between these concepts. Distance has some
limitations. It considers that all edges in the graph have the
sameweight.This is not the case inGO,where edgesmay have
different weights even if they are at the same level. Moreover,
it takes the shortest path between two nodes regardless of
their distance to the root (depth). Previous studies used
two methods to solve these issues. The internal method was
to calculate the semantic similarity between two concepts
based on GO structure.The external method was to calculate
semantic similarity based on external corpora.
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Figure 1: Section of GO graph showing biological process (BP), molecular function (MF), and cellular components (CC) and some of their
descendants [16].

(i) Internal methods resolved the aforementioned issues
by considering the depth of the lowest common
ancestor (LCA) between terms [23], distance to the
nearest leave node [24], depth of the distinguished
GO subgraph [25], and distance to the LCA between
terms with a number of subclasses [26].

(ii) External methods were developed by Resnik [27],
where the semantic similarity between two terms is
calculated based on Information Content (IC) and
GO taxonomy structure. IC measures the similarity
between two concepts bymeasuring howmuch infor-
mation they share. The IC of a concept is acquired by
calculating the probability of the occurrence of the
concept in a selected corpus. As described in [28],
uniformly scaling the IC values simplifies interpre-
tation. There are two methods for applying IC to
the common ancestor of two concepts: considering
the most informative common ancestor (MICA) with
the highest IC [27] or considering all the disjoint
common ancestors (DCA) [29–31]. Therefore, the
similarity between two concepts can be the IC of
MICA [32] or the combined IC of MICA and that of
the two concepts, which are weighed according to the
IC value of MICA [33].

(iii) Hybrid methods combine both internal and external
methods, such as combining the IC-based strategy
with the edge [34], number of descendants [35], depth
and descendants [36], or entropy [37].

2.2.2. Gene Product Similarity. A gene product can be anno-
tated by several GO terms. To calculate SS measure for these
terms, pairwise or groupwise methods can be used:

(i) Pairwise method calculates individual semantic sim-
ilarity among all terms annotating two gene products

and then calculates the average, maximum, mini-
mum, or sum for all the pairs of terms or only for the
best-matched pair of each term. For example, average
(AVG) [32] calculates the average of all pairwise
similarities; maximum (MAX) [38] calculates the
maximum of all pairwise similarities; best match
average (BMA) [39] calculates the average of the
best-matched pairs; and FunSim [33] combines two
semantic similarities by finding AVG, MAX, or BMA
values and combining them in a nonlinear approach.
IC-based semantic similarity [40] creates averages for
the best-matched pairs. FuSSiMeG [41] is similar to
MAX, but it weighs the IC pairwise similarities of the
terms, after which the term with maximum IC weight
is selected.

(ii) Groupwise methods calculate semantic similarity
using a set, graph, or vector approach:

(a) In the set method, groupwise methods encom-
pass set-based techniques with respect to all
direct annotations. The main disadvantage of
this method is that it does not take into account
the shared ancestry between GO terms.

(b) In the graph method, the direct and indirect
annotations of gene products are represented
as a graph, and set-based or graph-matching
methods are used afterward to calculate seman-
tic similarity. This method is better than the
set method because it considers all direct and
indirect annotations.

(c) With vector methods, gene products are rep-
resented in a vector space, where each term
is represented as a dimension; similarity is
calculated using the vector similarity measure.
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Several previous studies combined groupwise approach with
the IC of terms. One study considered using the IC of terms
to perform similarity computations, such as in simGIC [28],
which compares two sets based on an IC-weighed Jacquard
similarity. Additionally, IC can be used as a scalar value,
such as in InteliGO [42], which combines the IC value and
evidence content of annotations. Moreover, IC can be used to
compute the IC value of shared subgraphs [27].

2.2.3. The Best SS Measure. There is no standard approach to
determine the best similarity measure for each application;
therefore, literature and recent surveys [14–16] have com-
pared and tested SSMs. These reviews indicate that Resnik is
the best SSmeasure in certain settings, followed by SSDD and
SORA. Resnik [27] determines the semantic similarity of a
protein based on the IC of the MICA. Additionally, the Best-
match-avg function (Resnik) [27] determines the semantic
similarity of proteins based on the average of best-matched
terms. Shortest semantic differentiation distance (SSDD) [26]
measures the semantic similarity of GO terms based on the
“totipotency” concept, where each term is assigned a value
representing its distance to the root and the number of
descendants at each level in that path.The similarity between
two terms is the smallest sum of “totipotency” along the
path between them. In SORA [36], the IC value of the term
and those of its inherited and extended terms are calculated
separately and then combined with one IC value using term-
set similarity.The similarity between two genes is the average
of the IC values of their term sets.

3. Materials and Methods

In our study, enhancing Resnik [27], SSDD [26], and SORA
[36] to be able to handle big data volume is based on
distributed processing. In distributed processing, SSMs are
used with a master-slave architecture, such that one device
has unidirectional control over other devices. Our proposed
process consists of three steps: the first two steps are the
responsibility of the master node, and the third step is the
responsibility of the slaves.

(1) Split GO: this step is used as the initial step to divide
GO into N splits, ensuring to render the similarity
within each split very high, reduce the percentage of
shared descendants with other splits, and make the
split as balanced as possible.

(2) Data clustering: this step is used to cluster or split data
input into N splits based on the N splits generated
during the first step. The resulting clusters are then
sent to one of the slaves.

(3) Semantic similarity calculation: in this step, Resnik,
SSDD, or SORA is applied to the input data cluster;
the results are then sent back to the master node.

There are two methods for using these enhanced SSMs with
the distributed system.The first method is to divide the input
data equally among the number of slaves.The secondmethod
is to divide the input data based on their similarity using
split GO and data clustering algorithms. These two methods

were applied to compare the average and total time used by
enhanced Resnik, SSDD, and SORA. The details of each step
are discussed in the following subsections.

3.1. Split GO. We tested several methods for splitting GO
into several parts to be used in the distributed system. In
this approach, each split is assigned to one of the slave
systems. The main goal of our approach was to divide GO
into N splits, ensuring a very high similarity within each split,
reducing the percentage of shared descendants with other
splits, and rendering the split as balanced as possible. Using
these methods, the input is GO and the number of splits is N.
The master node is responsible for dividing GO into N splits
(one split for each slave node). Figure 2 illustrates the division
of GO into 4 splits and assignment of each split to one slave.

The proposed methods are as follows: (1) split graph
by the main three roots (molecular function, cellular com-
ponent, and biological process); (2) split graph by roots or
subroots (there are a total of 65 subroots, with 25 subroots
under root1, 21 subroots under root2, and 19 subroots under
root3); or (3) split graph by subroots only. These methods
are first used to initialize each split with one of the largest
root/subroot, continuing until no roots/subroots remain. To
avoid the issue of balance in our proposed methods, we
initialized each split with a pair of the most similar subroots,
and continued adding the most similar subroots to each split
until no more similar subroots remained. Then, we selected
the smallest split, found the most similar subroot from the
remaining subroots, and assigned it to this split. If there were
no more similar subroots for this split, we added one of the
largest remaining subroots and repeated this process until
there were no remaining subroots. This method increases
the similarity of subroots within each split and reduces the
overlap between the splits, which is our goal. This method
can be used as an initial step before partitioning the input
data (pairs of genes) on the distributed systems in order to
calculate the similarity among gene pairs. A flowchart of the
algorithm used in this method is shown in Figure 3.

3.2. Data Clustering. The data clustering step is used for
clustering data input into N splits. The process starts at the
master node. First, we took the N splits generated from the
gene ontology splitting algorithm and a text file of gene pairs.
Then, we clustered the input file into N clusters, based on
the data clustering algorithm, before sending each cluster to
one of the slaves. In this algorithm, a gene pair (X, Y) is
added to the minimum cluster, ensuring that at least one of
its LCAs belongs to its split. If the LCA does not belong to
any split, then the algorithm adds the pair to the minimum
cluster containing the gene X and Y. If the genes X and
Y belong to different splits, the algorithm adds the pair to
the minimum cluster that contains X or Y. LCA is used to
group the neighbors/most similar gene pairs to speed the
similarity calculation at the end. LCA plays the main role in
the algorithm because it is used in the similarity calculation
employed by many SSMs such as Resnik and SSDD. On the
other hand, SORA does not use LCA directly but it depends
on the IC value of the term and those of its inherited and
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Figure 2: Example of splitting gene ontology (GO) into four splits.

extended terms (neighbors/most similar genes). Also, LCA
represents the nearest ancestors to both X and Y. If LCA
is near the root, the difference between X and Y is very
high; however, if LCA is farther from the root, the difference
betweenX andY is low [26]. A flowchart of the data clustering
algorithm is shown in Figure 4.

3.3. Semantic Similarity Calculation. In this step, each slave
applies one of the SSMs (Resnik, SSDD, or SORA) to its
assigned data cluster. So, each slave calculates the similarity
of each gene pair and then sends the results to the master
node. Then, the master node combines the results into one
file. To enhance the performance of these SSMs, we suggest
using threads, as detailed in the following subsections.

3.4. Enhanced Semantic Similarity Measure in the Distributed
System. Our proposed framework is composed of onemaster
and N slaves, which communicate with each other across
socket programming. Data are shared among the master and
slave nodes via Samba file and print services [43] located at

the master node. When a slave starts running, it can load GO
from the Samba server, open a socket, andwait for any request
from themaster node.When all slaves are running and ready,
the master node reads the input data from the Samba server,
divides them into N splits, sends input data splits to slaves
(one split for each slave), and waits for the response. When
responses are sent to the Samba server at the master node,
the results can be combined into one output file. The master
node splits input data by dividing the total input equally into
N splits, allocated to N blocks, which is the number of slaves.
If there are less than N remaining lines not assigned to any
block, the user can add them to the last block. Finally, to each
slave, the master node sends the path to the original input
file, the number of lines in the block, and the offset of the first
line in the block. The master node can also divide the data
based on their similarity by using the GO Splitting algorithm
to divide GO into N splits, then clustering the input data via
data clustering algorithm according to these splits.Then, each
data split is placed into a separate file before the file paths are
sent to slaves.
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Start

Create “SubRoots” set and initialize it with all the direct
 children of the main three roots under GO

Create an empty set “TakenSubRoots” to store sub-roots
that are assigned to one of the splits

Create “PairSimSet” set and initialize it with all of the
pairs of sub-roots that have shared descendants

Create an empty set “Splits” that represents the
resulted GO splits as sets of sub-roots

Read the number of splits N

Create an empty set “ Split i ” that
represents one of the GO splits

Select object ‘z’ from PairSimSet that have the 
maximum similarity and it is pair ‘x’ and ‘y’ 

are not in TakenSubRoots set

Add x and y to Split i

Remove x and y from SubRoots set

Add x and y to TakenSubRoots set

Add the set Split i to Splits set

If N > 0

Decrement N by one

Create NullCounter variable and initialize it with zero

For each Split i in Splits set: Find the most similar 
sub-root ‘x’ that is not in TakenSubRoots set

If x != NULL

Add x to Split i

Remove x from SubRoots set

Add x to TakenSubRoots set

Increment NullCounter by one

If SubRoots size > 0
AND NullCounter != N

Select the minimum set size Split i from Splits set

Find the most similar sub-root ‘x’ that
 is not in TakenSubRoots set

If x != NULL

Add x to Split i

Remove x from SubRoots set

Add x to TakenSubRoots set

Select another x from SubRoots that have the 
maximum number of descendants

If SubRoots size > 0

End

If NullCounter = N

Break Loop

Pre-Process

YES NO

YES

NO

YES

NO

YES

NO

YES
NO

NO
YES

Figure 3: Flowchart of GO splitting algorithm.

We tested the original Resnik, SSDD, and SORA SSM;
then, we used parallel processing to enhance the performance
of these SSMs. In Resnik, threads are introduced at the points
of finding the ancestors of gene pairs X and Y. In SSDD,
threads are introduced at the points of finding the T values for

each vertex in the path from X/Y to LCA. In SORA, threads
are introduced at the points of calculating the IC value of
X descendants, Y descendants, and the union of X and Y
descendants. The performance of the threaded measures is
shown in the results section.
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create a set “GOTermInfo” and initialize it with
gene information for each gene in GO 

such as it's URI and sub-roots 

create an array called “SplitsInfoArray” to store objects
that represent “SplitInfo” and “assignedPairs”

”initalize SplitInfo sets with GO splits resulted from 
Gene Ontology Split Algorithm and make assignedPairs 

empty set to store the gene pairs assigned to this split

Extract X and Y from the line

Read a line from the
input text file

If AncestorsIntersection size > 0

Convert X and Y to URIs

Create an array “LCAsSplitCount” of integer type 
and of N size and initialize it with zeros

Create a Boolean flag called “found” and 
initialize it with false

Find Lowest Common Ancestors LCAs of X and Y

For each LCA, Get the LCA’s ancestors and
store it in a set called “LcaAncestors”

i=0

Find intersection between LcaAncestors set and
SplitInfo set at index i from SplitsInfoArray and store 

result in a set called “AncestorsIntersection”

Increment LCAsSplitCount at index i by one

From LCAsSplitCount and SplitsInfoArray, 
Find the index i of the minimum assignedPairs 

set that at least one of LCA belongs to
If found 

Add X and Y to assignedPairs set located
at index i of SplitsInfoArray

Increment i by 1

create two arrays of integer type and of size N
called “XSplitCount” and “YSplitCount” and 

initialize them with zeros

For each gene in GOTermInfo

if gene = X/Y∗

Get the X/Y’s ancestors at depth 2, and store
it in a set called “TermAncestorsD2X/Y”

Find intersection between TermAncestorsD2X/Y set
and SplitInfo set at index i from SplitsInfoArray and

store result in a set called “AncestorsIntersection”

i=0

If AncestorsIntersection size > 0

Increment X/YSplitCount at index i by one

Increment i by 1

if i < SplitsInfoArray length

From XSplitCount ,YSplitCount and SplitsInfoArray,
find the index i of the minimum assignedPairs

set that X and Y belong to

If found Add X and Y to assignedPairs set located
at index i of SplitsInfoArray

From XSplitCount ,YSplitCount and SplitsInfoArray, 
find the index i of the minimum assignedPairs

set that X or Y belong to

Add X and Y to assignedPairs set located
at index i of SplitsInfoArray

If line = NULL

End

if i < SplitsInfoArray
length

If LCAs size > 1

Pre-Process

∗The processes on X and Y are done at the same time
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YES

NO

YES

YES

YES

NO
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NO

NO
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Figure 4: Flowchart of the data clustering algorithm.
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3.5. Implementation and Testing. We validated the perfor-
mance of the GO split algorithm, data clustering algorithm,
enhanced SSMs (Resnik, SSDD, and SORA), and applied
these enhanced methods in the distributed system. Imple-
mentation and testing were conducted using the following
settings and equipment:

(i) Equipment:

(a) Dell PowerEdge T620 server with a VMware
Workstation Pro 14 software to create a set of five
virtual machines (VM); each machine runs on
Ubuntu 16.04 LTS, Intel� Xeon� processor E5-
2600 product family × 4 processors, and 8 GB
of memory. One VM works as a master and the
rest work as slaves.

(ii) Programming language:

(a) JAVA programming language version 1.8.
(b) Libraries:

(1) Semantic measure library and toolkit
(SML) [17] to read and process the GO.

(2) JCIFS library [44] to access and manage
shared data on a Samba Server installed on
the master node using JAVA.

(iii) Input:

(a) GO [45] as input in Open Biomedical Ontolo-
gies (OBO) file format [46]; it is composed of
36638 genes.

(b) Gene pairs are written in a text file, where genes
are generated randomly to create six samples
with different sizes. Sizes range from 10 to
1000000 (increased by a factor of 10).
(1) Due to the diversity in the number of

descendants under the main three roots
in the original GO and to ensure that the
generated samples are distributed equally
among the GO genes, we generated 0.08%
of the pairs from the descendants under the
smallest root, 0.26% of the pairs from the
descendants under the medium root, and
the rest of the pairs from the descendants
under the largest root for each sample.
These percentages relate the number of
descendants under each root to the total
number of descendants under GO.

(iv) SSM:

(a) The original SSM (Resnik, SSDD, and SORA).
(b) Enhanced versions of the SSM (Threaded

Resnik, Threaded SSDD, andThreaded SORA).

(v) Algorithms:

(a) GO split algorithm to generate N GO splits,
where N ranged from 1 to 4, because in our
settings we can have 2, 3, or 4 slaves.

(b) Data clustering algorithm to divide input data
into N clusters based on the results of the GO
split algorithm.

(vi) Test cases:

(a) Case 1: testing the performance of the enhanced
SSMs. This test is performed on a single virtual
machine to measure the following:
(1) Performance of original SSMs (Resnik,

SSDD, and SORA).
(2) Performance of enhanced SSMs (Threaded

Resnik, Threaded SSDD, and Threaded
SORA).

(3) Comparison of the performance of
enhanced SSMs with the original SSMs.

(b) Case 2: testing the performance of enhanced
SSM in the distributed system. This test is
conducted three times using one master and
two slaves, one master and three slaves, and
one master and four slaves. This test is used to
measure the following:
(1) Performance of enhanced SSMs (Threaded

Resnik, Threaded SSDD, and Threaded
SORA) if the input data are divided equally.

(2) Performance of enhanced SSMs (Threaded
Resnik, Threaded SSDD, and Threaded
SORA) if the input data are divided by
their similarity using the GO split and data
clustering algorithms.

(3) Comparison of the performance of
enhanced SSMs (Threaded Resnik,Thread-
ed SORA, and Threaded SSDD) when the
data are divided equally, when data are
divided based on their similarity.

In all these cases, performance is the total and the average
time required to calculate the semantic similarity of the gene
pairs. In our opinion and based on the experiment in [47], the
average time is more important than the total time because
average time reflects the time required to measure semantic
similarity for the majority of gene pairs. That is not the case
with total time, which can increase with values that are far
from the average value, when calculating semantic similarity
of certain genes. In assessment 1, Improvement Percentage
(IP) of average/total time was measured according to

𝐼𝑃 = (Threaded SSM Average/Total Time (ns)
Original SSM Average/Total Time (ns)

∗ 100) − 100
(1)

The Improvement Percentage value of negative x indicates
that an average/total time in nanoseconds (ns) was obtained
using Threaded SSM. The time was reduced by this x value
comparedwith the average/total time required by the original
SSM using the same sample and settings. The Improvement
Percentage value of positive x indicates that average/total
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Start

Calculate the average/total time in nanoseconds (ns)
resulting from using Original SSM (Resnik/SSDD/SORA)

with each of the six samples

Calculate the average/total time in nanoseconds (ns)
resulting from using the Threaded SSM(Resnik/SSDD/SORA) 

with each of the six samples

Calculate IP= Improvement percentage of 
average/total time for each sample

If IP < 0 

Average/total time is reduced by IP value in 
Threaded SSM compared with that in Original

SSM using the same sample and settings

Average/total time is increased by IP value in 
Threaded SSM compared with that in Original

SSM using the same sample and settings

YES

NO

Figure 5: A flowchart of testing the performance of enhanced SSMs.

time in ns was obtained using Threaded SSM. The time was
increased by this x value compared with average/total time
required by the original SSM using the same sample and
settings. The average of the IP is then measured to find the

mean value of the IPs. Figure 5 shows a flowchart of this
procedure.

In assessment 2, IP of average/total time is measured
according to

𝐼𝑃 = (Threaded SSM Average/Total Time (ns) where input divided by their similarity
Threaded SSM Average/Total Time (ns) where input divided equally

∗ 100) − 100 (2)

If the Improvement Percentage value is negative x, thatmeans
average/total time in nanosecond (ns) was obtained using
Threaded SSM with input data divided by their similarity
via GO split and data clustering algorithms were reduced
by x value. If the Improvement Percentage value is positive
x, that means that average/total time was increased by
the x value. The increases and decreases in average and
total time were compared with average/total time obtained
using Threaded SSM with input data divided equally and
using the same sample and settings. Also, the average of
the IP is measured to obtain the mean value of the IPs.
Figure 6 shows a flowchart of this assessment. Detailed
results of these assessments are shown in the following
sections.

4. Results and Discussion

4.1. Performance of Enhanced SSMs

(i) Threaded Resnik. Our results show a reduction in the
average time required to calculate the Resnik seman-
tic similarity between each pair of genes (Table 1).
The average reduction percentage in average time
was 24.51 % of that obtained using original Resnik
Conversely, the total time required to calculate the
semantic similarity measure in Resnik fluctuated;
total time decreased in some test samples (such as in
sample size=10, 100, 10000) and increased in others
(Table 2). The average reduction percentage of the
total time was 8.88%.
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Start

Calculate the average/total time in nanoseconds (ns) resulting from 
using Original SSM (Resnik/SSDD/SORA) on a distributed system 

with input data divided equally with each of the six samples

Calculate the average/total time in nanoseconds (ns) resulting from 
using Threaded SSM (Resnik/SSDD/SORA) on a distributed system 

with input data divided by their similarity with each of the six samples

Calculate IP= Improvement percentage of 
average/total time for each sample

If IP < 0 

Average/total time is reduced by IP value in 
Threaded SSM if input data are divided by their 

similarity using the same sample and settings

Average/total time is increased by IP value in 
Threaded SSM if input data are divided by their 

similarity using the same sample and settings

YES

NO

Figure 6: A flowchart of assessing the performance of enhanced SSMs in the distributed system.

Table 1: Average time and IPs obtained using original andThreaded Resnik.

Sample Size Original Resnik Average Time (ns) Threaded Resnik Average Time (ns) Improvement Percentage (IP)
10 56515 47490.44 -15.97
100 26184.95 22534.24 -13.94
1000 27907.82 21201.57 -24.03
10000 16287.99 11133.88 -31.64
100000 11844.27 7563.32 -36.14
1000000 8273.15 6179.37 -25.31
Average 24502.20 19350.47 -24.51

Table 2: Total time and IPs obtained using original andThreaded Resnik.

Sample Size Original Resnik Total Time (ns) Threaded Resnik Total Time (ns) Improvement Percentage (IP)
10 2560906085 1776206977 -30.64
100 5350898201 6506353894 21.59
1000 5224382582 2409982084 -53.87
10000 2997898214 2691416975 -10.22
100000 9417548254 10159782237 7.88
1000000 46988654302 52629878875 12.00
Average 12090047940 12695603507 -8.88
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Table 3: Average time and IPs obtained using original andThreaded SSDD.

Sample Size Original SSDD Average Time (ns) Threaded SSDD Average Time (ns) Improvement Percentage (IP)
10 2.92E+08 8.65E+07 -70.38
100 1.32E+08 1.15E+08 -12.70
1000 9.32E+07 8.99E+07 -3.54
10000 4.62E+07 3.51E+07 -23.92
100000 4.48E+07 4.30E+07 -3.99
1000000 2.83E+07 2.18E+07 -23.01
Average 106040305 65214046.13 -22.93

Table 4: Total time and IPs obtained using original andThreaded SSDD.

Sample Size Original SSDD Total Time (ns) Threaded SSDD Total Time (ns) Improvement Percentage (IP)
10 3124423720 1063764634 -65.95
100 14597347470 11920695608 -18.34
1000 93710848961 90410186100 -3.52
10000 4.63634E+11 3.5258E+11 -23.95
100000 4.48611E+12 4.30634E+12 -4.01
1000000 2.83292E+13 2.17894E+13 -23.09
Average 5.56506E+12 4.42528E+12 -23.14

Table 5: Average time and IPs obtained using original andThreaded SORA.

Sample Size Original SORA Average Time (ns) Threaded SORA Average Time (ns) Improvement Percentage (IP)
10 4.14E+07 2.08E+07 -49.76
100 1.23E+08 7.71E+07 -37.39
1000 1.11E+08 7.23E+07 -34.75
10000 3.51E+09 3.06E+09 -12.81
100000 X X X
1000000 X X X
Average 9.47E+08 8.08E+08 -33.68
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

Table 6: Total time and IPs obtained using original andThreaded SORA.

Sample Size Original SORA Total Time (ns) Threaded SORA Total Time (ns) Improvement Percentage (IP)
10 1708984548 448755395 -73.74
100 12714096406 7988678157 -37.17
1000 1.11216E+11 74128196605 -33.35
10000 3.51063E+13 3.06089E+13 -12.81
100000 X X X
1000000 X X X
Average 8.80799E+12 7.67286E+12 -39.27
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

(ii) Threaded SSDD. Introducing threads in SSDD
reduced the average and total time. The average
reduction percentage of average time was 22.93%,
and average reduction percentage of total time was
23.14% (Tables 3 and 4).

(iii) Threaded SORA. As inResnik and SSDD, threads drop
the average and total time of calculating semantic
similarity. Table 5 shows that the average reduction

percentage of the average time was 33.68%. Also, the
average reduction percentage of total timewas 39.27%
as shown in Table 6. Unlike Resnik and SSDD, SORA
requires more memory to measure similarity. For
example, with input size of 100000, it took 48 hours to
find the similarity of 38045 pairs using original SORA
and of 38098 pairs using the threaded version. When
input size equals 1 million, it took 61 hours to find the
similarity of 139487 pairs using original SORA and of
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Table 7: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced Resnik and input data divided equally.

Sample
Size

Original Resnik
Total Time (ns)

Threaded Resnik Total Time (ns)
(Input Data Divided Equally)

%Threaded Resnik Total Time
(Input Data Divided Equally) vs.

Original Resnik Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 2560906085 379861713 329100621 207469547 -85.17 -87.15 -91.90
100 5350898201 234863609 223428959 403408364 -95.61 -95.82 -92.46
1000 5224382582 546062707 348324714 418142340 -89.55 -93.33 -92.00
10000 2997898214 1315383851 507249110 408547630 -56.12 -83.08 -86.37
100000 9417548254 3374684138 3254669438 3745141194 -64.17 -65.44 -60.23
1000000 46988654302 22114717802 19225589479 13719464210 -52.94 -59.08 -70.80
Average 12090047940 4660928970 3981393720 3150362214 -73.93 -80.65 -82.29

Table 8: Average time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced Resnik and input data divided equally.

Sample
Size

Original Resnik
Average Time

(ns)

Threaded Resnik Average Time (ns)
(Input Data Divided Equally)

%Threaded Resnik Average
Time (Input Data Divided Equally) vs.

Original Resnik Average
Time

2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves
10 56515 3.80E+08 1.48E+05 1.07E+10 672287.86 161.88 18932926.63
100 26184.94949 7.14E+04 2.90E+05 6.70E+08 172.68 1007.51 2558621.76
1000 27907.82082 3.36E+04 2.65E+04 6.46E+07 20.40 -5.04 231376.33
10000 16287.9895 1.92E+04 1.61E+04 6.45E+06 17.88 -1.15 39499.73
100000 11844.26883 7.20E+03 1.15E+04 6.56E+05 -39.21 -2.91 5438.54
1000000 8273.153824 4.31E+03 7.10E+03 7.15E+04 -47.90 -14.18 764.24
Average 24502.19708 6.34E+07 8.32E+04 1.91E+09 112068.62 191.02 3628104.54

148182 pairs using the threaded version. In these two
cases, the reduction percentage of the total time was
approximately 0.14% and 5.87%, respectively.

Introducing threads in Resnik, SSDD, and SORA reduced the
time of calculating semantic similarity between gene pairs
and improved the performance of these SSMs.The reduction
percentage of average time was 24.51% for Resnik, 22.93% for
SSDD, and 33.68% for SORA. The reduction percentage of
total timewas 8.88% for Resnik, 23.14% for SSDD, and 39.27%
for SORA.

4.2. Performance of Enhanced SSMs in the Distributed System
(Input Data Divided Equally)

(i) Threaded Resnik. In the distributed system, applying
Threaded Resnik and dividing input data equally dra-
matically reduced total time. The average reduction
percentage increased with increasing the number of
slaves. The average total time was reduced by 73.93%
in the case of 2 slaves, by 80.65% in the case of 3
slaves, and by 82.29% in the case of 4 slaves (Table 7).
The average reduction percentage of total time was
reduced because data were distributed, and slaves
worked in parallel. However, this does not reduce
the average time of calculating the semantic simi-
larity between pairs, unlike the case with total time

(Table 8). This is because average time is staggered;
it is reduced in some cases and increased in others.
Additionally, there is an enormous increase in average
time when the number of slaves is increased.

(ii) Threaded SSDD. Similar to the results obtained using
Threaded Resnik, using Threaded SSDD with a
distributed system and input data divided equally
reduced the average reduction percentage of total
time (Table 9). The reduction was increased by
increasing the number of slaves. The average total
time was reduced by 59.86%, 65.34%, and 68.19% for
2, 3, and 4 slaves, respectively. Conversely, the average
reduction percentage in the average time required
for calculating similarity via Enhanced SSDD was
markedly increased by increasing the number of
slaves (Table 10).

(iii) Threaded SORA.The results forThreaded SORAwere
similar to those obtained with Threaded Resnik and
Threaded SSDD in a distributed system with input
data were divided equally. The average total time of
calculation in Threaded SORA was reduced by 65.01,
72.31, and 66.09 % for 2, 3, and 4 slaves, respectively
(Table 11). As we mentioned previously, SORA needs
a lot of memory to complete the semantic similarity
measure in the Original SORA and Threaded SORA
(for input sample sizes of 100,000 and 1,000,000
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Table 9: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SSDD and input data divided equally.

Number of
Gene Pairs

Original SSDD
Total Time (ns)

Threaded SSDD Total Time (ns)
(Input Data Divided Equally)

%Threaded SSDD Total Time
(Input Data Divided Equally) vs.

Original SSDD Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 3124423720 576766602 1100200519 668881808 -81.54 -64.79 -78.59
100 14597347470 3979998527 5141720453 2863699495 -72.73 -64.78 -80.38
1000 93710848961 28954815547 19152967373 15747791657 -69.10 -79.56 -83.20
10000 4.63634E+11 3.31738E+11 1.9269E+11 1.21739E+11 -28.45 -58.44 -73.74
100000 4.48611E+12 1.53352E+12 1.39815E+12 1.50908E+12 -65.82 -68.83 -66.36
1000000 2.83292E+13 1.65612E+13 1.25735E+13 2.0722E+13 -41.54 -55.62 -26.85
Average 5.56506E+12 3.07667E+12 2.36495E+12 3.72868E+12 -59.86 -65.34 -68.19

Table 10: Average time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SSDD and input data divided equally.

Number of
Gene Pairs

Original SSDD
Average Time

(ns)

Threaded SSDD Average Time (ns)
(Input Data Divided Equally)

%Threaded SSDD Average Time
(Input Data Divided Equally) vs.

Original SSDD Average Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 2.92E+08 1.55E+08 5.54E+11 1.12E+12 -46.94 189561.09 383330.36
100 1.32E+08 8.38E+07 4.01E+10 7.00E+10 -36.39 30339.33 53035.99
1000 9.32E+07 6.49E+07 3.95E+09 6.74E+09 -30.34 4139.99 7134.82
10000 4.62E+07 1.17E+08 4.38E+08 6.67E+08 153.30 848.23 1344.0
100000 4.48E+07 3.88E+07 8.03E+07 6.25E+07 -13.34 79.35 39.60
1000000 2.83E+07 4.77E+07 3.33E+07 6.68E+07 68.67 17.75 136.21
Average 1.06E+08 8.45E+07 9.98E+10 2.00E+11 1.58E+01 3.75E+04 7.42E+04

Table 11: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SORA and input data divided equally.

Number of
Gene Pairs

Original SORA
Total Time (ns)

Threaded SORA Total Time (ns)
(Input Data Divided Equally)

%Threaded SORA Total Time
(Input Data Divided Equally) vs.

Original SORA Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 1708984548 603416420 426734074 1296029007 -64.69 -75.03 -24.16
100 12714096406 4591177183 3915812000 2555994931 -63.89 -69.20 -79.90
1000 1.11216E+11 37052551034 23049069956 20918129803 -66.68 -79.28 -81.19
10000 3.51063E+13 1.23639E+13 1.2036E+13 7.32991E+12 -64.78 -65.72 -79.12
100000 X X X X X X X
1000000 X X X X X X X
Average 8.80799E+12 3.10154E+12 3.01584E+12 1.83867E+12 -65.01 -72.31 -66.09
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

genes). In the distributed system, with input data
divided equally for the same input samples, some
slaves finished early; others continued working for a
long time until we stopped the test due to suspension.
Conversely, the average percentage of total calculation
time increased notably (Table 12).

Using the Threaded versions of Resnik, SSDD, and SORA
and dividing input data equally dramatically reduced total
time. In contrast, the average time of calculating similarity
increased markedly by increasing the number of slaves.

4.3. Performance of Enhanced SSMs with Input Data Divided
by Their Similarity

(i) Threaded Resnik. In the distributed system, with input
data divided by their similarity and using our GO
split and data clustering algorithms,Threaded Resnik
reduced the average time in the case of 4 slaves and
sample of size 10,000; average time was increased,
however, in the remaining cases, as shown in Table 13.
Conversely, total time was decreased with sample size
of 10 and 100 and using 2 and 3 slaves, andwith sample
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Table 12: Enhanced SORA average time in the distributed system (2, 3 and 4 slaves) with input data divided equally.

Number of
Gene Pairs

Original SORA
Average Time

(ns)

Threaded SORA Average Time (ns)
(Input Data Divided Equally)

%Threaded SORA Average Time
(Input Data Divided Equally) vs.
Original SORA Average Time

2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves
10 4.14E+07 6.03E+08 5.27E+12 1.06E+13 4.82E+08 2.13E+11 1.84E+11
100 1.23E+08 7.06E+07 3.20E+11 6.63E+11 4.42E+07 1.63E+11 4.60E+10
1000 1.11E+08 6.15E+07 3.09E+10 6.40E+10 6.61E+07 6.75E+09 6.01E+09
10000 3.51E+09 1.83E+09 6.37E+09 3.56E+09 3.31E+08 6.69E+08 3.46E+08
100000 X X X X X X X
1000000 X X X X X X X
Average 9.47E+08 6.41E+08 1.41E+12 2.83E+12 2.31E+08 9.59E+10 5.91E+10
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

Table 13: Average time obtained using a distributed system (2, 3, and 4 slaves) with EnhancedResnik and input data divided by their similarity.

Number of
Gene Pairs

Original Resnik
Average Time

(ns)

Threaded Resnik Average Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded Resnik Average
Time (Input Data Divided by
Their Similarity) vs. Original

Resnik Average Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 56515 1.58E+05 3.65E+08 4.59E+08 179.57 645746.24 812073.76
100 26184.94949 6.90E+04 3.48E+07 3.52E+07 163.51 132800.77 134328.37
1000 27907.82082 3.70E+04 3.39E+06 3.41E+06 32.58 12047.13 12118.80
10000 16287.9895 2.03E+05 3.38E+05 3.47E+05 1146.32 1975.15 2030.40
100000 11844.26883 2.58E+04 3.26E+04 1.01E+04 117.83 175.24 -14.73
1000000 8273.153824 2.23E+04 2.36E+04 1.86E+04 169.55 185.26 124.82
Average 24502.19708 85850 67264033.33 82997616.67 301.56 132154.96 160110.24

Table 14: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced Resnik and input data divided by their similarity.

Number of
Gene Pairs

Original Resnik
Total Time (ns)

Threaded Resnik Total Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded Resnik Total Time
(Input Data Divided byTheir
Similarity) vs. Original Resnik

Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 2560906085 335066219 211190589 3208745299 -86.92 -91.75 25.30
100 5350898201 854315104 794283629 711803925 -84.03 -85.16 -86.70
1000 5224382582 8390205103 7467893056 8870113085 60.60 42.94 69.78
10000 2997898214 93562482698 80426435081 68009514911 3020.94 2582.76 2168.57
100000 9417548254 5.81006E+11 6.31117E+11 6.47021E+11 6069.40 6601.50 6770.38
1000000 46988654302 6.55475E+12 6.35691E+12 6.12695E+12 13849.64 13428.62 12939.22
Average 12090047940 1.20648E+12 1.17949E+12 1.14246E+12 3804.94 3746.49 3647.76

size of 100when using 4 slaves. In the remaining cases,
total time was increased gradually by increasing the
sample size and the number of slaves, as shown in
Table 14.

(ii) Threaded SSDD. The average time obtained with
Threaded SSDD in the distributed system, with input
data divided by their similarity, was reduced in the
case of 2 slaves and sample size ranging from 10 to
100,000, but increased with sample size of 1,000,000.

In the case of 3 slaves, average time increased notably
at sample size 10, decreased gradually to a lower value,
and then increased again at sample size 1,000,000
(Table 15). In the case of 4 slaves, the average time was
markedly increased with sample size of 10. Average
time was then reduced gradually until it was lower
than the average time obtained with original SSDD,
4 slaves, and sample size of 100000. Average time
then increased again with sample size of 1000000.
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Table 15: Average time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SSDD and input data divided by their similarity.

Number of
Gene Pairs

Original SSDD
Average Time

(ns)

Threaded SSDD Average Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded SSDD Average Time
(Input Data Divided byTheir
Similarity) vs. Original SSDD

Average Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 2.92E+08 1.24E+08 8.63E+10 1.17E+11 -57.55 29444.68 39954.78
100 1.32E+08 5.72E+07 1.04E+10 1.06E+10 -56.58 7794.49 7946.31
1000 9.32E+07 4.55E+07 1.01E+09 1.08E+09 -51.16 984.15 1059.29
10000 4.62E+07 4.47E+07 9.67E+07 1.82E+08 -3.23 109.35 294.01
100000 4.48E+07 2.47E+07 6.66E+07 4.38E+07 -44.83 48.75 -2.17
1000000 2.83E+07 6.45E+07 6.42E+07 4.12E+07 128.07 127.01 45.68
Average 1.06E+08 6.01E+07 1.63E+10 2.15E+10 -1.42E+01 6.42E+03 8.22E+03

Table 16: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SSDD and input data divided by their similarity.

Number of
Gene Pairs

Original SSDD
Total Time (ns)

Threaded SSDD Total Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded SSDD Total Time
(Input Data Divided byTheir
Similarity) vs. Original SSDD

Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 3124423720 794430504 295236711 2460790326 -74.57 -90.55 -21.24
100 14597347470 5126679035 2413422396 3134281448 -64.88 -83.47 -78.53
1000 93710848961 39111930797 36944258807 29763348812 -58.26 -60.58 -68.24
10000 4.63634E+11 4.13966E+11 3.05233E+11 3.13192E+11 -10.71 -34.17 -32.45
100000 4.48611E+12 2.48536E+12 1.92535E+12 2.06661E+12 -44.60 -57.08 -53.93
1000000 2.83292E+13 2.16457E+13 1.99122E+13 1.84843E+13 -23.59 -29.71 -34.75
Average 5.56506E+12 4.09835E+12 3.69707E+12 3.48325E+12 -46.10 -59.26 -48.19

Table 17: Total time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SORA and input data divided by their similarity.

Number of
Gene Pairs

Original SORA
Total Time (ns)

Threaded SORA Total Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded SORA Total Time
(Input Data Divided byTheir
Similarity) vs. Original SORA

Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 1708984548 482298616 359402373 399416852 -71.78 -78.97 -76.63
100 12714096406 2840539191 2788018116 2459561951 -77.66 -78.07 -80.65
1000 1.11216E+11 28551368161 23437947918 18670965654 -74.33 -78.93 -83.21
10000 3.51063E+13 1.22567E+12 1.03491E+12 1.24612E+12 -96.51 -97.05 -96.45
100000 X X X X X X X
1000000 X X X X X X X
Average 8.80799E+12 3.14385E+11 2.65373E+11 3.16912E+11 -80.07 -83.25 -84.24
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

The average reduction percentage of total time was
46.10%, 59.26%, and 48.19% with 2, 3, and 4 slaves,
respectively (Table 16).

(iii) Threaded SORA. Using Threaded SORA with a dis-
tributed system and input data divided by their
similarity reduced total time (Table 17). The aver-
age reduction percentage of total time was 80.07%,
83.25%, and 84.24% using 2, 3, and 4 slaves, respec-
tively. Table 18 shows a decrease in average time

using 2 slaves and sample size of 100 to 10000.
Average time was also decreased using 3 and 4 slaves
with a sample size of 10000. However, the average
time was considerably increased in the rest of the
cases.

Using the Threaded versions of Resnik, SSDD, and SORA
with input data divided by their similarity produced different
behaviors in each case. InThreaded Resnik, the average time
was unexpectedly increased. In most cases, total time was
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Table 18: Average time obtained using a distributed system (2, 3, and 4 slaves) with Enhanced SORA and input data divided by their similarity.

Number of
Gene Pairs

Original SORA
Average Time

(ns)

Threaded SORA Average Time (ns)
(Input Data Divided byTheir

Similarity)

%Threaded SORA Average Time
(Input Data Divided byTheir
Similarity) vs. Original SORA

Total Time
2 Slaves 3 Slaves 4 Slaves 2 Slaves 3 Slaves 4 Slaves

10 4.14E+07 4.82E+08 2.13E+11 1.84E+11 1065.48 514936.11 444813.82
100 1.23E+08 4.42E+07 1.63E+11 4.60E+10 -64.12 132207.19 37238.23
1000 1.11E+08 6.61E+07 6.75E+09 6.01E+09 -40.35 5991.10 5323.33
10000 3.51E+09 3.31E+08 6.69E+08 3.46E+08 -90.57 -80.94 -90.14
100000 X X X X X X X
1000000 X X X X X X X
Average 9.47E+08 2.31E+08 9.59E+10 5.91E+10 1065.48 1.63E+05 1.22E+05
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

Table 19: Average time reduction obtained usingThreaded Resnik with a distributed system and input data divided by their similarity versus
input data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 -99.96 4.05 -95.71
100 -3.36 -52.76 -94.75
1000 10.12 200 -94.72
10000 957.29 1999.38 -94.62
100000 258.33 183.48 -98.46
1000000 417.40 232.39 -73.99
Average 256.64 45588.22 -92.04

gradually increased by increasing the sample size and number
of slaves; however, in a few cases, total time was reduced. In
Threaded SSDD and SORA, the average time was decreased
in some cases and increased in others. Total timewas reduced
by 46.10%, 59.26%, and 48.19% usingThreaded SSDD and by
80.07%, 83.25%, and 84.24% using Threaded SORA, with 2,
3, and 4 slaves, respectively.

4.4. Comparing the Performance of Data Divided Equally and
Data Divided by their Similarity

(i) Threaded Resnik. We compared dividing data equally
and dividing data by their similarity, using each
approach with our distributed system based on (2).
The average time obtained with Threaded Resnik
and four slaves, and dividing data by their similarity,
was reduced by an average of 92.04% (Table 19)
compared with the percentage obtained by dividing
data equally (Table 8). Dividing data based on their
similarity reduced the average time of calculating
similarity when the number of splits was increased.
In other words, defining more splits resulted in splits
with high similarity. This reduced the time required
to calculate semantic similarity because each slave
calculated similarity for a group of nodes located near
each other. Using a smaller number of splits, each split
still contained many unrelated or dissimilar genes;

this did not reduce the average time, as was the case
with more splits. Conversely, total time was increased
by increasing the number of splits and slaves because
of overhead during the division of GO and clustering
input data (Table 20). Increasing the number of splits
and slaves resulted in the highest total time in the
majority of cases. In Resnik, dividing data based on
their similarity did not reduce the average time in
any of the test cases; this is because Resnik depends
on the IC value in the calculation more than on the
relationship and distance of the gene, as do other
SSMs.Therefore, Resnik needs the node relationships
only to find the pair ancestors and obtain the IC value
of MICAs.

(ii) Threaded SSDD. Using Threaded SSDD with our
distributed system and input data divided by their
similarity reduced the average time by an average
of 24.1%, 39.2%, and 66.6% with 2, 3, and 4 slaves,
respectively (Table 21). This reduction was increased
by increasing the number of slaves and splits. Average
time was increased with input sample size of 1000000
pairs and using 2 and 3 slaves; however, when 4 slaves
were used, the average time was reduced by 38.32%.
This is because defining more splits produces splits
that contain genes with more similarity, relatedness,
and close proximity to each other. This positively
affects the average time of SSDD semantic similarity
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Table 20: Total time reduction obtained using Threaded Resnik with a distributed system and input data divided by their similarity versus
input data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 -11.79 -28.59 1446.61
100 263.75 342.67 76.45
1000 1436.49 2081.14 2021.31
10000 7012.94 15755.41 16546.66
100000 17116.60 19291.13 17176.28
1000000 29539.75 32964.86 44558.83
Average 9226.29 11712.50 13637.69

Table 21: Average time reduction obtained using Threaded SSDD in a distributed system with input data divided by their similarity versus
input data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 -20 -84.42 -89.55
100 -31.74 -74.06 -84.86
1000 -29.89 -74.43 -83.98
10000 -61.79 -77.92 -72.71
100000 -36.34 -17.06 -29.92
1000000 35.22 92.79 -38.32
Average -2.41E+01 -3.92E+01 -6.66E+01

Table 22: Total time reduction obtained usingThreaded SSDD in a distributed systemwith input data divided by their similarity versus input
data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 37.74 -73.17 267.90
100 28.81 -53.06 9.45
1000 35.08 92.89 89.00
10000 24.79 58.41 157.26
100000 62.07 37.71 36.95
1000000 30.70 58.37 -10.80
Average 36.53 20.20 91.63

calculation, which depends on the distance and rela-
tionships of the gene. Total time was more increased
if input data were divided based on their similarity
rather than divided equally. This is because dividing
data by their similarity requires more processing
to split the GO and cluster the data. As shown in
Table 22, total time was increased in most of the test
cases when using 3 slaves and a sample size of 10 and
100, and when using 4 slaves and a sample size of
1000000.

(iii) Threaded SORA. Using Threaded SORA in the dis-
tributed system, with input data divided by their
similarity, reduced the total and average time in
approximately all of the test cases (Tables 23 and
24). The average reduction percentages were approx-
imately 33.0%, 78.2%, and 93.1% using 2, 3, and 4

slaves, respectively. An exceptionwas observed in two
cases. In the first case, there was a slight increase in
average timewhen using two slaves and sample size of
1000. In the second case, there was a minor increase
in total timewhen using three slaves and a sample size
of 1000. As wementioned previously, the reduction in
average and total time occurs because SORA depends
on calculating the distance and relationship between
genes. This is affected by grouping similar and more
related genes in one cluster, reducing the total and
average time of calculating similarity via SORA SSM.

We compared the two methods of data allocation in the
distributed system in order to measure the performance
of Threaded Resnik, Threaded SSDD, and Threaded SORA.
Dividing input data based on their similarity and using
the data clustering algorithm gave better performance than
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Table 23: Average time reduction obtained using Threaded SORA in a distributed system with input data divided by their similarity versus
input data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 -20.07 -95.96 -98.26
100 -37.39 -49.06 -93.06
1000 7.48 -78.16 -90.61
10000 -81.91 -89.50 -90.28
100000 X X X
1000000 X X X
Average -3.30E+01 -7.82E+01 -9.31E+01
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

Table 24: Total time reduction obtained usingThreaded SORA in a distributed systemwith input data divided by their similarity versus input
data divided equally.

Number of Gene Pairs Improvement Percentage (IP)
2 Slaves 3 Slaves 4 Slaves

10 -20.07 -15.78 -69.18
100 -38.13 -28.80 -3.77
1000 -22.94 1.69 -10.74
10000 -90.087 -91.41 -83.00
100000 X X X
1000000 X X X
Average -42.80820245 -33.57 -41.67
X indicates that, due to limited memory, the system required many hours to find the similarity of some of the pairs.

dividing data equally. The reduction in average time more
effectively reflects the performance of enhanced SSMs than
does the reduction in total time. Average time reflects the
time required tomeasure semantic similarity for themajority
of gene pairs, which is not the case with total time. Total time
can be increased by values that are far from the average value
when calculating semantic similarity between certain genes.

In Threaded Resnik, the average time was reduced with
increasing the number of slaves/splits; average time was
reduced by 92.04% in the case of 4 slaves. This indicates that
defining splits with more similar and related genes produces
high similarity within each split and causesminimumoverlap
with other splits. Average time was not reduced as much as it
was using other SSM. This is because, in Threaded Resnik,
calculating the semantic similarity of a term depends on the
number of genes annotated with it (IC value) and does not
depend on its location in the GO hierarchy. In Threaded
Resnik, calculating the semantic similarity of a term needs
term location in the GO hierarchy only to obtain the IC value
of MICA. Threaded SSDD and SORA, however, depends on
the term location in the GO hierarchy.Therefore, the average
time is reduced dramatically by 24.1%, 39.2%, and 66.6% in
Threaded SSDD, and by 33.0%, 78.2%, and 93.1% inThreaded
SORA, using 2, 3, and 4 slaves, respectively. The reduction is
increased gradually by increasing the number of slaves/splits.

Total time was increased using Threaded SSDD, and
markedly increased using Threaded Resnik, with increasing
the number of slaves/splits. This is because the time required
to run the data clustering algorithm was longer compared

to that required for the semantic similarity calculation. In
Threaded SORA, the time required to perform the semantic
similarity calculation was very long compared to the time
required to run the data clustering algorithm; therefore, total
time was reduced considerably.

5. Conclusion

Here, we proposed a method to enhance the three best SSMs
in the field of biology using parallel and distributed process-
ing. Our approach showed a dramatic reduction in average
processing time. The reduction was increased gradually by
increasing the number of slaves/splits.

In Threaded Resnik, if the number of splits is small,
the resulting splits contain numerous unrelated or dissimilar
genes. This does not decrease the average time, as is the case
with more splits. Dividing the data based on their similarity
in Resnik did not reduce the average time for any of the test
cases.This is because the Resnik semantic similarity measure
depends on the IC value in the calculation more than on the
relationship anddistance of the gene. Resnik depends on term
location in the GO hierarchy only to obtain the IC value of
MICA. Conversely, Threaded SSDD and SORA depend on
the term location in the GO hierarchy.Therefore, the average
time is reduced dramatically, and the reduction is increased
gradually by increasing the number of slaves/splits.

Total time was increased in Threaded Resnik and SSDD
with increasing the number of slaves/splits. This is because
the time required to run the GO split and data clustering
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algorithms is longer than that required to calculate semantic
similarity. Therefore, the total time was increased consider-
ably by increasing the number of slaves/splits.The percentage
of increase in Resnik was large because the time required
for semantic similarity calculation in Resnik is much less
than that required by SSDD. In Threaded SORA, total time
was reduced significantly. This is because, in SORA, the
time required for semantic similarity calculation is very long
compared to that required to run the GO split and data
clustering algorithms.

These results were mainly limited by the system used to
run our assessment. Our system considerably limited our
ability to have more VM, processors, and RAM for each
virtual machine. Provided a more powerful machine, we can
complete assessments using large sample sizes, which we
could not achieve in this study. So, further experiments need
to be done to find the minimum and the maximum number
of VMs that need to be used to enhance the performance.

In future studies, we will build a framework that will
depend on the GO split and data clustering algorithms to
automatically integrate big data in the field of biology. We
will use Threaded Resnik, SSDD, and SORA to measure
the similarity between genes and gene products, handling
big data scalability and computational problems with good
performance. Also, we will propose an algorithm to calculate
the minimum and the maximum number of VMs that need
to be used to enhance the performance.
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