
Introduction

Science is based on probability. It is impossible to say with 
certainty whether the events observed in nature will occur or 
not. The same rule applies when testing hypotheses through 
research. Null hypotheses are basically assumed to be true. Fig. 
1 presents two normal distribution probability density curves 
under the respective assumptions that the null hypothesis is true 

(left) or false (alternative hypothesis is true, right). They show 
the typical curves that approach but never reach the x-axis on 
both ends. Whether the assumption is true or not, the proba-
bility never becomes zero; this means that any result obtained 
from research always has a possibility of unreliability. It is always 
possible for conclusions from research to be wrong, and an ap-
propriate hypothesis is required to conduct research as well as to 
reduce the risk of false conclusions.

 If the null hypothesis is concluded to be true when the value 
is less than a specific point on the x-axis, and false when the val-
ue is greater, then the point is called the critical value. The prob-
ability curve of the null hypothesis partially exists on the right 
side of the critical value. This means that the null hypothesis is 
true, but as it exceeds the critical value, it is mistakenly thought 
to be false; this is called a Type I error. In contrast, even if the 
null hypothesis is false (orange probability distribution curve), 
because it exceeds the critical value, it is mistakenly accepted to 
be true; this is called a Type II error. The size of the error can be 
represented with a probability, which is the area under the curve 
lying outside the critical value. The probability of a Type I error 
is called the α or level of significance. The probability of a Type 

Statistical Round

Most parametric tests start with the basic assumption on the distribution of populations. The conditions required to con-
duct the t-test include the measured values in ratio scale or interval scale, simple random extraction, normal distribution 
of data, appropriate sample size, and homogeneity of variance. The normality test is a kind of hypothesis test which has 
Type I and II errors, similar to the other hypothesis tests. It means that the sample size must influence the power of the 
normality test and its reliability. It is hard to find an established sample size for satisfying the power of the normality test. 
In the current article, the relationships between normality, power, and sample size were discussed. As the sample size 
decreased in the normality test, sufficient power was not guaranteed even with the same significance level. In the inde-
pendent t-test, the change in power according to sample size and sample size ratio between groups was observed. When 
the sample size of one group was fixed and that of another group increased, power increased to some extent. However, it 
was not more efficient than increasing the sample sizes of both groups equally. To ensure the power in the normality test, 
sufficient sample size is required. The power is maximized when the sample size ratio between two groups is 1 : 1.
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II error is called β. Subtracting α from the probability of the null 
hypothesis becomes the confidence interval, and subtracting β 
from the probability of the alternative hypothesis becomes the 
power. Under the assumption that the null hypothesis is true, 
the P value—the probability of observing the test statistic of 
the data—can be obtained. In order to determine whether the 
hypothesis is true or false, it is necessary to confirm whether 
the observed event is statistically likely to occur under the as-
sumption that the hypothesis is true. The P value is compared 
to a preset standard that determines the null hypothesis as false, 
which is the α. The α is the standard which has been agreed 
upon by researchers seeking the unknown truth, but the truth 
cannot be certain even if the P value is less than the α. The con-
clusion drawn from data analysis may not be the truth, and this 
is the error previously mentioned. Type I and Type II errors oc-
cur once we set a critical value; they show a pattern of trade-off 
between α and β, the probabilities of error. As can be seen in Fig. 
1, the power means the probability of rejecting the null hypoth-
esis when the alternative hypothesis is true; the power increases 
as the sample size increases.

The same rule applies to the normality test. The conditions 
required to conduct a t-test include the measured values in ratio 
scale or interval scale, simple random extraction, homogeneity 
of variance, appropriate sample size, and normal distribution of 
data. The normality assumption means that the collected data 
follows a normal distribution, which is essential for parametric 
assumption. Most statistical programs basically support the 
normality test, but the results only include P values and not the 

power of the normality test. Is it possible to conclude that the 
data follows a normal distribution if the P value is greater than 
or equal to α in the normality test? This article starts from this 
question and discusses the relationships between the sample 
size, normality, and power.

Normality 

Statistical analysis methods based on acquired data are di-
vided into parametric methods and nonparametric methods, 
according to the normality of the data. When the data satisfies 
the normality, it shows a probability distribution curve with the 
highest frequency of occurrence at the center, and the frequen-
cy decreases with distance from the center. The distance from 
the center of the curve makes it easier to statistically determine 
whether the data obtained is frequently observed. Since most 
of the data are gathered around the mean value, it reflects the 
nature of the group and gives information on whether there is a 
difference between groups and the magnitude of the difference. 
On the other hand, if the data does not follow the normal dis-
tribution, there is no guarantee that it is centered on the mean. 
Therefore, the comparison of characteristics between groups 
using the mean value is not possible. In this case, the nonpara-
metric test is used, in which the observations are ranked or 
signed (e.g., + or −), and the sums are compared. However, the 
nonparametric test is somewhat less powerful than the paramet-
ric test [1]. Moreover, it is only possible to detect the difference 
between the values of groups but not to compare the magnitude 

Fig. 1. Concept of hypothesis testing in independent t-test. H0: null hypothesis, H1: alternative hypothesis, μ1 and μ2: mean values of two groups.
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of these differences. Therefore, it is recommended that statistical 
analysis be performed using the parametric test if possible [1], 
and that the normality of the data be the first thing confirmed 
by the parametric test. The hypothesis in normality testing is as 
follows:

H0: The data follows a normal distribution.
H1: The data does not follow a normal distribution.

Thus, how many samples would be appropriate to assume 
normal distribution and to perform parametric tests?

According to the central limit theorem, the distribution of 
sample mean values tends to follow the normal distribution re-
gardless of the population distribution if the sample size is large 
enough [2]. For this reason, there are some books which suggest 
that if the sample size per group is large enough, the t-test can be 
applied without the normality test. Strictly speaking, this is not 
true. Although the central limit theorem guarantees the normal 
distribution of the sample mean values, it does not guarantee the 
normal distribution of samples in the population. The purpose 
of the t-test is to compare certain characteristics representing 
groups, and the mean values become representative when the 
population has a normal distribution. This is the reason why 
satisfaction of the normality assumption is essential in the t-test. 
Therefore, even if the sample size is sufficient, it is recommend-
ed that the results of the normality test be checked first. Well-
known methods of normality testing include the Shapiro–Wilks 
test and the Kolmogorov–Smirnov test. Hence, can the t-test be 
conducted with a very small sample size (e.g., 3) if the normality 
test is satisfied?

In the Shapiro–Wilks test, which is known as one of the most 
powerful normality tests, it is theoretically possible to perform 
the normality test with three samples [3,4]. However, even if the 
P value is greater than the significance level of 0.05, this does not 
automatically mean that the data follows a normal distribution. 
Type I and Type II errors occur in all hypothesis tests, which 
are detected using the significance levels and power. In general, 
statistical programs provide only a P value for the Type I error 
as a result of normality testing, and do not provide power for 
the Type II error. The power of the normality test indicates the 
ability to discriminate non-normal distributions from normal 
distributions. Since there is no formula that can calculate the 
power of the normality test directly, it is estimated by computer 
simulation. In the simulation, the computer repeatedly extracts 
samples of a certain size from the distribution to be tested, and 
tests whether the extracted samples have a normal distribution 
at a determined significance level. The power is the rate at which 
the null hypothesis is rejected from the data obtained through 
simulations repeated over several hundred times. If there are 
only three samples, it may be difficult to ensure that these are 

not normally distributed. Khan and Ahmad [4] reported the 
change of power according to sample sizes under different alter-
nate non-normal distributions (Fig. 2). In fact, the types of dis-
tributions mentioned in the figure are not commonly observed 
in clinical studies, and are not essential to understand this 
figure. We do not explained in detail about that becauseit goes 
beyond our scope. The x-axis represents the number of samples 
extracted from each distribution type, and the y-axis represents 
the power of the normality test corresponding to the number 
of extracted samples. Fig. 2 shows that, although there are some 
degree of difference depending on the patterns of distribution, 
the power tends to decrease when the sample size decreases 
even if the significance level is fixed at 0.05. Therefore, in typical 
circumstances where the distribution pattern of the population 
is unknown, the normality test should be conducted with a suf-
ficient sample size.

Sample size: Should the sample size ratio 
of the control group and the experimental 
group be 1 : 1?

When designing a study using the t-test, it is ideal to have the 
same sample size for the experimental and control groups [5]. 
However, as in cases of studying the therapeutic effects of drugs 
on rare diseases, there are cases in which it is difficult to secure 

Fig. 2. Power results of Shapiro–Wilks test under different alternate 
non-normal distributions at α = 0.05. Power tends to decrease when the 
sample size decreases. Logistic distribution: alternate Logistic (Location 
= 0, Scale = 1) distribution, Weibull distribution: alternate Weibull (Scale 
= 2, Shape = 3) distribution (Modified from Khan RA, Ahmad F. Power 
Comparison of Various Normality Tests. Pakistan Journal of Statistics and 
Operation Research 2015; 11. Available from http://pjsor.com/index.php/
pjsor/article/view/1082).

http://pjsor.com/index.php/pjsor/article/view/1082
http://pjsor.com/index.php/pjsor/article/view/1082
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enough samples for the experimental group. It is well under-
stood that increasing the sample size is a good way to improve 
both the significance level and the power. If so, would it be ef-
fective to increase only the sample size of control group without 
increasing that of the experimental group?

Assume that both sample groups follow the normal distribu-
tion and the variances are homogeneous. Assuming that sample 
group 1 is the experimental group and sample group 2 is the 
control group, the t- statistic can be expressed as [6]
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where 1X   and 2X   are the mean values of sample groups 1 and 
2, n1 and n2 are the sample sizes of sample groups 1 and 2, and 
S(1+2) is the pooled standard deviation of the two sample groups. 
Assume that t1 is a t-statistic when the sample sizes of the two 
groups are the same (n1=n2), and t2 is a t-statistic when the sam-
ple size of the control group is two times larger than that of the 
experimental group (2n1=n2). In the equation, n2 can be replaced 
by n1 and summarized as follows:
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The above two equations can be concatenated so that t2 can 
be expressed as a relation with t1 as follows:
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When the sample size of the control group is doubled, the 

t-statistic increases by 3
2

  times compared with the t-statistic 

when the sample size is not changed. This change results in the 
decrease of the P value. Therefore, if it is difficult to increase 
the sample size of the experimental group, it can be helpful to 
increase the sample size of the control group instead to improve 
the results. However, in such cases, relatively larger sample sizes 
are needed to obtain similar statistical results.

Table 1 shows the results of the minimum sample size calcu-
lation required to obtain a statistically significant result in the 
two-tailed independent t-test at a significance level of 0.05 and 
power of 0.8, when the ratios of sample sizes between groups 
are 1 : 1 and 1 : 2, respectively. Increasing the sample size of the 
control group can also reduce the size of the experimental group 
required to achieve the same statistical result. However, instead 
of reducing the sample size of the experimental group by 25%, 
the size of the control group should be increased by 50%, which 
involves additional effort, time, and cost. Power becomes max-
imum when the sample sizes of the two groups are the same. 
When the variances of the two groups to be compared are sim-
ilar, the smallest sample size is acquired when those of the two 
groups are the same [5]. Table 2 shows the change of power in 
two-tailed independent t-tests under the same sample size but 
different sample size ratios. These results suggest that increasing 
the sample size of the control group cannot be used as a shortcut 
and should only be considered in unavoidable circumstances.

It should be noted that, when the sample size ratios between 
groups is different, more attention should be paid to the homo-
geneity of variance, one of the basic assumptions of the t-test. 
Clinical studies generally have small sample sizes. The smaller 

Table 1. Minimum Sample Size Required to Obtain a Significant 
Result according to Different Sample Size Ratios in the Two-tailed 
Independent t-test

Tail(s) Two

Effect size d 0.5
α err prob 0.05
Power (1-β err prob) 0.8
Sample size ratio between group (G1 : G2) 1 : 1 1 : 2
Noncentrality parameter δ 2.83 2.83
Critical t value 1.98 1.98
Degree of freedom 126 142
G1 64 48
G2 64 96
Total sample size 128 144
Actual power 0.80 0.80

α err prob: probability of Type I error, β err prob: probability of Type II 
error. Actual power: power acquired by statistical program after sample 
size calculation. Noncentrality parameter δ, G1: sample size group 1, 
G2: sample size group 2, critical t value and actual power were rounded 
to the third decimal place.

Table 2. Results of Post-hoc Power Analysis of Two-tailed Independent 
t-test under the Same Sample Size but Various Sample Size Ratios 
between Two Groups

Tail(s) Two

Effect size d 0.5
α err prob 0.05
Sample size group 1 80 100 120 140
Sample size group 2 80 60 40 20
Noncentrality parameter δ 3.16 3.06 2.74 2.09
Critical t value 1.98 1.98 1.98 1.98
Degree of freedom 158 158 158 158
Power (1-β err prob) 0.88 0.86 0.78 0.55

α err prob: probability of Type I error, β err prob: probability of Type 
II error. Noncentrality parameter δ, critical t value and power were 
rounded to the third decimal place.
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the sample size, the greater the influence of the values of indi-
vidual samples on variance. This variability becomes stable as 
the sample size increases. If the sample sizes of the groups are 
different, then this difference in variability may result in differ-
ent variances.

Thus far, we have dealt with questions related to the basic 
assumptions of the t-test that can be found in the research de-
sign process. In the normality test, if the sample size is small, 
the power is not guaranteed. Therefore, it is necessary to secure 
a sufficient sample size. In order to maximize the power in the 
t-test, it is most efficient to increase the sample size of both 
groups equally. The above information may not be necessary 
for a researcher who has a sufficient sample size and conducts 
formal research. However, a deep understanding of the basic 
assumptions of the t-test will help you to understand a high-
er-level statistical analysis method. This will help you to take a 
leading role in the research process from research design to the 

statistical analysis and interpretation of results. 
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