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1  |  INTRODUC TION

Endometriosis is an estrogen-dependent condition that causes pelvic 
pain and infertility.1 Endometriosis is characterized by inflammation, 

angiogenesis, tissue remodeling, and immune evasion.1 The growth 
of endometriosis is determined by its interactions with various im-
mune cells, including macrophages, natural killer (NK) cells, and T 
regulatory cells (Tregs).2,3 Macrophages are abundant immune cells 
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Abstract
Background: Endometriosis is an estrogen-dependent disease and causes pelvic pain 
and infertility. The limits of current pharmacotherapy in women who desire to become 
pregnant prompt the development of various targeted molecules for more effective 
treatment. A review article focused on the unique aspect of cellular metabolic repro-
gramming of endometriotic cells has been reported. The cellular metabolic pathways 
are reprogrammed to adapt to a variety of environmental stresses (e.g., nutrient star-
vation or glucose deprivation, hypoxic stress, excessive reactive oxygen species gen-
eration, and other environmental factors). This review aims to summarize macrophage 
polarization and metabolic reprogramming in endometriosis.
Methods: A literature search was performed between January 2000 and March 2022 
in the PubMed and Google Scholar databases using a combination of specific terms.
Results: Macrophage cellular metabolism has a marked influence on its phenotype 
and function. Preclinical studies showed that metabolic conversion toward glycolysis 
or oxidative phosphorylation drives macrophage polarization to M1 or M2 phenotype, 
respectively. Such cellular metabolic rewiring can offer new therapeutic opportunities.
Conclusion: A better understanding of metabolic reprogramming biology in 
endometriosis-associated macrophages is essential in considering novel therapeu-
tic approach for endometriosis. However, there are currently no detailed studies on 
therapeutic strategies targeting the cellular metabolic properties of endometriosis-
associated macrophages.
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found in peritoneal fluid and also present within the lesions, and 
can either kill endometriotic cells or often foster lesion growth.4 
Moreover, macrophages are critical for inflammation and innerva-
tion, a pain-promoting role.5 Therefore, increased numbers of im-
mune cells and their dysfunction play a key role in the pathogenesis 
of endometriosis.

In addition, like cancer, endometriosis requires the fuel to adapt 
and grow in hypoxic and harsh environments.6,7 Several molecular 
similarities between cancer and endometriosis have been reported 
in terms of the reprogramming of energy metabolism.8–10 Human 
cell utilizes glucose as a primary source of energy, and adenosine 
triphosphate (ATP) is generated from glucose via glycolysis and mi-
tochondrial oxidative phosphorylation. Endometriotic cells acquire 
unique cellular metabolic features that enable them to meet their 
energy demands and survive even under unfavorable environ-
ment. Recent studies revealed that cancer cells and endometriotic 
cells preferentially use glycolysis over glucose oxidation for energy 
generation.6,11–13 A review article focusing on the unique aspect of 
metabolic reprogramming of endometriosis has been reported.7 The 
cellular metabolic shift from oxidative phosphorylation to glycolysis 
suppresses endometriotic cell death through decreasing the level of 
mitochondrial reactive oxygen species (ROS) generation. Changing 
the specific metabolic switch toward oxidative phosphorylation 
leads to cell death by causing increased ROS production and se-
vere oxidative stress. These findings open up new avenues for the 
development of optimal strategies for nonhormonal treatment of 
endometriosis.6

In addition, macrophages are located near endometriotic cells 
and contribute to the homeostatic regulation within the immune 
microenvironment of endometriosis. Macrophage polarization con-
tributes to the control of ectopic endometrial cell initiation and pro-
gression. M1 and M2 macrophages have been suggested to inhibit 
and promote the development of endometriosis, respectively. In the 
field of oncology, M1 and M2 macrophages are thought to be pre-
dominantly dependent on glycolysis and oxidative phosphorylation, 
respectively.10,14 However, it has not been understood how meta-
bolic reprogramming in endometriosis affects the immune response 
of macrophages. Understanding the interaction between endome-
triosis and macrophages, in addition to metabolic remodeling in en-
dometriotic cells, may elucidate the pathogenesis of endometriosis 
and offer novel therapeutic approaches. The review aims to discuss 
the crosstalk between endometriotic cells and macrophages and 
summarize the current status on the molecular mechanisms of met-
abolic reprogramming and macrophage polarization.

2  |  METHODS

2.1  |  Search strategy and selection criteria

A computerized literature search was performed to identify rel-
evant studies. The study was conducted in accordance with the 
PRISMA (Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses) guidelines updated in 202015 (see Table  S1). 
PubMed and Google Scholar electronic databases published be-
tween January 2000 and December 2021 were searched, com-
bining the following keywords: Endometriosis, Macrophages, 
Metabolic shift, Metabolic reprogramming, Polarization, Phenotype, 
and Treatment. The inclusion criteria were publications of original 
studies and review papers and reference lists of the included stud-
ies. The exclusion criteria were duplicates, studies in languages 
other than English, letters to the editor, poster presentation, and 
literature unrelated to the research topic. The literature search was 
conducted using keywords with the following search combination: 
(Endometriosis OR Macrophages) AND (Metabolic shift OR Metabolic 
reprogramming) AND (Polarization OR Phenotype) AND Treatment. 
After searching, we excluded publications that contained the 
keyword “Tumor”. The first identification phase includes records 
identified through a database search (Figure  1). Identified titles 
and abstracts were screened in the first stage. Duplicates were re-
moved during the second screening phase, and titles, abstracts, and 
full-text articles were read to remove inappropriate papers. Citation 
tracking was manually conducted to identify additional relevant ar-
ticles. The final eligibility phase included the full-text articles for 
analysis after excluding those for which detailed data cannot be ex-
tracted. Two authors (HK and SI) independently assessed the identi-
fied articles for eligibility, inclusion, and exclusion and subsequently 
full-text articles. Initial disagreements were resolved by consensus. 
As shown in Figure  1, a systematic search resulted in a final se-
lection of 61 articles, excluding articles containing the keyword 
“Tumor”. These articles include articles related to cancer-associated 
macrophages and energy metabolism (n = 4), those related to en-
dometriosis, macrophages, and energy metabolism (n = 10), those 
related to endometriosis and macrophages (n = 22), those related 
to endometriosis (n = 12), those related to macrophages (n = 10), 
and others (n = 3). The last computerized literature search was con-
ducted on 25 January 2022.

3  |  RESULTS

3.1  |  Selection of studies

The search in the PubMed and Google Scholar electronic databases 
provided 388 literature citations (Figure 1). Following the removal of 
overlaps, 214 records were obtained, of which 153 were excluded, 
and 61 met the inclusion and exclusion criteria.

3.2  |  Crosstalk between endometriotic cells and 
diverse cell types

The proportion of immune cells, including macrophages, NK cells, 
and CD4+Foxp3+ regulatory T cells (Tregs), is increased in the peri-
toneal fluid of women with endometriosis.2,3,16 Peritoneum and im-
mune cells play active roles in the pathogenesis of endometriosis 
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and are key components of the microenvironment with diverse func-
tions, including the crosstalk between endometriotic cells and the 
surrounding cells. Here, this section focuses on the crosstalk and in-
teraction between endometriotic cells and macrophages (Figure 2).

In general, macrophages have dual functions in tissue injury and 
repair. Although macrophages exhibit a phenotype that varies with 
disease stage,17 infiltrating macrophages in endometriosis lesions 
often play a role in tissue remodeling and impaired phagocytic abil-
ity.2 Furthermore, endometriotic stromal cells co-cultured with mac-
rophages have been reported to increase the survival and invasive 
ability.4 For example, reciprocal signaling between endometriotic 
cells and macrophages may promote disease progression through 
the secretion and expression of several molecular mediators (e.g., 
tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6)), monocyte 
chemoattractant protein-1 (MCP-1), legumain (LGMN), fractalkine 
(FKN), and transforming growth factor-β (TGF-β) from endometriotic 
cells.18–21 Endometriotic cells treated with TNF-α activate peritoneal 

macrophages via pro-inflammatory cytokines such as IL-6 and MCP-
1, which has a vital role in initiating, progressing, and protecting en-
dometriosis through the promotion of invasion and proliferation of 
endometriotic cells.18 LGMN is a cysteine protease that is involved in 
the processing of endogenous proteins for major histocompatibility 
complex class II presentation and promotes cell migration, invasion, 
angiogenesis, and proliferation.19 FKN, a chemokine involved in the 
adhesion and migration of immune cells, alters cytokine production 
with upregulation of IL-10 and downregulation of IL-12, implicating 
a protective effect of macrophage against endometriosis progres-
sion.20 Endometriotic cell-derived TGF-β1 has a protective effect 
on oxidative tissue injury via the upregulation of heme oxygenase-1 
(an antioxidant enzyme) in macrophages.21 Therefore, the crosstalk 
between endometriotic cells and macrophages may contribute to 
the pathogenesis and progression of endometriosis.21 As described 
later, these mediators are important in skewing the M1/M2 balance 
toward an anti-inflammatory profile and protecting endometriotic 
cells from immune attack.

3.3  |  Macrophage phenotype in endometriosis

Endometriosis is characterized by progressive inflammation and im-
mune evasion. Among diverse immune cells, macrophages play key 
roles in inflammation, tissue injury, repair, and regeneration in the 
endometriosis milieu.22 Unlike the physiological wound healing, ex-
cessive inflammation and repair in endometriosis lesions lead to the 
deposition of extracellular matrix, fibrosis, and tissue dysfunction 
via persistent activation of macrophages. As a result, tissue integ-
rity and physiological function cannot be restored.5,22 As shown in 
Figure 3, with a few exceptions,23,24 studies showed that levels of 
typical Th2 cytokines (e.g., IL-4, IL10, IL-13, or TGF-β) in serum, peri-
toneal fluid, and ectopic lesions of patients with endometriosis were 
higher than those of normal patients, whereas levels of typical Th1 
cytokines (e.g., interferon-γ [IFN-γ] or IL-12) were suppressed.18,25–37 
Indeed, in vivo experimental animal models revealed that pharmaco-
logical depletion of peritoneal macrophage suppressed peritoneal 

F I G U R E  1 The number of articles 
identified by searching for keyword 
combinations. This figure shows the 
number of articles identified by keyword 
combinations and the number of records 
identified through database searching, 
records after duplicate removal, records 
screened, removal of inappropriate 
articles by reading full-text articles, and 
full-text articles assessed for eligibility.

F I G U R E  2 Crosstalk and interaction between endometriotic 
cells and macrophages. Mediators (e.g., IL-6, MCP-1, LGMN, 
and FKN) produced by human endometriotic cells modulate the 
activation state of macrophages, which in turn promotes the 
progression of endometriosis. Macrophages co-cultured with 
endometriotic cells in the hypoxic milieu upregulate HO-1 and 
MMP expression and promote survival of endometriotic cells.FKN, 
fractalkine; HO-1, heme oxygenase-1; IL-6, interleukin-6; LGMN, 
legumain; MCP-1, monocyte chemoattractant protein-1; MMP, 
matrix metalloproteinase.
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fluid MCP-1 levels, thereby attenuating the initiation and growth of 
endometriosis implants.38

In addition, infiltrating macrophages exhibit a dynamic change 
in functionally unique phenotype that varies with disease stage or 
severity.17 Macrophages are classified into a pro-inflammatory type 
(the classically activated M1 type) and an anti-inflammatory/pro-
resolving type (the alternatively activated M2 type) according to 
their role.9,10 M1 macrophages are characterized by their ability to 
cause inflammation and kill pathogens by producing cyclooxygenase 
2 and inducible nitric oxide synthase (iNOS) through upregulating 
diverse pro-inflammatory cytokines, including TNF-α, IL1-β, IL-6, IL-
12, and IL-23.10 For example, NF-κB signaling pathway is involved 
in the phenotypic conversion of M2 macrophages to M1 macro-
phages.10 M1 macrophages gradually decrease during endometriosis 
stage progression.10 In contrast, M2 macrophages display an anti-
inflammatory, immunosuppressive, angiogenesis, neuroangiogene-
sis, and tissue repair character, by producing IL-4, IL-10, IL-13, IL-17A, 
TGF-β, vascular endothelial growth factor A, endothelial growth fac-
tor, and platelet-derived growth factor.10,39,40 For example, TGF-β 
switches macrophages from M1 to M2 through activating the small 
mothers against decapentaplegic pathway.26 Previous studies have 
indicated that the M2 phenotype becomes predominant in the 
peritoneal environment of women with endometriosis41 or in an 

endometriosis animal model42–44 and that a switch from the M1- to-
ward a M2-polarized phenotype mediates the process of immuno-
suppression, a hallmark of disease progression.17,26 M2 macrophages 
have positive effects on multiple steps in endometriosis growth.39 
Therefore, M1 and M2 macrophages may be involved in suppressing 
or promoting the development of endometriosis, respectively.39

Furthermore, the characteristic and phenotype of macrophages 
are dependent on its local microenvironment.42,43 In an experi-
mental model in which human endometrial tissue was grafted into 
immunodeficient mice, macrophage phenotype was altered from 
M1 to M2 over time.17 Moreover, macrophage polarization de-
pends on the specific site and the microenvironment generated by 
the lesion, possibly with resident macrophages being M1 subtype 
and peritoneal macrophages being M2 subtype.5 It has been re-
ported that M1 macrophages are enriched in the eutopic endome-
trium, whereas the macrophages of the ectopic endometrium are 
polarized toward an M2-type.18 M1/M2 macrophage polarization 
is regulated by several genes (i.e., spleen tyrosine kinase, bridging 
integrator 2, metalloproteinase 12, chemokine receptor 5, macro-
phage mannose receptor 1, and TNF receptor type 1-associated 
death domain) that are differentially expressed in endometrio-
sis.45,46 These results suggest that macrophages can be activated 
and polarized by the endometriosis-derived soluble factors.47

F I G U R E  3 Phenotypic and functional features of macrophages in normal endometrium, eutopic endometrium, and ectopic endometrium. 
The brown table shows pro−/anti-inflammatory cytokines and chemokines that are differentially expressed in serum, ascitic fluid, 
animal models, and ectopic lesions in women with endometriosis. COX-2, cyclooxygenase 2; HIF-1α, hypoxia-inducible factor-1alpha; 
IFN-γ, interferon-gamma; IL-1β, interleukin-1beta; IL-4, interleukin-4; IL-6, interleukin-6; IL-10, interleukin-10; IL-12, interleukin-12; IL-13, 
interleukin-13; IL-23, interleukin-23; iNOS, inducible nitric oxide synthase; NF-κB, nuclear factor kappa B; TGF-β, transforming growth 
factor-beta; TNF-α, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor; and PF, peritoneal fluid.
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3.4  |  Cellular metabolism in endometriosis

3.4.1  |  Overview of glucose metabolism

Cell proliferation is influenced by energy metabolism, including 
aerobic and anaerobic glycolysis. Endometriotic cells convert signifi-
cant amounts of glucose into energy to undergo growth in hypoxic 
milieus.7 Recent studies suggest that reprogramming of energy me-
tabolism is a hallmark of endometriosis development.6,11–13 First, we 
focus on how endometriotic cells dynamically reconstruct signaling 
pathways that regulate glucose metabolism in the maintenance of 
energy homeostasis and summarize the underlying key regulators. 
Second, we discuss how changes in energy metabolism allow mac-
rophages to fine-tune polarization.

We initially overview the metabolic networks that supply en-
ergy to human cell (Figure  4). Human cell is able to produce ATP 
via the major metabolic pathways, including glycolysis and pentose 
phosphate pathway (PPP) in the cytoplasm as well as tricarboxylic 
acid (TCA) cycle and oxidative phosphorylation within the mitochon-
dria.10 One glucose molecule produces two ATP in the glycolytic 
metabolic pathway, while 32–38 molecules of ATP are generated 
through the TCA cycle and oxidative phosphorylation.10 The PPP 
branching from glycolysis produces nicotinamide adenine dinucle-
otide phosphate (NADPH), a regulator of the antioxidant system, 
and ribose-5-phosphate, a precursor of nucleotides.10 Thus, aero-
bic glycolysis is an inefficient ATP production pathway, but confers 

survival benefits through the synthesis of ribose, amino acids, fatty 
acids, nucleotides, and antioxidants.10 Hexokinase 2 (HK2), glucose-
6-phosphate dehydrogenase, lactate dehydrogenase A (LDHA), py-
ruvate dehydrogenase kinase (PDK), and pyruvate dehydrogenase 
(PDH) are key enzymes that play an important role in regulating the 
cellular energetic pathways.48 Among these enzymes, the PDK-PDH 
axis is believed to play a central role as a cellular metabolic switch.48 
The PDH complex converts pyruvate to acetyl-CoA, which activates 
the transfer of acetyl-CoA to the TCA cycle.48 In contrast, PDK in-
hibits the activation of the PDH complex.48 Since PDK activity is 
suppressed in normal cells, the PDH complex activates the produc-
tion of ATP through the TCA cycle. Changing environmental con-
ditions are reported to accelerate a cellular metabolic switch from 
glycolysis to mitochondrial oxidative phosphorylation or vice versa.7

3.4.2  | Metabolic reprogramming in endometriosis

More detailed information on the cellular metabolic profiles in endo-
metriosis can be found in ref. [7]. Ectopic endometrial tissue speci-
mens and adjacent peritoneal lesions were obtained from patients 
with endometriosis who underwent surgery. Endometriotic stromal 
cells and peritoneal cells derived from isolated ectopic endometri-
otic lesions were cultured and used for further cellular metabolism 
experiments.11–13 Endometriotic cells are thought to be able to sur-
vive in harsh environments by altering their cellular metabolism from 
oxidative phosphorylation to glycolysis through upregulating the 
glucose transporter-1 (GLUT1) and glycolytic enzymes6,11–13,49,50–52 
(Figure 4). In response to changes in environmental conditions, en-
dometriotic cells alter the expression profile and pathways of cellular 
metabolic enzymes. The cellular metabolic pathways of endometrio-
sis closely resemble the metabolic activity in cancer, the so-called 
“Warburg effect”, involving the increased utilization of glycolysis 
rather than mitochondrial oxidative phosphorylation.6 As shown 
in Figure 3, there are many reports on the expression of cytokines, 
growth factors, and angiogenic factors in the sera, peritoneal fluid, 
and endometriotic tissue (e.g., peritoneal lesion, ovarian endome-
triomas, and deep infiltrating endometriosis). However, eutopic 
and ectopic endometrial stromal cells as well as peritoneal cells col-
lected from patients with endometriosis were mainly used for in 
vitro cellular metabolism experiments. Therefore, whether there are 
differences in the cellular metabolism between different types of 
endometriosis remains unclear.

3.5  |  Macrophage polarization based on metabolic 
reprogramming

Next, we discuss how metabolic reprogramming is involved in mac-
rophage polarization (Figure 5). Table 1 summarizes cellular metabolic 
pathways and enzymes activated in M1 and M2 macrophages. The M1/
M2 shift in macrophage phenotypes has been reported to be closely 
associated with the progression of endometriosis17; however, research 

F I G U R E  4 Metabolic reprogramming in endometriosis. 
Red letters indicate glycolytic enzymes, and PDK and LDHA 
play a critical role in metabolic reprogramming from oxidative 
phosphorylation to glycolysis. G6P, glucose-6-phosphate; GLUT, 
glucose transporter; PFKFB3, 6-phosphofructo-2-kinase/fructose-
2,6-biphosphatase 3; OXPHOS, oxidative phosphorylation; PDH, 
pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; 
PPP, pentose phosphate pathway; and TCA, tricarboxylic acid.
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on metabolic reprogramming in endometriosis-related macrophages 
is still in its infancy. The following data on metabolic reprogramming 
in macrophage polarization were primarily obtained from the field of 
molecular biology and oncology. Cellular metabolic shifting between 
glycolysis and mitochondrial oxidative phosphorylation is known to be 
implicated in the phenotypic and functional changes of macrophages, 
especially tumor-associated macrophages.10,53 M1 and M2 mac-
rophages rely primarily on glycolysis and mitochondrial oxidative phos-
phorylation, respectively, to generate the energy.10,14 M1 macrophages 
exhibit increased glycolysis along with increased metabolic reprogram-
ming toward aerobic glycolysis, PPP, and fatty acid synthesis (Figure 5, 
left). The glycolytic flux is controlled by multiple steps, such as glucose 

transporters (e.g., GLUT1), oxidative pathways (e.g., PPP and fatty acid 
synthesis), and glycolytic enzymes (e.g., PFKFB, pyruvate kinase M2 
[PKM2], LDHA, PDK, and PDH), signal metabolites (e.g., citrate, suc-
cinate, and itaconate), and transcription factors (e.g., TGF-β and HIF-
1α).10,14,48,54–58 In particular, the upregulation of GLUT1, PFKFB3, 
PKM2, and PDK1 expression facilitates a rapid glucose uptake and 
an accelerated glycolytic flux.54,55 The PPP provides NADPH oxidase 
to produce ROS for killing pathogens or for physiological processes, 
including cell proliferation and differentiation.56 Additionally, the up-
regulation of LDHA and PDK1 expression promotes the conversion of 
pyruvate into lactate, thus limiting pyruvate to acetyl-CoA conversion 
in mitochondria.10,48,58 This may be accompanied by mitochondrial 

F I G U R E  5 Macrophage polarization based on metabolic reprogramming. This figure depicts general cellular metabolic profiles of tumor-
associated macrophages because of the small number of experimental models that involve the cellular metabolic rewiring in endometriosis-
associated macrophages. Left figure: M1 macrophages upregulate the glycolysis enzymes (e.g., GLUT1, PFKFB3, PKM2, LDHA, and PDK), 
producing increased glycolytic flux. The oxidative PPP activity is crucial for M1 macrophages for anti-oxidant defense mechanisms and fatty 
acid biosynthesis.56 Interruption of TCA cycle results in accumulation of citrate and succinate, leading to HIF1α stabilization and activation 
of glycolytic enzyme genes. Right figure: In contrast, M2 macrophages are characterized by a cellular metabolic switch toward oxidative 
phosphorylation for the functions involved in tissue repair.

TA B L E  1 Metabolic pathways and enzymes activated in M1 and M2 macrophages

Macrophage phenotype M1-type M2-type

Metabolic sift Toward glycolysis Toward oxidative phosphorylation (glucose 
oxidation)

Activated metabolic pathways PPP
Fatty acid synthesis
Ribose synthesis
NADPH synthesis

Fatty acid oxidation
Glutaminolysis

Activated metabolic enzymes GLUT1, PDK, LDHA PDH
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dysfunctions. Disrupted TCA cycle results in the accumulation of sig-
nal metabolites (e.g., citrate, succinate, and itaconate).10 For exam-
ple, succinate impairs prolyl hydroxylase (PHD) activity and stabilizes 
HIF-1α, that leads to metabolic reprogramming toward glycolysis.10 
Collectively, in M1 macrophages, cellular metabolism is shifted from 
mitochondrial oxidative phosphorylation toward glycolysis, which in 
turn increases glucose uptake and lactate production, amplifying the 
innate defense mechanisms and immune surveillance.

In contrast, in M2 macrophages, oxidative phosphorylation is 
the major metabolic pathway, and pyruvate is transported to mito-
chondria and converted to acetyl-CoA by PDH10 (Figure  5, right). 
Metabolic conversion from glycolysis to oxidative phosphorylation 
increases IL-10 production via AMPK-dependent activation of p38 
mitogen-activated protein kinase (p38 MAPK), c-Jun N-terminal 
kinase (c-JUK), and cyclic AMP-responsive element-binding pro-
tein.59 The metabolic shift toward oxidative phosphorylation pro-
motes the polarization of macrophages to the M2 phenotype, which 
shows unique functions, such as cell proliferation, tissue repair and 
wound healing, and fibrosis.14 Interestingly, recent experimental 
animal models of endometriosis showed that the elevated M1−/M2-
phenotype ratio was significantly reduced by increased mitochon-
drial biosynthesis,60 indicating that changes in metabolic pathways 
can regulate macrophage polarization. This suggests that the meta-
bolic shift from glycolysis toward oxidative phosphorylation can con-
vert macrophage phenotype from M1 to M2. However, the dynamic 
spatiotemporal regulation process and mechanisms underlying the 
metabolic switch are not yet fully understood in endometriosis.

Collectively, metabolic reprogramming is accompanied by 
changes in macrophage polarization. These results were mainly ob-
tained from tumor-infiltrating macrophages. Unfortunately, meta-
bolic reprogramming in endometriosis-associated macrophages has 
not been investigated in detail.

4  |  DISCUSSION

This review summarized the crosstalk and cellular metabolic regu-
lation in endometriotic cells and macrophages, and the factors and 
pathways relevant to metabolic reprogramming.

The crosstalk between endometriotic cells and immune cells 
induces altered immune response to facilitate immune evasion, 
which contributes to endometriotic cell growth and progression. 
Endometriosis-associated immune cells, including macrophages 
and Treg, are a heterogeneous population that plays diverse func-
tions in immune responses. In the field of oncology, metabolic 
conversion determines the phenotype of macrophages, supporting 
that cellular metabolism regulates the immune responses.10,14,17,53 
We mainly summarized the cellular metabolic profile of tumor-
associated macrophages because of the small number of exper-
imental models that involve the cellular metabolic rewiring in 
endometriosis-associated macrophages.60 Macrophages and 
cancer cells require metabolic reprogramming to maximize fit-
ness under inflammatory environments. For example, metabolic 

conversion toward glycolysis or glucose oxidation drives macro-
phage polarization to M1 or M2 phenotype, respectively.61 M1 
macrophages, cancer cells, and endometriotic cells can shift their 
metabolic pathway toward glycolysis, while M2 macrophages shift 
their cellular metabolism toward oxidative phosphorylation.61 
These studies suggest cellular metabolic similarities between can-
cer, endometriosis, and M1 macrophages.6,7,11–13 However, it is 
currently unclear whether macrophages directly affect the cellu-
lar metabolic properties in endometriosis lesions and vice versa. 
Further investigation is required for the validation of cellular met-
abolic pathways involved in the polarization of macrophage associ-
ated with endometriosis.

In conclusion, this review summarizes the pathophysiology of 
endometriosis in terms of metabolic reprogramming and macro-
phage polarization and provides new perspectives and opportuni-
ties for understanding the cellular metabolic biology. Studies on the 
dynamic spatiotemporal regulation of cellular metabolic pathways of 
endometriotic cells and macrophages have just begun.
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