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Abstract
Intracerebral hemorrhage (ICH), a form of brain bleeding and minor subtype of
stroke, leads to significant mortality and long-term disability. There are currently
no validated approaches to promote functional recovery after ICH. Research in
stroke recovery and rehabilitation has largely focused on ischemic stroke, but
given the stark differences in the pathophysiology between ischemic and
hemorrhagic stroke, it is possible that strategies to rehabilitate the brain in
distinct stroke subtypes will be different. Here, we review our current
understanding of recovery after primary intracerebral hemorrhage with the
intent to provide a framework to promote novel, stroke-subtype specific
approaches.
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Introduction
Intracerebral hemorrhage (ICH) accounts for about 15% of all 
strokes in the USA and Europe and leads to significant mortality 
and long-term disability despite advances in acute medical and 
surgical treatment1,2. In humans, primary ICH occurs because  
of a rupture of an intracerebral vessel, most often due to hyper-
tension or cerebral amyloid angiopathy. Vessel rupture leads to  
mechanical tissue disruption (secondary to the jet of blood) and 
hematoma formation, followed by secondary injury processes, 
including disruption of the blood-brain barrier, expansion of  
perihematomal edema, inflammation, neuronal cell death, and 
chemical or cellular barriers to repair3. These secondary injury 
processes occur over hours to days after the primary injury and 
are attributable to toxins from lysed blood, including hemoglobin 
(Hgb), hemin (oxidized form of heme), and thrombi4–8. These  
toxins could affect cell survival or repair via interactions with a  
host of cell types, not only neurons.

Although research in the field of stroke recovery and rehabilita-
tion has grown, there have been very few studies specifically  
focusing on rehabilitation in ICH. In this review, we summarize 
the recent advances in our knowledge of the pathophysiology of 
primary ICH, how rehabilitation affects functional outcomes  
after ICH, and the mechanisms that may underlie the gains seen 
with rehabilitation in preclinical models and patients.

Pathophysiology of intracerebral hemorrhage
Preclinical models have provided important insights into the  
pathophysiological processes that occur after ICH, which differ 
from those seen after ischemic stroke9. The two most commonly 
used rodent models of ICH are autologous blood injection and  
bacterial collagenase infusion10. In the whole-blood injection 
model, lysed blood is injected directly into the brain paren-
chyma, with almost no spontaneous bleeding11. The bacterial  
collagenase model involves intraparenchymal infusion of  
bacterial collagenase, an enzyme that damages the basal lamina 
and causes bleeding that evolves and grows over 24 hours12.  
Models of hypertensive rodents in which ICH occurs spontane-
ously, which may more closely mimic what occurs in patients,  
have been less widely used. In reviewing the literature, one must 
consider that these preclinical models have different pathophysi-
ological processes which may affect the course of recovery and 
response to rehabilitation; thus, the use of multiple models has  
been recommended to better understand post-ICH recovery in  
preclinical studies13.

After ICH, there is both immediate and ongoing cell death in both 
whole-blood and collagenase models14. In the collagenase model, 
there is markedly greater delayed cell death, leading to worse  
functional deficits even when the hematoma size is matched14.  
Historically, it was believed that Hgb or hemin induced toxicity  
following ICH by loading neurons with redox-active free iron  
leading to the formation of hydroxyl radicals via Fenton  
chemistry9. Indirect support for this model came from studies, not 
replicated by all groups, that iron chelators such as deferoxamine 
(DFO) improve functional recovery in pig15 and rodent16 mod-
els. More recent studies suggest that DFO and a more selective 
metal chelator, adaptaquin, act not by inhibiting Fenton chemistry 

but by inhibiting a specific family of iron-, 2-oxoglutarate-, and  
oxygen-dependent dioxygenases, the hypoxia-inducible factor 
proly hydroxylases (HIF PHDs)17. HIF PHDs are oxygen sensors 
and accordingly, with drugs such as adaptaquin, the brain can be 
fooled into thinking it is hypoxic when it is not. The consequence 
of turning on hypoxic adaptation in ICH with adaptaquin is to  
inhibit the synthesis of a cassette of genes (Chac1, Trib3, and  
Xc-transporter) that are involved in mediating neuronal death. 
Accordingly iron, likely via its ability to act as a cofactor for the 
HIF PHDs, promotes the synthesis of ATF4-dependent genes that 
mediate neuronal death.

Of note, ATF4 regulates the synthesis of a pseudokinase inhibitor 
of AKT, called tribbles homolog 3 (Trib3). Studies in non-neural  
cells have shown that Trib3 and ATF4 can dimerize to inhibit  
transcription by the pro-plasticity transcription factor, CREB 
(cAMP-responsive element-binding protein). Activators of CREB 
have been shown to improve learning and memory as well as  
functional recovery after stroke. Accordingly, iron’s ability to 
load the HIF PHDs could lead to the transcriptional induction of  
genes (for example, Trib3) that constrain neuronal survival and 
plasticity following hemorrhagic stroke. The model is consist-
ent with data showing that adaptaquin, a small-molecule inhibitor 
of the HIF PHDs, improves functional recovery out to a month  
in collagenase and blood infusion models in mice and rats,  
respectively. Future studies will clarify the role of ATF4 in  
regenerative failure following ICH.

How do cells die following ICH in cellular and rodent models? 
Recent studies from two groups suggest that cell death in ICH is 
completely distinct from that found following ischemic stroke. 
In ischemic stroke, cell death occurs via a poly(ADP-ribose)  
polymerase-1 (PARP)-dependent pathway leading to AIF release 
from the mitochondria and Parthanatos18,19. By contrast, recent 
data suggest that cell death following ICH occurs via a ferrop-
totic pathway that also involves necroptosis7,20. Of note, inhibi-
tors of Parthanatos have no effect on ICH-induced death in vitro7,  
suggesting that the pathways of cell damage and, by extension, 
regenerative failure might be different.

Other studies have focused on the role of the immune system in  
secondary injury and repair. After ICH, there is a marked inflam-
matory reaction with activation of microglia and recruitment of 
leukocytes to the perihematomal region, leading to the produc-
tion of inflammatory mediators, including cytokines, chemokines, 
and matrix metalloproteinases9,21. Interestingly, activated micro-
glia can take on pro-inflammatory (via classic activation) or anti- 
inflammatory (via alternative activation) phenotypes, the latter 
associated with wound healing and repair22,23. A recent study  
demonstrated that, after ICH, microglia have dynamic changes 
in gene expression that result in a transition from an early, pro-
inflammatory phenotype to an anti-inflammatory phenotype  
during the resolution phase of ICH24. Transforming growth  
factor-beta 1 (TGF-β1) was identified as the most likely media-
tor of this effect, and treatment with TGF-β1 improved functional  
outcomes in a murine model. Furthermore, early increases in  
TGF-β1 levels were also shown to be highly associated with 
improved 90-day outcomes in patients with ICH.
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Another area of research involves the transcription factor peroxi-
some proliferator-activated receptor gamma (PPARγ), which plays 
a significant role in phagocytosis and modulating inflammation 
and neuroprotective mechanisms3. In a preclinical study, treat-
ment with a PPARγ agonist, rosiglitazone, promoted hematoma 
resolution, reduced neuronal damage, downregulated the expres-
sion of pro-inflammatory genes (tumor necrosis factor-alpha, 
interleukin-1beta, matrix metalloproteinase-9, and inducible 
nitric oxide synthase mRNA), reduced oxidative stress, and was  
associated with improved neurological function25.

Recovery after intracerebral hemorrhage
Post-stroke recovery has been widely studied, but the majority 
of research has focused only on ischemic stroke26–29. Given the  
differences in pathophysiology between ischemic stroke and  
ICH, one could assume that the recovery outcomes or mecha-
nisms would be dissimilar between the two stroke subtypes.  
Comparisons between recovery outcomes in patients with  
ischemic stroke and ICH have yielded mixed results; some have 
found comparable activity limitation and recovery30, whereas  
others have found greater recovery after ICH31.

The majority of recovery after ICH occurs early, within the first 
few months post-stroke32. A recent longitudinal study of patients 
with ICH characterized the time course of recovery of motor and 
sensory impairment and ambulation in 11 patients up to six months 
post-stroke33. Sensory, truncal, and lower limb motor impair-
ment reached a plateau after three months, whereas there was  
continued improvement of upper limb movement and ambula-
tion to six months. The course of motor recovery has been shown 
to depend on the integrity of the corticospinal tract (CST), as  
measured by transcranial magnetic stimulation34 or diffusion  
tensor tractography32. In a study of 36 patients with putaminal 
hemorrhage, motor function recovered in all patients up to four  
months post-stroke, but patients who had preserved CST integrity 
at baseline had greater recovery of motor function32. More studies 
are needed to better elucidate the natural history of recovery after  
ICH, as has been done for ischemic stroke.

Preclinical studies of rehabilitation after intracerebral 
hemorrhage
Rehabilitation has been shown to lead to functional improve-
ments in rodent models using both collagenase-induced and 
whole blood-induced ICH13,35,36. Different types of rehabilitation 
have been tested in preclinical models, including environmental  
enrichment37,38, skilled reach training37, constraint-induced move-
ment therapy39,40, and aerobic training41. Enriched rehabilita-
tion (ER) combines environmental enrichment (group housing 
and access to tunnels, ramps, and various toys) and task-specific  
training (most commonly skilled reach training) and was first 
used as a successful rehabilitative intervention in preclinical mod-
els of ischemic stroke42,43. Rehabilitation has been shown to be  
associated with improved behavioral recovery and enhanced  
neuroplasticity, including dendritic reorganization44, astrocytic 
plasticity45, and synaptogenesis in ipsilesional motor cortex and 
striatum46.

In a collagenase-induced rodent model, rats that participated in a 
two-week course of enriched rehabilitation beginning one week 
after ICH improved their skilled reaching and walking ability36. 
ER also significantly reduced the amount of perihematomal neuro-
nal death even after one week of treatment, suggesting a possible 
neuroprotective effect of rehabilitation. This study also examined 
whether rehabilitation influenced iron toxicity and inflamma-
tion post-ICH; rehabilitation did not have an effect on levels 
of iron-binding proteins (ferritin and transferrin) or number of  
inflammatory cells in perihematomal tissue. The results of a  
follow-up study also support a neuroprotective role of rehabili-
tation; ER beginning one week after ICH was demonstrated to  
augment the clearance of toxic blood components, Hgb and iron,  
and reduce oxidative stress at the hematoma/perihematomal 
interface35. The authors speculate that rehabilitation upregulates 
pathways for Hgb clearance (for example, Nrf247) and down-
regulates anticlearance pathways (for example, CD4748) to expe-
dite hematoma resolution and limit secondary injury. Further  
investigation is needed into a possible neuroprotective role of  
rehabilitation in preclinical models, as well as the extent to which 
secondary injury processes contribute to the functional deficits  
after ICH in humans, and the ability to reduce secondary injury 
with rehabilitation in humans.

In a whole-blood injection model, ER beginning one week after 
ICH also led to significant improvements in reaching ability13.  
Interestingly, the behavioral improvements in the whole-blood 
model, unlike those in the collagenase model, were not accom-
panied by a decrease in lesion volume or increase in dendritic  
length13. The authors propose that the lack of delayed injury in the 
whole-blood model compared with the collagenase model may 
account for these differences. It is still unknown which of these 
models better exemplifies what occurs after ICH in humans.

Taken together, evidence from preclinical studies shows a benefit 
of early rehabilitation after ICH, but the mechanisms underlying  
the behavioral gains are incompletely understood and vary accord-
ing to model. Further refinement of neurorehabilitative inter-
ventions in preclinical models, which focuses on factors such  
as the timing, intensity, schedule, and total dose of therapy, is 
also needed to guide the development of optimal rehabilitation  
paradigms for patients49.

Rehabilitation may be more effective after hemorrhagic stroke  
than after ischemic stroke, when matched for baseline clinical  
severity. In a preclinical study in size- and location-matched 
ischemic or hemorrhagic stroke, rodents with ICH were shown 
to have greater recovery of skilled walking ability than those 
with ischemic stroke50. Similar results were seen in ICH patients 
who received the same type and dose of inpatient rehabilitation  
and had greater recovery of neurological impairment and reduced 
activity limitation by time of discharge, relative to patients with 
ischemic stroke31.

Clinical rehabilitation after intracerebral hemorrhage
There have been very few rehabilitation studies undertaken in 
patients with ICH. Many of the larger neurorehabilitation trials 
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have included both hemorrhagic and ischemic stroke patients51,52  
or excluded ICH patients altogether from study53. In animal  
models of ischemic stroke, there is an early ‘sensitive period’ 
after stroke, during which rehabilitation leads to larger behav-
ioral improvements than when rehabilitation is delayed, even by 
one week42,54. However, owing to the paucity of clinical trials,  
evidence is lacking for a ‘sensitive period’ in humans for ischemic 
or hemorrhagic stroke.

The effects of early rehabilitation after ICH were recently inves-
tigated in a multicenter, prospective, randomized controlled study 
of 243 patients with ICH in China55. Patients with moderate motor 
impairment were randomly assigned to either very early rehabili-
tation (within 48 hours) or standard care (rehabilitation starting 
after seven days). The very early rehabilitation group had shorter  
lengths of stay, improved quality of life, greater independence 
in activities of daily living, and lower six-month mortality when  
compared with the standard-care group. Because this study was 
conducted in China, where rehabilitation is delivered by family 
members and is less standardized, it is unclear whether the results 
are generalizable to the general ICH population. Furthermore, 
information on known predictors of outcome, such as hematoma 
volume, was not available, and the outcomes were self-reported and 
subject to responder bias. Nevertheless, it is a promising result in 
favor of very early rehabilitation, which has been a topic of recent 
debate56.

Most clinical guidelines support early initiation of rehabilitation 
after stroke57, and multiple studies have shown that early therapy 
is safe and feasible58,59. However, the results of the recently pub-
lished A Very Early Rehabilitation Trial (AVERT) indicate that 
very early, intensive mobilization may be detrimental after stroke52.  
In this single-blinded, randomized controlled trial of 2,104 
patients with ischemic or hemorrhagic stroke, patients who 
received very early mobilization (< 24 hours post-stroke with more  
frequent sessions) were more likely to have an unfavorable  

outcome than patients who received usual care52. In a pre- 
specified subgroup analysis, this effect was stronger in patients  
with severe stroke and ICH. Furthermore, providing early reha-
bilitation for patients with ICH is particularly challenging  
because these patients are often admitted to intensive care units 
and require close neurological and hemodynamic monitoring.  
One must ensure that rehabilitation interventions do not cause  
detrimental fluctuations in blood pressure and intracranial pres-
sure that can lead to hematoma expansion, which is associated  
with worsened functional outcomes after ICH9,60.

Conclusions and future directions
Reducing impairment and disability after ICH requires a multi-
faceted approach with advances in the acute medical and surgical 
treatment and rehabilitation of patients with ICH. Rehabilitation 
leads to significant behavioral improvements in animal models of 
ICH and is associated with enhanced neuroplasticity and reduced 
neuronal degeneration, although the mechanisms contributing to 
behavioral recovery are not yet understood. Clinical rehabilitation 
studies in patients with ICH have been limited; more studies are 
needed to characterize the natural history of recovery after ICH 
and to examine the effect of rehabilitative interventions specifically 
in this patient population. Therapies to enhance neuroprotection 
and neuroplasticity are also being developed and may be used in  
conjunction with rehabilitation to promote recovery.
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