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The National Toxicology Program (NTP) reported that
chronic exposure to varying dietary concentrations of 4-
methylimidazole (4-Mel) increased lung tumors in female
and male mice [1]. In this study, mice (male and female
B6C3F1 mice) were either administered 4-Mel by oral gavage
(0, 50, 100, 200, or 300 mg/kg/day) for 2 days or exposed
for 5 and 28 days to 4-Mel in the diet (0, 150, 300, 1250,
or 2500 ppm) and whole transcriptome (RNA-Sequencing)
data from 4-Mel-exposed B6C3F1 mice to determine whether
changes occurred in the target (lung) and nontarget (liver)
tissues. This analysis was conducted to provide information
with which to evaluate biological processes affected by ex-
posure to 4-Mel, with a focus on identifying key events that
could be used to propose a plausible mode of action (MoA)
for mouse lung tumors [2].
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Specifications Table

Subject area Biology

Specific subject area Transcriptomic changes characteristic of carcinogenic activity in target (lung)
vs. nontarget (liver) mouse tissues on exposure to test substance.

Type of data Tables, graphs, figures

How data were acquired In vivo lung & liver transcriptomics using Illumina NextSeq 500. In-life data;
clinical observations, body weight, and food consumption.

Data format Raw data: Transcriptomics; Illumina FASTQ files and individual animal body

weights and food consumption.
Analyzed data: Figs. 1-3 and Tables 1-3.

Parameters for data collection FASTQ files were mapped to iGenomes UCSC mm10 reference, reads per
sample counted with HTSeq. Body weight, food consumption, and clinical
observations are reported in the study report appendices (Supplemental Data
File 1).

Description of data collection Male and female mice exposed to 4-Mel for 2, 5, and 28 days at four dose
levels, plus vehicle-only controls. Eight animals per sex were exposed at each
dose level and time point, with the six samples per condition (sex, dose, and
time), yielding the best total RNA used for whole-transcriptome sequencing.
Samples were sequenced by 75 bp paired-end reads, with four bar-coded pairs
of reads per sample (Supplemental Data Files 2, 3, and 4). Body-weight
changes, food consumption, and clinical observations were recorded over the
course of the study (Supplemental Data File 1).

Data source location Integrated Laboratory Systems, Morrisville, NC, USA
NCBI GEO, National Library of Medicine, Washington, DC, USA.

In-life data as Supplemental Data File 1

Data accessibility Repository name: NCBI GEO
Data identification number: GEO Accession Number GSE129622
Direct link to data:
[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129622]

Related research article Susan ]. Borghoff, Seneca E. Fitch, Michael B. Black, Patrick D. McMullen,
Melvin E. Andersen, Grace A. Chappell. 2021. A systematic approach to evaluate
plausible mode of actions for mouse lung tumors in mice exposed to
4-methylimidazole. Regulatory Toxicology and Pharmacology 124:104977
[10.1016/j.yrtph.2021.104977] published online.

Value of the Data

+ Gene expression data provide a powerful tool for identifying key molecular initiating and
key events to inform a mode of action (MoA) for mouse lung tumors in mice exposed to
high levels of 4-Mel [3,4].

» Gene expression data provide the ability to generate cellular mechanistic hypotheses relative
to cellular biology preceding apical adverse endpoints [5].

» These data are useful in considering plausible MoAs for mouse lung tumors that occur in
mice with chronic dietary exposure to 4-Mel.

1. Data Description

Tables 1 and 2 provide summary data of in-life animal observations, including food consump-
tion and body-weight changes with exposure to 4-Mel in male mice and female mice, respec-
tively. Supplemental Data File 1 provides the final report from the animal study, with complete
descriptions of the experimental design, animal model, dose levels, and endpoints collected over
the 28-day exposure period, as outlined in Tables 4 and 5, below, in the Experimental Design,
Materials, and Methods section.

Table 3 provides the differential gene expression from feature count data, generated after
normalization in DESeq2. Fold change was computed relative to time-specific, vehicle-only con-
trol animals. The data provided in this table are the number of differentially expressed genes


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129622
http://10.1016/j.yrtph.2021.104977

Table 1
In-life animal observations: Mean feed consumption and body weight change in male mice exposed to 4-Mel (Supplemental Data File 1 provides complete raw data for both male and
female mice).

Mean Feed Consumption Mean 4-Mel Initial Group Final Group Mean Body
(g/kg body weight/day)’ Consumed (mg/kg Mean Body Mean Body Weight Gain?
Day of Termination Dose Level +SD body weight/day) +SD Weight (g) +SD Weight (g) +SD (g) £SD
0 mg/kg/day n/a n/a 23.5+14 24.5+15 1.0+0.7
50 mg/kg/day n/a n/a 243422 25.1+14 0.9+1.6
Day 2 (Gavage) 100 mg/kg/day n/a n/a 24.2+1.7 24.5+1.7 0.440.7
200 mg/kg/day n/a n/a 23.4+15 23.4+13 0.0+0.9
300 mg/kg/day n/a n/a 23.842.1 23.6+2.6 -0.2+1.9
0 ppm 224.1+£40.0 n/a 24.0+1.7 24.7+1.6 0.7+0.6
150 ppm 222.2460.7 333491 23.6+2.0 243419 0.8+1.1
Day 5 (Feed) 300 ppm 216.6+43.1 65.0+12.9 24.0+2.0 24.7+14 0.741.0
1250 ppm 235.7431.8 294.6+39.7 23.3+1.8 24.94+1.6 1.6+0.6
2500 ppm 242.4441.2 605.9+103.0 23.2+1.6 244411 1.2+1.2
0 ppm 267.5+66.4 n/a 23.4+1.9 26.3+1.8 2.841.0
150 ppm 260.3+40.3 39.0+6.0 241+19 25.54+2.0 14+1.1"
Day 28 (Feed) 300 ppm 27724474 83.24+14.2 24.0+1.8 252419 11+£1.27
1250 ppm 244.94+29.9 306.1+374 233417 25.3+1.9 1.9+0.9
2500 ppm 258.5+36.4 646.2+90.9 22.7+1.2 25.6+0.9 2.94+0.8"

Abbreviations: SD = standard deviation, n/a = not applicable.
T Feed consumption was calculated based on food consumed after 1 week/ body weights of mice divided by number of days exposed.
2 Body-weight gain determined from individual animal data based on difference between final mean body weight and initial mean body weight.
* Statistically significant decrease compared to concurrent control (Dunnett's test p< 0.05).
" Statistically significant linear trend test (p< 0.05).
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Table 2
In-life animal observations: Mean feed consumption and body weight change in female mice exposed to 4-Mel (Supplemental Data File 1 provides raw data for both male and female
mice).

Mean Feed Consumption Mean 4-Mel Consumed Initial Group Final Group Mean Body
(g/kg body weight/day)! (mg/kg body Mean Body Mean Body Weight Gain?
Day of termination Dose Level +SD weight/day) + SD Weight (g) + SD Weight (g) &+ SD (g) £ SD
0 mg/kg/day n/a n/a 19.0+0.8 18.9+0.9 -0.1+0.5
50 mg/kg/day n/a n/a 19.1+11 18.6+1.1 -0.6+0.7
Day 2 (Gavage) 100 mg/kg/day n/a n/a 18.3£1.1 18.3+£0.9 0.0+0.8
200 mg/kg/day n/a n/a 18.5+1.0 17.5+1.5 -1.0+0.9
300 mg/kg/day n/a n/a 18.7+1.1 17.8+13 -1.0+0.7
0 ppm 285.0+102.3 n/a 18.1+1.0 19.4+1.1 1.3+0.7
Day 5 150 ppm 334.9+474 50.2+71 18.3+0.9 19.7+0.7 1.4+0.7
(Feed) 300 ppm 295.5+91.4 88.6+27.4 18.2+0.9 19.4+0.9 1.2+0.6
1250 ppm 228.9+40.2 286.1+£50.2 18.5+0.8 19.240.9 0.8+0.5
2500 ppm 308.3+61.3 770.7+£153.2 18.5+1.1 19.2+14 0.7+0.8
0 ppm 362.6+53.6 NA 18.3£0.8 20.9+1.0 2.6+0.7
150 ppm 330.94+34.5 49.6+5.2 18.5+1.0 214411 2.840.7
Day 28 (Feed) 300 ppm 367.6+45.9 110.3+13.8 18.5+0.8 20.74+11 2.24+0.6
1250 ppm 309.8+52.8 387.3+£66.0 18.3+1.2 20.5+1.3 21+0.8
2500 ppm 299.74+39.8" 749.3+99.4 17.8+£0.7 20.3+1.1 2.5+09

Abbreviations: SD = standard deviation, n/a = not applicable.
1 Feed consumption was calculated based on food consumed after 1 week/ body weights of mice divided by number of days exposed.
2 Body-weight gain determined from individual animal data based on difference between final mean body weight and initial mean body weight.
* Statistically significant decrease compared to concurrent control (Dunnett’s test p< 0.05).
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Table 3

Differential gene expression from feature count data, generated after normalization in DESeq2. Fold change was computed relative to time-specific, vehicle-only control animals. Shown
are the number of differentially expressed genes (DEGs) using an FDR-corrected p-value of < 0.05, an absolute value of fold change of > 1.2-fold (which had to be lowered from a
standard FC of 1.5 due to limited signal), and both thresholds applied simultaneously. These data are derived from the RNA-Seq count tables in NCBI GEO accession GSE129622.

Sex Male Female Male Female Male Female Male Female
Exposure (Gavage) 50 mg/kg-d 100 mg/kg-d 200 mg/kg-d 300 mg/kg-d
Liver FDR<0.05 20 1 679 14 0 2202 2089 3877
|FC|>1.2 2153 1374 2844 2054 1672 4559 4003 5467
FDR & 19 1 577 13 0 1902 1665 3253
Day 2 |FC|
Lung FDR<0.05 4 0 6 11 28 1012 153 1537
|FC|>1.2 101 102 166 258 380 1374 873 1537
FDR & 3 0 4 10 24 770 129 1056
[FC|
Exposure (feed) 150 ppm 300 ppm 1250 ppm 2500 ppm
Liver FDR<0.05 0 0 5 1 20 5 88 16
|FC|>1.2 948 849 1005 780 1333 883 1378 1160
FDR & 0 0 5 1 19 5 82 16
Day 5 |FC|
Lung FDR<0.05 12 0 8 37 56 46 7 13
|FC|>1.2 287 55 285 278 186 289 156 155
FDR & 7 0 5 20 26 34 7 1
[FC|
Liver FDR<0.05 74 0 4 0 155 5 21 230
|FC|>1.2 1524 864 959 1025 1516 1129 1335 1888
FDR & 56 0 3 0 102 5 21 182
Day 28 |FC|
Lung FDR<0.05 1 1 23 42 54 7 9 20
|FC|>1.2 199 207 257 422 451 489 267 650
FDR & 1 1 17 29 45 7 9 n
[FC|
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Fig. 1. An example of the distribution of differentially expressed genes (DEGs) between male and female mice, broken
down based on the overlap from Day 2 maximum dose (300 mg/kg-d) where both sexes exhibit maximal differential
expression by any criteria. Genes shown in the Venn diagrams are significant by both FDR<0.05 and a |FC|>1.2-fold
at 300 mg/kg-d after administration of 4-Mel for 2 days. While the liver has a larger proportion of genes in common
between male and female mice than does the lung, there were still a large number of sex-specific DEGs, particularly in
females, when a less stringent criterion of |FC|>1.2 was used.
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using a false discovery rate (FDR)-corrected p-value of < 0.05, an absolute value of fold change
of > 1.2-fold (which had to be lowered from a standard fold change (FC) of 1.5 due to limited
signal), and both thresholds applied simultaneously.

Fig. 1 provides an example using Venn diagrams showing the distribution of differentially
expressed genes (DEGs) between male and female mice exposed to the highest dose level of
4-Mel (300 mg/kg-d) for 2-days of oral gavage dosing. Both sexes exhibit maximal differential
expression using any criteria selected. Genes shown in these Venn diagrams were identified as
significant by both FDR< 0.05 and a |FC|> 1.2-fold. While the liver has a larger proportion of
genes in common between male and female mice than does the lung, there were still a large
number of sex-specific DEGs, particularly in females, when a less stringent criterion of |FC|> 1.2
was used.

Fig. 2 provides an example of a map of the ontology enrichment for the lungs of mice ex-
posed to 4-Mel where the genes are rank-ordered by fold change based on the selection of the
top 500 genes up-regulated and top 500 genes down-regulated from the highest dose (2 days)
or dietary exposure level (5 or 28 days).

Fig. 3 provides an example of a map of the ontology enrichment for the liver of mice exposed
to 4-Mel where the genes are rank-ordered by fold change based on the selection of top 500 up-
regulated and top 500 down-regulated genes from the dose level (2 days) or dietary exposure
level (5 days).

Supplemental file 1 provides the final report from the study in which mice were exposed
to 4-Mel by oral gavage for 2 days, and then via the diet for 5 or 28 days, prior to collection
of liver and lungs for further processing. This report contains the in-life data from the animal
study, such as the individual body weights and food consumption information, to summarize the
data reported in Tables 1 and 2. It also provide more details on the experimental animal study
protocol.

Supplemental file 2 [2_Day2_DGE.xlIsx], provides Day 2 liver and lung differential gene ex-
pression results (DESeq2) from male and female mice. Tables (four tabs in single Excel file) with
gene identifiers include the Log, fold change, the standard error of the fold change, and the
p-value and FDR-corrected p-value for each gene.

Supplemental file 3 [3_Day5_DGE.xIsx], provides Day 5 liver and lung differential gene ex-
pression results (DESeq2) from male and female mice. Tables (four tabs in single Excel file),
with gene identifiers, include the Log, fold change, the standard error of the fold change, and
the p-value and FDR-corrected p-value for each gene.

Supplemental file [4_Day28_DGE.xlsx| provides Day 28 liver and lung differential gene ex-
pression results (DESeq2) in male and female mice. Tables (four tabs in single Excel file), with
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gene identifiers, include Log, fold change, the standard error of the fold change, and the p-value
and FDR-corrected p-value for each gene.

2. Experimental Design, Materials and Methods
2.1. Animal husbandry

Male and female B6C3F1 mice (n=120/sex, body weight: 16.3-27.6 g, and age: 9 weeks) (CRL
International, Inc.) were acclimated for at least 14 days prior to study start; the study was con-
ducted at Integrated Laboratory Services (ILS), Inc. All procedures were in compliance with the
Animal Welfare Act Regulations, 9 CFR 1-4, and animals were handled and treated according to
the Guide for the Care and Use of Laboratory Animals [6].

2.2. Test substance

4-Mel was purchased from Sigma Aldrich (Lot Batch, MKBV5083V) and prepared in diet for-
mulations (NTP 2000 rodent diet, Zeigler, Gardners, PA) at CRL (Ashland, OH) and gavage dose
formulations at ILS, Inc in sterile USP water at dose concentrations of 0 (water only as vehicle
control), 5, 10, 20, and 30 mg/mL. Dose formulations were protected from the light and analyzed
under conditions of use and found to be stable.

2.3. Study design

Table 4 provides an outline of the study design. For oral gavage, a dose volume of 10 mL/kg
was administered each day for 2 days. Dose formulations via feed were ad libitum for 5 and
28 days. Animals were evaluated twice daily and once on weekends for mortality/moribundity.
Body weights were evaluated at the study start, weekly, and at termination. Food consumption
(groups 6-15) was calculated from the start of exposure to the termination date for the 5- and
28-day exposure groups. Animals were euthanized approximately 6 h after the final dose for

Table 4

The group number, number of animals per group, test substance and dose level, dose route, and day of study termination
are identified. Six animals per group were analyzed only for changes in transcriptomics. (Note: animals 070 and 071 were
found dead after dose administration on Day 0 and, thus, are absent from the data table).

Test-Article
Group Number Sex (M/F) Test Substance Dose Level Dose Route Day of Termination
1 8/8 Vehicle Control 0 mg/kg/day Oral-gavage
2 8/8 4-Mel 50 mg/kg/day Oral-gavage
3 8/8 4-Mel 100 mg/kg/day Oral-gavage 2
4 8/8 4-Mel 200 mg/kg/day Oral-gavage
5 8/8 4-Mel 300 mg/kg/day Oral-gavage
6 8/8 Vehicle Control 0 ppm Oral-diet
7 8/8 4-Mel 150 ppm Oral-diet
8 8/8 4-Mel 300 ppm Oral-diet 5
9 8/8 4-Me 1250 ppm Oral-diet
10 8/8 4-Mel 2500 ppm Oral-diet
1 8/8 Vehicle Control 0 ppm Oral-diet
12 8/8 4-Mel 150 ppm Oral-diet
13 8/8 4-Mel 300 ppm Oral-diet 28
14 8/8 4-Mel 1250 ppm Oral-diet
15 8/8 4-Mel 2500 ppm Oral-diet
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Table 5

A total of six mice per condition (sex, dose, and time) (Table 4) were used for the RNA-Seq experiment (the six animals
with the best total RNA yield among the eight animals per exposure group). The raw data (FASTQ files in NCBI sequence
read archive (SRA) as part of GEO accession GSE129622) consist of four pairs of paired-end read files per sample, while
the mm10 feature count data in the NCBI GEO accession consist of total counts per genomic feature per sample (six
tab-delimited text files, one for each sex and tissue at each of the three sample time points). The vehicle control (VC)
was sterile water for the gavage study and untreated feed for the dietary study).

Tissue Liver Lung

Sex Male and Female B6C3F1 mice Male and Female B6C3F1 mice
2-Day (gavage, mg/kg-d) 0 (VC) 50 100 200 300 O (VC) 50 100 200 300
5- & 28-Day (feed, ppm) 0 (VC) 150 300 1250 2500 O(VC) 150 300 1250 2500
No. of biological replicates Six per exposure, sex, and time Six per exposure, sex, and time,

except for females at 2500 ppm,
5 days where n=5

Total Samples for RNA-Seq 180 179
FASTQ files (four pairs per 1440 1432
sample)

groups 1-5, and then on Day 5 or Day 28 for animals designated to the dietary study. All an-
imals survived to scheduled termination except for two male mice in Group 5 (300 mg/kg-d,
2-day gavage) which were found dead following the first day of dosing. There were no clinical
abnormalities associated with toxicity observed in any animals during the course of the study.
Of the eight animals sampled, the six with the highest yield and quality of recovered RNA were
used for sequencing. The complete in-life report with clinical observational data is available as
Supplemental Data File 1.

At the end of the study, the right lung was harvested for gene expression analysis. The lung
was perfused with RNAlater, and a section of the left liver lobe was cubed and fully immersed
in RNAlater (> 5 volumes) and stored at 2-8°C for 1-30 days and then at -15°C to -25°C indef-
initely. The left lung was perfused with 10% neutral buffered formalin (NBF), and the remaining
liver lobe was immersed in NBF for 18-24 h and transferred to 70% histology-grade alcohol prior
to paraffin embedding. RNA was extracted from liver and lung from each animal, cDNA libraries
were prepared, transcriptomes were sequenced using next-generation sequencing, and FASTQ
files were prepared prior to data analysis.

2.4. RNA sequencing

Sequencing was carried out using 1- to 2-pg total cellular RNA using Illumina standard pro-
cedures for their TrueSeq® stranded mRNA HT Kkits. Sequencing was performed on an Illumina
NextSeq 500, and binary base call (BCL) files were uploaded to Illumina BaseSpace for process-
ing and FASTQ file generation. After preparation of the mRNA from eight animals per exposure
group, the six samples with the highest yield were used for sequencing. Table 5 provides a sum-
mary of the samples of liver and lung collected from the male and female mice for the RNA-Seq
experiment, including the day and 4-Mel concentrations and the number of biological replicates
collected for analysis.

2.4.1. FASTQ file processing

The design of the sequencing experiment meant that each biological sample consisted of four
barcoded sets of reads, with a pair of FASTQ files (forward and reverse reads) for each barcode
set. To eliminate low quality reads from processing, each FASTQ file was processed by read trim-
ming, where each sequence read was trimmed from both ends to eliminate all bases with a
PHRED33 score (measure of quality of nucleobases generated by automated DNA sequencing)
of less than 21 [7]. Also, any read of less than 65bp generated as a result of trimming was dis-
carded. For the samples from 4-Mel exposed mice, this typically eliminated less than 0.5% of the
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total reads in any given FASTQ file, thus effectively only eliminating the few poor-quality reads
in a sample.

After trimming, each pair of read files (FASTQ file) were mapped to the UCSC mm10 refer-
ence genome (http://genome.ucsc.edu) using the short-read mapping algorithm BOWTIE2 and
indexed reference genomes provided publicly as a resource by Illumina’s iGenome project [8].
Each mapped pair of FASTQ files produced a single SAM (sequence alignment map) format out-
put file [9]. These were, in turn, sorted by genomic coordinates, and then merged into a single
mapped read BAM (binary alignment map) file, to produce a single mapped read file for each
biological sample.

Raw gene expression data were extracted from the BAM files by counting each pair of reads
that maps to an annotated genomic feature in the reference mm10 using the Python tool HTSeq
[10]. Once each biological sample was counted, the counts are merged into a single tab-delimited
table for statistical processing. Both FASTQ files and the count tables as text files were deposited
in the NCBI GEO expression database, accessible under accession GSE129622.

2.4.2. Differential gene expression analysis

The tabulated genomic feature count data was processed in DESeq2, a BioConductor pack-
age (ver. 3.4) in the open-source statistical language R (ver.3.3.2) [11]. DESeq2 uses a disper-
sion correction of the count data based on the negative binomial distribution and a maximum
likelihood model to impute the prior data distribution for statistical testing. Empirical Bayesian
statistics are applied to linear combinations of factors to test differential expression for multiple
contrasts simultaneously. To avoid bias and unnecessary computation in the dispersion correc-
tion, the data set was pre-filtered to exclude any annotated genomic feature for which there
were no counts in any biological sample. The final output of DESeq2 is a table of estimated Log,
fold change, p-values for the defined contrasts tested, and Benjamini-Hochberg corrected false
discovery p-values (FDR) [12].

We determined the significance of differential expression using multiple thresholds, either
singly or in combination. A statistical threshold of an FDR< 0.05 is a commonly used significance
threshold in whole transcriptomic analysis. Additionally, some minimum magnitude of change in
gene expression is typically applied as a selection criterion. In this study, with six replicates per
dose and time, fold change thresholds of 1.2-fold, up- or down-regulated (|FC|> 1.2 fold), was
applied, because the more commonly applied FC threshold of 1.5-fold was not sensitive enough.
A fold change of 1.2-fold is equal to a Log, fold change of 0.263. Finally, the application of both a
statistical threshold and the smaller FC criterion (FC=1.2) (FDR< 0.05 & |FC|> 1.2 fold) permitted
identification of a larger numbers of genes whose differential expression from controls was sta-
tistically significant, allowing a better opportunity to identify enriched pathways. The complete
differential expression tables that provide the data described above are provided as Supplemen-
tal Data Files 2, 3, and 4 (Supplemental_2_Day2_DGE.xlsx, Supplemental_3_Day5_DGE.xlsx, and
Supplemental_4_Day28_DGE.xlIsx), for data from male and female mouse liver and lung follow-
ing exposure to various concentrations of 4-Mel for 2 days, 5 days, and 28 days, respectively.

Reactome ontology enrichment was performed using an in-house software tool (GoFig-
ureMaps) that performs a Fisher's exact test of over-representation of query genes relative to
defined pathway elements. This software produces a graphical representation of the ontology
enrichment in the context of the ontology hierarchy of cellular pathways, referred to as a bub-
blemap [13,14].
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