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Introduction
Underlying shapes in biological entities are an important 
research area related to ontogenesis, evolution, and emergence 
of ecological patterns. Patterns are typically spatial heteroge-
neities extended in space, whereas forms are bounded and finite 
regions.1 Methodologically, patterns have been the main objec-
tive for some broadly used mathematical models and also have 
been understood as the main conceptual reference to approach 
biological shape.2,3 Quantification of spatial order defines a 
statistical guideline to characterize, link, and use the concept of 
pattern and shape (eg, morphometrics). Despite the relevance 
of understanding the patterns and causal emergence of geo-
metric order, traditional questions about patterns have not been 
involved with the quantification of spatial organization of 
them. Natural patterns are usually constructed by the spatial or 
temporal distribution of constitutive elements in a particular 
way, and often the global shape is considered as a consequence 
of that spatial organization.4 Interestingly, a convergence of 
perspectives has been found in the analysis of ecological struc-
tures and the spatial organization of patterns in development. 
Based on the observation that fairy circles have a life cycle and 
life span and are biological entities competing for space-related 
resources, Zhang and Sinclair5 speculated that fairy circles 
might be analyzed as epithelial architectures as has been done 
in previous works.6–11

The existence of hexagonal lattices in both bees’ compound 
eyes and the honeycombs is an evidence of the packing prob-
lems in nature and their tendency to generate similar patterns, 

even at different scales. In a recent work, Berry et al12 found 
very similar shapes between molecular dynamics simulations of 
the nuclear pasta phases of dense nuclear matter that are 
expected deep in the crust of neutron stars and similar spiral-
shaped ramps appearing in membrane-bound cellular orga-
nelles whose characteristic shapes are those being in the 
endoplasmic reticulum. They suggest that the very similar 
geometry of both systems may have similar coarse-grained 
dynamics and that the shapes are indeed determined by geo-
metric considerations, independent of microscopic details. One 
interesting question emerging here is whether generic proper-
ties of spatial organization exist limiting the arrangement of 
those geometries. In fact, one of the most intriguing aspects of 
biology lies in the determination and organization of cellular 
types, organs, and structures in organisms which are associated 
with spatial or temporal heterogeneities or patterns,13–16 which 
finally are geometries. However, a research focusing exclusively 
on the categorization of spatial arrangement of these biological 
geometries is far to be reached. Our main aim here is to intro-
duce a method to categorize the spatial organization of 
2-dimensional (2D) patterns. Two biological architectures are 
analyzed to reach this aim: epithelial topologies and Namibian 
fairy circles. (We are going to use the term architecture to 
define a global shape defined by polygonal accumulation. We 
adopt the word architecture to match the universal epithelial 
frequency [UEF; polygonal frequency of 49% of 6-sided poly-
gons, 29% of 5-sided polygons, and 20% 7-sided polygons] of 
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epithelial sheets and the self-organized geometric arrangement 
of the fairy circles of Namibia5 which are called together bio-
logical architectures as our main case studies.) Regarding the 
epithelial tissues, several arguments have been put forward 
questioning the value of regularity associated with particular 
polygonality.17–20 Sánchéz-Gutiérrez et  al (2016)18 describe 
how Voronoi diagrams are able to predict the diverse polygon 
distributions of any natural packed tissue. In that work, the 
authors demonstrate that Voronoi tessellations and the very 
different tissues analyzed share a restriction: the frequency of 
polygonal types correlates with the distribution of cell areas. 
Regarding this last point, our work is focused on the descrip-
tion of spatial organization in 2D patterns based on statistics of 
polygonal areas. In addition, we establish the relation between 
the frequency of polygonal types and cell areas to identify 
organizational conditions to understand the UEF. Some mod-
els predict that in the absence of cell sorting and migration, 
stochastic cell division would assemble into a distribution of 
polygonal cell shapes where hexagons, pentagons, and hepta-
gons should be dominant in a UEF: nearly 46% of hexagons, 
29% of pentagons, and 20% of heptagons.6,7,10,11 Experimental 
data suggest that this polygonal distribution is common to the 
epithelial tissue of many metazoans.11,21 Furthermore, the 
elsewhere proposed hypothesis of similar patterns of UEF with 
Namibian fairy circles would reflect geometric emergence by bio-
logical organization (self-organization).22 As we can see, polyg-
onal area variability and spatial organization can be strongly 
linked by a proper quantification of spatial heterogeneity.23–25 
Our definition of spatial heterogeneity is based on the unequal 
distribution of areas inside polygons. The breaking of spatial 
homogeneity or regularity in a lattice is called spatial heteroge-
neity, and we propose a statistical parameter to define quantita-
tively the spatial organization of 2D patterns. Associating this 
parameter with eutacticity (it has been shown in a previous 
work by Contreras-Figueroa et  al17 that eutacticity is closely 
linked with regularity and is a suitable measurement of spatial 
heterogeneity), we proved that there are exclusive biological 

pattern properties that are different from those found in non-
biological architectures. In fact, according to our proposed 
parameter, biological spatial organizations are characterized by 
being in a particular position among spatial order and 
disorder.

Intuitively, the degrees of freedom in a polygonal merge 
should increase proportionally to spatial heterogeneity.26 
Statistically, the degrees of freedom are the number of values in 
a sample that are restricted to vary by a numerical constraint 
imposed. One important constraint in any spatial region is spa-
tial homogeneity or regularity. Hence, the number of values 
associated with a group of areas inside a polygon would increase 
according to variability among those areas. The lack of spatial 
disparity among areas inside a region is regularity, and the 
increase of that disparity is spatial heterogeneity (Figure 1). This 
spatial heterogeneity can be translated in a parameter using the 
statistical definition of degrees of freedom. Our main hypothe-
sis here is that there exists a parameter based on degrees of free-
dom of spatial distributions that can be used to characterize 
space organization in systems on multiple scales. The usage of 
this parameter might be applied to major questions concerning 
characterization of tissue organization and some other organis-
mic perspectives (eg, tissue patterning, phenotypical conver-
gence, conserved phenotypes, and evolutionary constraints).

Section “Methods” shows the statistical basis of our work: 
we introduce 2 statistical parameters defining the variability of 
areas inside a lattice, which will define particular spatial con-
figurations. Section “Mathematics of eutacticity” is about 
mathematics of eutacticity considering important previous ref-
erences.17,26 Our numerical proof in section “Numerical proof 
associating eutacticity and standard deviation of dispersion 
mean of a module” will define the amplitude of spatial variabil-
ity of elements in a lattice, called modules, showing the associa-
tion between eutacticity with our statistical argument. In 
section “Generation of global form Γ,” the method to build 
global forms called sets gamma is shown, and the statistical 
categorization of them is given.

Methods
To establish a proper measure of spatial organization, we 
start by defining a global shape Γ. Given a spatial domain R  
in R2, we define R  as R Li i= ∪ =1

γ , where Li  is a convex 
regular or irregular polygon which will be called a locality 
and γ  is a natural number. Each locality is constituted by a 
subset of a given number of Ni  sublocalities, S S Si i iNi1 2, , ,
, such that L Si j

N
ij

i= ∪ =1 . Let A area Sij ij= ( )  be the area of 
each sublocality. If A A k jij ik= ∀ , , then Li  is regular (Figure 
1). In contrast, if ∃ ≠j k  such that A Aij ik , then Li  is not 
regular. Therefore, let A Ai ijj

Ni=
=∑ 1

 be the sum of all the 
associated areas of every locality; this set determines Γ = { }Ai . 

The average of areas of a locality Li  is A N Ai i ijj

Ni=
=∑( / )1
1

, 

and σ i i ij ij

N
N A Ai= − −

=∑( / ) ( )1 1 2
1

 is the standard  

Figure 1.  A square, its lattice, and the corresponding subareas. (A) A 

square is a locality associated with 4 subareas from 4 sublocalities 

S S SN1 2, , ,  which are equal. By extension, (B) a global shape Γ  with a 

partition such that all the sublocalities have equal subareas is regular. 

Statistically, this global shape Γ  does not have any degrees of freedom. 

(C) The right figure shows a global shape that has increased its degrees 

of freedom as the set of blue areas (right side) defined by sublocalities 

S S1 2and  are smaller than those of S S3 4and  in 3 of the 9 localities. 

Disparity of areas inside localities is increased as S S1 2and  are different 

from S S3 4and .

≠
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deviation of each locality. It is important to say that if 
σ i ij ikA A j k= ⇒ = ∀0 , . Accordingly, to establish a global 
measure for regularity of tessellations, we define a mean of 
global dispersion (MGD) and global dispersion of gamma 
(GDG) as follows:

	 σ
γ

σγ

γ

1

1

1

=
=
∑ i
i

	 (1)

and

	 σ
γ

σ σγ

γ

Γ = −
−

=
∑1

1 1

2

1

( )i
i

	 (2)

The MGD and the GDG will be considered as our main 
references to define the regularity of a form and hence deter-
mine its spatial organization. However, to provide a practical 
measure of regularity using the statistical framework described, 
we conduct a numerical proof relating MGD and GDG to a 
mathematical measure called eutacticity in section “Numerical 
proof associating eutacticity and standard deviation of disper-
sion mean of a module.” Eutacticity has been associated with 
regularity in terms of spatial distribution of areas.7 Although 
eutacticity has been proposed as a measure of regularity and 
appears to be a meaningful property to understand spatial 
order,17 it has not been properly explained as a source of infor-
mation to characterize 2D patterns statistically, establishing 
particular limits for biological organizations. As a result of our 
numerical proof, we realize that the statistical framework given 
before provides an explanation of the meaning of the eutactic-
ity parameter.26 A brief explanation of eutacticity is included in 
section “Mathematics of eutacticity” before the proof.

Mathematics of eutacticity

A star ψ  is a set of n  vectors { , , , }u u u1 2  n  with a common 
origin in an N-dimensional space ( )RN . It is eutactic if it can 
be obtained by projecting an orthogonal set. Eutacticity is 
sharply linked with regularity considering that a given polygon, 
polyhedron, and, in general, polytope can be associated with a 
star of vectors (pointing to the center to the vertexes), and it has 
been demonstrated that stars linked with regular polytopes are 
highly eutactic.26 A good numerical criterion for obtaining the 
eutacticity of a star, suitable for dealing with experimental 
measurements, was proposed by Coxeter,27 and it is as follows. 
Let B  be the matrix whose N  columns are the components of 
the vector composing a star ψ , with respect to a given fixed 
orthonormal basis of R2 . The star is eutactic if and only if

	 ε =
( )

( )
=

Tr S

Tr SS 2
1 	 (3)

where S BBT= ; Tr  denotes the trace and the superindex 
T  denotes the transpose. Note that the parameter ε  is 
capable of indicating the degree of eutacticity of the star 

represented by B : if it is not strictly eutactic ( )ε = 1 , then this 
quantity is closer to 1 if the star has a high eutacticity. In our 
particular case of planar stars, it can be proved that

	
1
2

1ε 	 (4)

As already mentioned, the strategy was to associate a par-
ticular polygon or locality Li  with a star ψ  and measure its 
eutacticity by means of equation (7). From this definition, a 
measure of spatial heterogeneity could be proposed, and it was 
used to measure the regularity of any polygon in a mosaic pat-
tern or global form Γ, using sublocality areas. Therefore, we 
need to prove that while the closer ε  is to 1, the more regular 
the star is (next section). Our hypothesis is that the higher the 
eutacticity, the partition of the space is more homogeneous (ie, 
the area variability of the sublocality decreases). Lower values 
of eutacticity imply unequal partition of the space or more area 
variability increasing spatial heterogeneity. According to equa-
tions (1) and (2), the variability defining regularity must occur 
inside localities, which will globally give a hint for determining 
degrees of freedom statistically. To support statistical variation 
between highly regular stars or highly eutactic stars in contrast 
to nonregular stars, we need to define spatial variability between 
2 experimental groups, highly eutactic and less eutactic stars, 
and polygons associated with them.

Numerical proof associating eutacticity and 
standard deviation of dispersion mean of a module

The algorithms used in this section are found in a study by 
López-Sauceda et al.26 We will show, in this section, that eutac-
ticity is an important parameter measuring spatial arrangement 
using the module concept to support the statistical framework 
of the first section. In the same context, we prove that eutacticity 
conveys a practical measure of spatial variation inside localities 
whose ε  parameter accounts for MGD and GDG. Spatial 
organization is the fundamental property to figure out regular-
ity using polygons, and a partition of localities Li  into sublo-
calities S S Si i iNi1 2, , ,  is proposed using Voronoi tessellations 
according to a proper algorithm in a study by López-Sauceda 
et al.26 The purpose of the study by López-Sauceda et al26 was 
the verification of spatial distribution of areas inside localities by 
comparing highly eutactic and no highly eutactic stars. 
Therefore, there were 2 experimental groups: ψ a  representing 
highly eutactic stars ε ψ= 1 1( )  and ψ b  representing nonhighly 
eutactic stars ε ψ= 0 8 2. ( ) . The properties of stars ψ  from any 
of these 2 groups are as follows. There will be ψ ψ ψ1 2, , ,… k  
stars such that (1) they have the same eutacticity ε ; (2) any of 
them has the same number of vectors ν ; (3) they are random 
stars, even though any of them has the same eutacticity value 
(all of them are geometrically different); and finally, (4) stars 
ψ ψ ψ1 2, , ,… k  are the building blocks to construct localities 
L L Lk1 2, , ,  with the number of sublocalities associated with 

⩽ ⩽



4	 Evolutionary Bioinformatics ﻿

same number of vectors v. In fact, according to property (2), 
N N v i ji j= = ∀, ,  occurs, which is an important condition to 
continue with a formal definition of module. Intuitively, a mod-
ule is a summation of particular sublocalities from many locali-
ties, and it will be used to contrast 2 arbitrary values of ε  
(Figure 2). According to López-Sauceda et al,26 let us assume 
that the areas Ai j,  associated with sublocalities of the 2 groups 
of stars ε ψ ε ψ= =1 0 81 2( ), . ( )  have 2 crucial components: (1) 
the eutacticity ε  of the star ψ  and (2) a set of random points 
ωm n,  defining the associated areas Ai j, . It is important to high-
light that L L Lk1 2, , ,  depend on ψ ψ ψ1 2, , ,… k  (property 4 of 
stars ψ ). According to this, ψ ψ ψ1 2, , ,… k  are associated with 
ωm n, . In that sense, let us name the stars ψ ψ ψω ω ω

1 2
1 2
, , ,
, , ,, , ,j j k j
n n k n…  

where j  represents the particular sublocality and n  is the set of 
random points n = …1, ,α . So, ω ωm i m j, ,≠  for every i j . 
According to this, m k= …1, ,  is a simple tag to associate star k  
with ωk  and subsequently with a set α  of random points, and 
the associated areas are A A Aj j k j

n n k n
1 2

1 2
, , ,
, , ,, , ,ω ω ω

 . Therefore, the 
module for a particular sublocality is defined using the average 
of areas of that locality. Modules for particular sublocalities of 2 
experimental groups of stars ε ψ ε ψ= =1 0 81 2( ), . ( )  are built to 
contrast its sublocality area variations.

For instance, assuming that we need to establish an analysis 
of module 1 exclusive for sublocality 1 in a locality of j  sublo-
calities, we have Table 1.

The summation ∑ of module 1 derived from sublocality 1 in 
a locality of j  sublocalities, k  stars, and α  set of random 
points is defined as follows:

	
1

11
1

21
1

1
1

1 1 1

α
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α
ω

α

A A An n n

n n
k

n= = =
∑ ∑ ∑+ + +








 	 (5)

Therefore, the average for module 1 is determined as follows:
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In general, for any sublocality Ai j
i n

,
,ω  linked to the star Si , if 

we want the average of every star and the average of every set 
of random points of module Aµ

j
 , it is given as follows:

	

A
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i n
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i n
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Now fix a star and obtain the average of areas and standard devi-
ation of this locality by summation over α  random set of points:

Figure 2.  Construction of a module from k  stars. A module is an average derived from an area summation of a particular sublocality (eg, sublocality 1) 

from k  stars ψ  with a constant value ε . Stars ψ ψ ψ1 2, , ,… k  are the building blocks to construct localities L L Lk1 2, , , . This process is applied to build 

modules of 2 experimental groups of stars ψ a  and ψ b.

Table 1.  Calculation of a module for sublocality 1.

Set of random points ωm,n  defining the associated 
areas Ai,j for sublocality 1 (algorithm defined in 
Aguilar-Hidalgo et al14)

Summation of areas for star  ψk

Stars ω11, ω12,

. . .
ω α1,

 

ψ1 A11
11

,
,ω A11

1 2

,
,ω

. . .
A11
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,
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The average of these standard deviations performing sum-
mation over the k  stars is as follows:

                  σ σµ µj jk
Si

i

k

= ( )
=
∑1

1
	 (9)

where j  is the dispersion mean of module which will have the 
following final standard deviation of dispersion mean of 
module:

          σ σ σµ µ µS i
i

k

k
S

j j
=

−( )
−( )( )

=
∑1

1
2

1

	 (10)

Figure 3 shows how this standard deviation reflects the spa-
tial variation of areas inside a given number of stars with a par-
ticular eutacticity ε ψ= 1 1( ) , in contrast to a second set of stars 
with a particular eutacticity ε ψ= 0 8 2. ( ) . The eutacticity 
parameter turns into a practical parameter to determine the 
spatial variation of areas inside localities (equation (10)) con-
trasting 2 eutactic values. The use of modules translates the 
meaning of the value ε  into MGD and GDG in a global form 
as spatial heterogeneity because the variation of area sublocali-
ties from 2 different values of eutacticity represents variation in 
module area for any sublocality (Figure 3).

Generation of global form Γ 

To continue with the measurement of spatial variation of 
polygonal areas in shapes, we generate global form gamma. 
Five sets gamma of polygons are built as technical devices to 
approach global forms. A global form is thus composed of a 
given set γ  of polygons defining localities. Those localities 
may be regular or irregular convex polygons in a constricted 
area, forming a mosaic as a result of accumulation (ie, architec-
ture). This global shape is composed of convex polygons of any 
size and number of sides. This conceptual device will provide a 
reference of variation of polygonal area as an attribute because 
it depends on the degrees of freedom resulting from heteroge-
neity of areas. In fact, spatially, regular and semiregular tessella-
tions are not provided for any degree of variation of polygonal 
areas (ie, identical size of sublocality area). Therefore, to achieve 
a spatial parameter establishing particular degrees of freedom 
(spatial heterogeneity) for biological aggregates, we must first 
recognize heterogeneity of areas in global sets of polygons. It is 
important to say that these sets γ  are constructed from lattices 
defining spatial regions, where random and nonrandom points 
will define the centroids to delineate the final Voronoi poly-
gons. Then, the polygons emerging from the lattices using 
Voronoi tessellations will guide the building up of localities Li  
for each set gamma.

Figure 3.  Dispersion mean of 5 modules from 100 localities using 100 

iterations of sets of random points with 5 sublocalities. Analysis of 

variance test was performed to contrast eutactic values with statistical 

differences of P < .01  (*) for every module. The standard variation of 

dispersion mean (bars) for module with ε ψ=1 1( )  and that for module with 
ε ψ= 0 8 2. ( )  is notably different.

Figure 4.  Square lattice (set gamma 1). (A) A section of the surface R  of 

100 square units. (B) One pseudo-random point is included inside each 

square unit. (C) The random lattice using Voronoi tessellation is 

generated with n = 50.

Lattice construction to establish spatial regions

We built 5 different lattices (using Wolfram Mathematica 
10.0) defining spatial regions which have the following 
properties:

1.	 The first one is a regular lattice composed of 100 squares 
of magnitude 1 × 1 in a 10 × 10 matrix (giving 100 square 
regions; a simplification of these regions is shown in 
Figure 4).

2.	 The second one is a lattice which was built up of 65 
regions derived from a pentagonal tiling called the Cairo 
tiling, using the vertexes as references. The regions where 
random points are spread are the areas around vertexes 
(Figure 5).

3.	 The third one is a collection of edited mosaics coming 
from generic epithelial open access images. These sam-
ples are provided with the statistics of cell neighbor num-
ber that are universal in some tissues (UEF). The spatial 
region is delimited by the coordinates of polygonal cells. 
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The number of regions is not fixed because there are 5 
different images (Figure 6).

4.	 The fourth sample is a collection of edited mosaics com-
ing from ecological patterns such as the fairy circles of 
Namibia (open access images). These patterns have been 
related to the statistics of epithelial tissues, regarding a 
multiscale proof of spatial particularities of biological 
organization.9,10,15,16 The spatial regions are limited by 
circles around “fairy circles,” where the center is the cen-
troid of Voronoi polygons, as shown in section “Spatial 
regions and random points, as basic tools for developing 
Voronoi tessellation treatment.” The number of regions is 
not fixed because there are 5 different images (Figure 7).

5.	 The fifth one is derived directly from the vertexes that 
constitute the Cairo tiling itself and is used as a control 
because of its intuitively high regularity. It is composed 
of 86 regions. The Voronoi polygons built in section 
“Spatial regions and random points, as basic tools for 
developing Voronoi tessellation treatment” are derived 
directly from the vertexes which will be the centroids of 
polygons (Figure 8).

Spatial regions and random points as basic tools for 
developing Voronoi tessellation treatment

Once the lattice with particular spatial regions is defined, a 
random point is generated inside each cell to define localities in 
sets gamma 1 and 2. In contrast, centroids in sets 3, 4, and 5 are 
defined by vertexes of Cairo tiling, the centroids defined by 
polygonal coordinates, and the center of circles around “Fairy 
circles,” respectively. The next steps explain how the random 
and nonrandom points are generated on each lattice to make 5 
sets γ  of polygons:

Set gamma 1 (square lattice). In total, 100 pseudo-random 
points are generated inside 100 squares of magnitude 10 
× 10, each in a proportional relation 1:1. The lattice is a 
square matrix of 10 × 10, defining a surface R  of 100 
square units. In all, 50 Voronoi tessellations are generated 
using every sample of pseudo-random points, resulting in 
50 sets gamma with 100 localities each (Figure 4).

Set gamma 2 (the Cairo tiling random lattice). In total, 65 
pseudo-random points are generated inside 65 regions 

Figure 5.  The Cairo tiling random lattice (set gamma 2). (A) The Cairo tiling. (B) One section of the Cairo tiling is shown where there are 2 kinds of 

vertexes. Red circles show a vertex with 4 neighbors which will define 16 spatial regions, and blue circles show vertexes with 3 neighbors which will 

define 49 spatial regions. (C) Pseudo-random points are generated inside each region. (D) One example of a Voronoi tessellation is generated (n = 50).

Figure 6.  Epithelial topology lattice (set gamma 3). (A) Cell coordinates were extracted from edited images using the vertexes of polygons defining cells. 

(B) Those polygonal coordinates will define centroids to continue with the Voronoi treatment (n = 5). (C) Sample 0, n = 1, is extracted and edited from an 

open access image7 to establish the polygonal coordinates of cells which have a regularity mean of global dispersion of 0.92. (D) Using the centroids 

established by the polygonal coordinates of sample 0, a Voronoi tessellation is obtained generating sample 1. (E) One of the remaining 4 samples 

obtained, generated by Voronoi treatment, is shown. (F) Universal epithelial frequency is shown which is equal for sample 0 and sample 1.
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whose centroids are the Cairo tiling vertexes. The ver-
texes are of 2 kinds: the vertex of those nodes with (1) 4 
polygons as neighbors (16 vertexes) and those with (2) 3 
polygons as neighbors (49 vertexes). The ratio to establish 
the random points is 8.5 units for nodes a and 11.41 for 
nodes b. These 2 magnitudes are defined regarding the 
condition that no 2 points are closer than a certain distance 
r and inscribed inside its own area. Fifty Voronoi tessella-
tions are generated using every sample of pseudo-random 
points, giving 50 sets gamma of polygons with 65 localities 
each (Figure 5).

Set gamma 3 (epithelial topology lattice; sample 0 and sample 
1 correspond to this set). Five samples of epithelial topol-
ogy images extracted from the web were edited to extract 
the centroids of cells. Also, we extract the number of cell 
neighbors of the original image10 to provide the data for 
polygonal frequency. Using the centroids, we establish 5 
Voronoi tessellations to define the localities, which were 
different in number for the 5 edited images. Sample 0 is 
a nonedited lattice using the coordinates as references to 
extract regularity data. Six sets gamma of polygons are gen-
erated as a result (Figure 6).

Set gamma 4 (Namibia circles lattice). Five samples of 
Namibia fairy circles images extracted from the web were 
edited to extract the centroids of circles. Also, we extract 
the number of cell neighbors of the original image. Using 
the centroids, we establish 5 Voronoi tessellations to define 

the localities, which might be different in the number of 
these localities. Five sets gamma of polygons are generated 
as a result (Figure 7).

Set gamma 5 (the Cairo tiling lattice; highly regular control). 
One Voronoi tessellation is generated using the vertexes of 
the Cairo tiling. The vertexes are of 3 kinds: the vertexes of 
those nodes with (1) 4 polygons as neighbors (16 vertexes) 
and those with (2) 3 polygons as neighbors (49 vertexes) 
and (3) those marking the borders of the image tiling (21 
vertexes). One Voronoi tessellation is generated with 86 
localities. One set gamma of polygons is generated as a 
result (Figure 8).

The 5 sets gamma of polygons that result from this meth-
odology will constitute the material to measure eutacticity. 
Each polygon of every set gamma is the data source of coordi-
nates to apply equation (3) which is ε  parameter. The final 
number of sets gamma is 112: 50 from square lattice, 50 from 
the Cairo tiling random lattice, 6 from the epithelial topology 
lattice, 5 from Namibia circles lattice, and 1 from the Cairo 
tiling lattice. In addition, MGD (equation (2)) and GDG will 
be obtained from those coordinates. High spatial heterogeneity 
will be defined by low MGD and high GDG. A high MGD 
will imply low spatial heterogeneity or high regularity. 
Therefore, summation of polygonal eutactic values is a direct 
measure of MGD, and the standard deviation of this statistical 
parameter is GDG. The limits of eutactic values are 0.7 for low 
values and 1 for high eutactic values (equation (4)).

Figure 7.  Namibia circles lattice (set gamma 4). (A) One edited picture from an open access image of Namibia fairy circles (http://www.dailymail.co.uk/

sciencetech/article-3160677/Will-mystery-Namibia-s-fairy-circles-solved-Stunning-images-reveal-astonishing-extent-baffling-grass-rings.html). The 

circles enclosed 3 Namibia fairy circles in a rough estimate. (B) The center of each circle defines the centroid to continue with the Voronoi treatment. (C) 

One of the 5 Voronoi tessellations is shown (n = 5).

Figure 8.  The Cairo tiling (set gamma 5). (A) Each vertex of the Cairo tiling defines a region around itself. (B) Eighty-six vertexes will define the centroids 

of each region. (C) One example of a Voronoi tessellation is generated (n = 1).

http://www.dailymail.co.uk/sciencetech/article-3160677/Will-mystery-Namibia-s-fairy-circles-solved-Stunning-images-reveal-astonishing-extent-baffling-grass-rings.html
http://www.dailymail.co.uk/sciencetech/article-3160677/Will-mystery-Namibia-s-fairy-circles-solved-Stunning-images-reveal-astonishing-extent-baffling-grass-rings.html
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Results
To contrast to polygonal frequencies and regularity measures, 
we include Kolmogorov-Smirnov (KS) test to analyze the 
strength of polygonal distributions by themselves, accounting 
for regularity. We consider the UEF of polygons as a geometric 
standard and we analyze the statistical distances among polyg-
onal distributions as a quantitative parameter using KS test. 
Our first hypothesis was a positive correlation between close-
ness among the distribution of UEF and polygonal distribution 
of samples (KS values) and the MGD value of samples. 
According to KS test, some samples can be very close to a UEF; 
even its regularity remains similar to the mean of a random 
sample (0.92; Figure 9A). The value of KS is inversely propor-
tional to the distance between 2 statistical distributions. The 
KS is applied to visualize distribution distances between UEF 
and the Cairo tiling lattice or set gamma 5 (Figure 9B).

In addition, spatial organization of biological patterns 
remains in gaps of high values for regularity MGD (Figure 10). 
Hence, our first hypothesis is rejected. In fact, the most notable 
result in this work is that all samples coming from biological 
systems, such as epithelial tissues and Namibia circles, have 
regularity values above 0.94 (Figure 10B). Sample 0 (from epi-
thelial topology lattice or set gamma 4; Figure 10A) was con-
sidered a key reference to look at some important statistical 
differences in terms of regularity. That sample remains in a 
regularity value inside the limits of random samples (Figure 
10A). Sample 0 was built using the polygon vertexes (locality 
Li ) of an epithelial sample without Voronoi treatment. This 
sample represents a set of polygons (N = 195) whose polygonal 
frequency is very similar to the UEF (KS distance is 0.64). 
However, this sample was not changed at all in terms of being 
modified by Voronoi tessellation treatment, and regularity is 
obtained using polygonal cell coordinates only. There were 2 
samples derived from this original lattice, sample 0 and sample 
1. Sample 1 (from epithelial topology lattice or set gamma 4; 

Figure 10B) was developed using the centroids derived from 
polygonal coordinates of each cell which were the points for 
the Voronoi tessellation treatment that will constitute the seeds 
for Voronoi construction that yields a new set of polygons. 
Regularity in sample 1 (from set gamma 3) increased to 0.947; 
this agrees with the results of Contreras-Figueroa et al.17 As a 
conclusion, sample 0 and sample 1 have the same number of 
polygons, and their polygonal frequency is also very close to the 
UEF. Nevertheless, in terms of regularity, they are not the same; 
sample 0 is 0.929 and sample 1 is 0.947. In fact, there is no cor-
relation between KS data and regularity of lattices of sets 
gamma in total data (r = 0.327). With these results, we con-
clude that spatial organization determining the nature of UEF 
is not just a fact regarding polygonal frequency; rather, it is 
related to area distribution inside shapes. Then, polygonal fre-
quency of epithelial topology is only one of at least 2 possible 
conditions to establish a proper biological spatial organization 
inside global shapes. Polygonal frequency is only a partial con-
dition determining proper biological spatial organization 
because a particular distribution of area inside polygons is also 
necessary. Finally, Figure 10B also shows samples 1 to 5 for set 
gamma 4 or Namibia circles lattice.

According to our results, the MGD and GDG are not a 
random fact in lattices from sets gamma. The range for regu-
larity MGD in random lattices remains 0.89 to 0.94 with n = 
101 iterations (50 from set gamma 1 or square lattice, 50 from 
set gamma 2 or the Cairo tiling random lattice, and 1 for sam-
ple 0 from set gamma 4 or epithelial topology lattice; Figure 
10A), whereas it is in the range of 0.94 to 0.968 values for 
epithelium (set gamma 4 or epithelial topology lattice; n = 5) 
and Namibian fairy circles (set gamma 5 or Namibia circles 
lattice; n = 5) lattices (Figure 10B). Also, the average of regular-
ity in these last 10 different sets gamma (epithelial topology 
lattice and Namibia circles lattice) reflects the fact that there is 
a higher level for regularity in epithelium (0.955) and Namibian 

Figure 9.  Polygonal frequency is measured according to statistical distribution distances. Kolmogorov-Smirnov (KS) test is used to detect similarities 

between polygonal frequencies of sets gamma (blue line) with universal epithelial frequency (red line). (A) The KS distance for sample 0 and sample 1 

with universal epithelial frequency is near 0.643 in both cases (blue line). Regularity mean of global dispersion (MGD) for sample 0 is 0.929 and regularity 

for sample 1 is 0.947. (B) The distance of polygonal distribution of highly regular control (blue line) from universal epithelial frequency (red line) is 

0.00001206. The regularity MGD for the Cairo tiling (highly regular control) is 0.961.
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fairy circles (0.943), in contrast to random lattices (0.917 for 
set gamma 1 and 0.924 for set gamma 2; Figure 11A). However, 
the average of standard deviation is lower in epithelium (0.042) 
and Namibian fairy circles (0.039; Figure 11B) than in random 
lattices (0.0540 for square lattice, 0.0547 for the Cairo tiling 
random lattice). It is important to show that the highly regular 
lattice used as control, such as that emerging from set gamma 
5 or the Cairo tiling lattice, is higher at both regularity and 
standard deviation values (Figure 11).

The standard deviation decline is constant throughout sam-
ple data of biological architectures (Figure 12). Both epithelial 
samples and Namibian samples (sets gamma 3 and 4) show a 
decrease in standard deviation (right black arrow Figure 12) 
and an increase in regularity, in contrast to random samples 
from different lattices (sets gamma 1 and 2). However, the 
order of Cairo tiling pattern (set gamma 5) represents a control 
to show the closeness with higher regularity or low spatial het-
erogeneity. Nevertheless, this closeness was not reflected in a 
reduction in GDG (Figure 11B and right peak in Figure 12), 
and the polygonal distance with UEF is clear (Figure 9B).

Finally, the Kruskal-Wallis analysis for lattices reveals that 
there are some lower positive values for some ranks in random 

lattices (Figure 13A); every biological lattice falls over 1.86 
(Figure 13B), which is a statistically high rank. The inclusion of 
the nonparametric test Kruskal-Wallis is motivated because the 
distribution of eutactic values is a non-normal distribution. We 
conclude that there were significant statistical differences in 
terms of spatial distributions between biological architectures 
and nonbiological ones.

Discussion
In summary, our results suggest that according to our first 
proposed parameter (MGD value), spatial organizations of 
those 2 case studies analyzed are demarcated by being in a 
position among spatial order and disorder (eutactic values 
below 0.968 and above 0.94; Figure 10B). In contrast, random 
lattices are limited to be in a different lower rank of spatial 
organization (0.89 and 0.94; Figure 10A). However, the value 
of spatial organization for regularity control (0.961) is higher 
than that of biological samples (0.943 and 0.955; Figure 11). 
In addition, the difference in GDG (second proposed param-
eter) between the Cairo tiling and biological tiling was not 
expected because highly regular lattices should reduce its 
degrees of freedom (Figure 11B). These results need to be 

Figure 10.  (A) The range for regularity mean of global dispersion using eutactic average for each set gamma in random lattices remains 0.89 to 0.94, 

whereas (B) it is 0.94 to 0.968 for epithelium and Namibian fairy circles lattices.
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evaluated with some other highly ordered lattices to find a 
decisive conclusion. Our method proves the information 

about geometric constructions of 2 biological architectures 
limited to a zone of particular spatial organization. We con-
clude that this particular spatial organization is an important 
condition to start defining the potentiality of geometric con-
straints in a very complex morphospace. The nature of shapes 
in terms of statistical organization can be turned into an 
extended theoretical and practical device ready to understand 
the limits of biological organization. Nontrivial associations 
can result from apparently distinct shapes that at the deepest 
point share the same spatial organizations. In addition, this 
measure would have practical implementations because the 
geometric values of the constricted zone can be translated in 
some other parametric devices ready to provide information 
about biological behaviors such as resilience, robustness, and 
evolvability. It is important to continue with the implemen-
tation of the test to detect the scope of quantification of  
spatial organization in defining the very deep essence of 
shapes and patterns in nature.

Figure 12.  The standard deviation decline is constant throughout 

samples of biological architectures which can be visualized at right 

extreme. Sample 112 is a highly regular lattice used as control (Cairo 

tiling pattern). A draw guide to the eye is used to show the decline of 

sample (101-111) standard deviation and the increase of that value at the 

right side (arrow for sample 112 from set gamma 5).

Figure 11.  (A) The average of total samples per group reflects the fact that there is a higher level for regularity in epithelium topology lattice (0.955 set 

gamma 4; n = 5) and Namibian circles lattice (0.943 set gamma 5; n = 5) in contrast to square lattice (0.917; n = 50) and the Cairo tiling random lattice 

(0.924; n = 50). (B) The average of standard deviation is lower in epithelium (0.042 set gamma 3) and Namibian fairy circles (0.039 set gamma 4) than in 

random lattices (0.0540, 0.0547 sets gamma 1 and 2). Highly regular lattices used as control, such as those emerging from the Cairo lattice (set gamma 

5), are higher at both regularity (0.961) and standard deviation values (0.063).
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