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Abstract

Because regulation of gene expression is heritable and context-dependent, we investigated AD-related gene
expression patterns in cell types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was
performed genome-wide in blood from 5257 Framingham Heart Study (FHS) participants and in brain donated by 475
Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with
genotypes for all cis SNPs within 1 Mb of genes was evaluated using linear regression models for unrelated subjects
and linear-mixed models for related subjects. Cell-type-specific eQTL (ct-eQTL) models included an interaction term for
the expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2533
additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL
analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in
apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance
and relevance to AD of significant results in myeloid cell types is supported by the observation that a large portion of
GWS ct-eQTLs map within 1 Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs
have previously been implicated in AD. This study identified cell-type-specific expression patterns for established and
potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential
novel blood and brain AD biomarkers that highlight the importance of cell-type-specific analysis.

Introduction

Recent expression quantitative trait locus (eQTL) ana-
lysis studies suggest that changes in gene expression have
a role in the pathogenesis of AD"?. However, regulation of
gene expression, as well as many biological functions, has
been shown to be context-specific (e.g., tissue and cell
types, developmental time point, sex, disease status, and
response to treatment or stimulus)®~®. One study of 500
healthy subjects found over-representation of T cell-
specific eQTLs in susceptibility alleles for autoimmune
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disease and AD risk alleles polarized for monocyte-
specific eQTL effects’. In addition, disease and trait-
associated cis-eQTLs were more cell-type-specific than
average cis-eQTLs’. Another study classified 12% of more
than 23,000 eQTLs in blood as cell-type-specific*. Large
eQTL studies across multiple human tissues have been
conducted by the GTEx consortium, with a study on
genetic effects on gene expression levels across 44 human
tissues collected from the same donors characterizing
patterns of tissue specificity recently published®.
Microglia, monocytes, and macrophages share a similar
developmental lineage and are all considered to be mye-
loid cells’. It is believed that a large proportion of AD
genetic risk can be explained by genes expressed in
myeloid cells and not other cell types'®. Several
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established AD genes are highly expressed in micro-
glia”'!, and a variant in the AD-associated gene CELFI
has been associated with lower expression of SPII in
monocytes and macrophages'®. AD risk alleles have been
shown to be enriched in myeloid-specific epigenomic
annotations and in active enhancers of monocytes, mac-
rophages, and microglia'?, and to be polarized for cis-
eQTL effects in monocytes’. These findings suggest that a
cell-type-specific analysis in blood and brain tissue may
identify novel and more precise AD associations that may
help elucidate regulatory networks. In this study, we
performed a genome-wide cis ct-eQTL analysis in blood
and brain, respectively, then compared eQTLs and cell-
type-specific eQTLs (ct-eQTLs) between brain and blood
with a focus on genes, loci, and cell types previously
implicated in AD risk by genetic approaches.

Materials, subjects and methods
Study cohorts
Framingham Heart Study (FHS)

The FHS is a multigenerational study of health and disease
in a prospectively followed community-based and primarily
non-Hispanic white sample. Procedures for assessing
dementia and determining AD status in this cohort are
described elsewhere'®. Clinical, demographic, and pedigree
information, as well as 1000 Genomes Project Phase 1
imputed SNP genotypes and Affymetrix Human Exon 1.0 ST
array gene expression data from whole blood, were obtained
from dbGaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000007.v31.p12). Requisite infor-
mation for this study was available for 5257 participants.
Characteristics of these subjects are provided in Supple-
mentary Table S1.

Religious Orders Study (ROS)/Memory and Aging Project
(MAP)

ROS enrolled older nuns and priests from across the
US, without known dementia for longitudinal clinical
analysis and brain donation and MAP enrolled older
subjects without dementia from retirement homes who
agreed to brain donation at the time of death'* (http://
www.eurekaselect.com/99959/article). RNA-sequencing
brain gene expression and whole-genome sequencing
(WGS) genotype data were obtained from the AMP-AD
knowledge portal (https://www.synapse.org/#!Synapse:
syn3219045) (https://www.synapse.org/).

Data processing

Generation, initial quality control (QC), and pre-
processing procedures of the FHS GWAS and expres-
sion data are described elsewhere'®. Briefly, the Robust
Multichip Average (RMA) method'®® was used for
background adjustment and normalization of gene
expression levels and further adjusted for the first
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principal component of ancestry. ROSMAP gene expres-
sion data were log-normalized and adjusted for known
and hidden variables detected by surrogate variable ana-
lysis (SVA)' in order to determine which of these vari-
ables should be included as covariates in analysis models
for eQTL discovery. Additional filtering steps of FHS and
ROSMAP GWAS and gene expression data included
eliminating subjects with missing data, restricting gene
expression data to protein-coding genes, and retaining
common variants (MAF >0.05) with good imputation
quality (R*>0.3).

Cis-eQTL mapping

Cis-eQTL mapping was performed using a genome-
wide design (Supplementary Fig. S1). The association of
gene expression with SNP genotypes for all cis SNPs
within 1 Mb of protein-coding genes was evaluated using
linear-mixed models adjusting for family structure in FHS
and linear regression models for unrelated individuals in
ROSMAP. In FHS, lmekin function in the R kinship
package (version 1.1.3)'® was applied assuming an addi-
tive genetic model with covariates for age and sex, and
family structure modeled as a random-effects term for
kinship—a matrix of kinship coefficients calculated from
pedigree structures. The linear model for analysis of FHS
can data be expressed as follows:

Yi =1+ B,Gj + BrAy + BsSij + Uy + &

where Y; is the expression value for gene i, G; is the
genotype dosage for cis SNP j, Aij and S; are the
covariates for age and sex respectively, U/; is the random
effect for family structure, and f;, S, and f; are
regression coefficients.

ROSMAP data were analyzed using the Im function in
the base stats package in R (http://www.R-project.org/).
The regression model, which included covariates for age,
sex, postmortem interval (PMI), study (ROS or MAP), and
a term for a surrogate variable (SV1) derived from analysis
of high dimensional data, can be expressed as:

Y =1+ B,Gj + BrAi + B3Si + B3Si + B,PMy + ﬁs:‘/sz + ﬁsi/svj + &

where Y; is the expression value for gene i, G; is the
genotype dosage for cis SNP j, Aij, S;;, PM;, S2;, and SV1;;
are the covariates for age, sex, PMI, study, and SVI,
respectively, e; is the residual error, and the fs are
regression coefficients.

Cis ct-eQTL mapping

Models testing associations with cell-type-specific
eQTLs (ct-eQTLs) included an interaction term for
expression levels of “proxy” genes that represent cell
types. Proxy genes representing ten cell types in whole
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blood* and five cell types in brain'®~>' were incorporated

in cell-type-specific models (Supplementary Table S2).
These proxy genes for cell types in blood were established
previously using BLUEPRINT expression data to validate
cell-type-specific expression in each cell-type module®*
and the proxy genes for brain cell types have been
incorporated in several studies'”™*!. Cell-type-specific
expression analyses in blood of FHS participants were
conducted using the following model:

Y; =1+ B,G; + BoP + B3(P + Gj) + B,A; + BsSy + Uy + &5

where in each eQTLj pair, Y; is the eQTL expression
value for gene i, G; is the genotype dosage for cis SNP j, P
is the proxy gene, P*G; is the interaction term
representing the effect of genotype in a particular cell
type, Aij and S; are covariates for age and sex,
respectively, UJ; is the random effect for family structure,
and fs are regression coefficients. Models with significant
interaction terms indicate cell-type-specific eQTLs.

The following model was used to evaluate cell-type-
specific expression in the brain in ROSMAP:

Y; =1+ B,Gj + BoP + B3 (P * Gf) + B,A; + BsS
+BsPMij + ;52 + B SVI + €5

where in each eQTL; pair, variables Y;, G;, P, Aij, S, Py,
&;j, and Bs are as described above, and PM;;, S2;, and SV1;;
are covariates for PMI, study, and SV1, respectively.

A Bonferroni correction was applied to determine the
significance threshold for each analysis (Supplementary
Table S3).

We assessed the relevance of the significant findings
more directly to AD in two ways. In one approach, AD
status was included as a covariate in the eQTL and ct-
eQTL analysis models. In addition, the significant eQTLs
and ct-eQTLs were evaluated separately in AD cases and
controls separately in the ROSMAP brain expression
dataset, but not in the FHS blood expression dataset due
to the paucity of AD cases (2%) in that sample.

Selection of eQTLs in AD loci and gene-set pathway
enrichment analysis

AD loci were determined based on the review of pub-
lished GWAS and linkage studies of AD and AD-related
traits, and this list was augmented with genes that are well
recognized as functionally related to AD by experimental
approaches (Supplementary Table S4). AD genes identi-
fied by GWAS met genome or study-wide significance
thresholds and some of these were annotated as the clo-
sest gene to an intergenic association signal. eGenes
(genes whose expression levels are associated with varia-
tion at a particular eSNP) included 88 genes and 80 eSNPs
(no SNPs that significantly influence gene expression)
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which include genome-wide significant “peak” SNPs (i.e.,
top-ranked SNP within an association signal) for AD.
Gene-set enrichment analysis was performed using the
PANTHER (Protein ANalysis THrough Evolutionary
Relationships) software tool** to determine if the unique
genes in the significant eQTL/ct-eQTL pairs shared by
both brain and blood datasets are associated with a spe-
cific biological process or molecular function. The sig-
nificance of the pathways was determined by the Fisher’s
Exact test with false discovery rate (FDR) multiple test
correction.

Colocalization analyses

Assessment of causal variants shared by adjacent
GWAS and eQTL signals was performed using a Bayesian
colocalization approach implemented in the R package
coloc®. This analysis incorporated SNP summary statis-
tics from a recent large AD GWAS** and eQTL analyses
described above. For the purpose of this study, a peak SNP
refers to the most significantly associated AD-SNPs under
a particular GWAS signal and a lead eQTL variant is
defined as the eSNP showing the strongest association
with gene expression. Following recommended guide-
lines, the variants were deemed to be colocalized by a high
posterior probability that a single shared variant is
responsible for both signals (PP4>0.8)***. A lower
threshold for statistical significance with a false discovery
rate (FDR) < 0.05 for eQTL significant results was applied
to maximize detection of colocalized pairs. Regional plots
were constructed with LocusZoom®®.

Differential expression analysis of potential AD biomarker
genes

The 386 distinct eGenes in shared eQTL pairs in sig-
nificant blood and brain results were further examined for
differentially expressed genes (DEG) between AD cases
and controls in the AD enriched ROSMAP RNA-Seq
dataset. After filtering, 308 of the total 386 genes were
tested in the DEG analysis. The differences in expression
among the groups were computed using the log2 trans-
formation of the fold-change (log2FC). The differential
analysis was performed using a linear model to identify
DE genes between AD cases and controls implemented in
R package limma (Linear Model for Microarray Data)
version 3.32.7 (http://www.R-project.org/). The P values
were adjusted for multiple testing to control the False
Discovery Rate (FDR), with the gene considered DE when
the adjusted P value was <0.05.

This study was approved by the Boston University
Institutional Review Board.

Results
A total of 173,857 eQTLs and 51,098 ct-eQTLs in the
brain, and 847,429 eQTLs and 30,405 ct-eQTLs in blood
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were significant after Bonferroni correction (Supplemen-
tary Table S3 and Supplemental Resources). Additional
significant gene-SNP eQTLs pairs in the brain (n=
11,649) and blood (n = 2533) were observed in ct-eQTL
analysis that were not detected in eQTL analysis (Fig. 1A).

eQTLs and ct-eQTLs common to blood and brain

Of note, 24,028 significant gene-SNP eQTL pairs were
shared between blood and brain. The 386 distinct eGenes
among these shared eQTL pairs (Supplementary Table
S5) are most enriched in the apoptosis signaling (P =
0.023) and Wnt signaling (P =0.036) pathways (Supple-
mentary Table S6). Five of these eGenes (HLA-DRBS,
HLA-DRBI1, ECHDC3, CR1, and WWOX) were previously
associated with AD***’. Three eSNPs in eQTLs involving
HLA-DRBI/HLA-DRBS5  (rs9271058) and ARLI7A/
LRRC37A2 (rs2732703 and rs113986870, which are near
KANSLI and MAPT) were previously associated with AD
risk at the genome-wide significance level?*?® (Table 1).

eQTLs involving CRI, ECHDC3, and WWOX were
much more significant in the brain than blood, whereas
HLA-DRBS and HLA-DRBI were more significant in
blood when comparing the effect sizes. ECHDC3 was a
significant eGene in blood and brain eQTLs (specifically
in neurons). HLA-DRBS and HLA-DRBI1 were the only
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eGenes ascribed to significant ct-eQTLs in both blood
and brain noting that of the ten distinct lead eSNPs, five
are unique to each tissue (Table 1). Although the eQTLs
involving these genes with the largest effect were observed
in blood across multiple cell types, the total number of
significant eSNP-eGene combinations was far greater in
brain (particularly in microglia and neurons). The only
instance in which the lead eSNP is also associated with
AD risk at the GWS level was observed in the blood eQTL
pair of HLA-DRB1 with eSNP rs9271058 (Table 1).
Among the AD-associated SNPs at the GWS level,
rs9271058 is a significant eSNP for HLA-DRBI in both
blood and brain cell types (the most significant associa-
tion by P value was observed in antibacterial cells and
microglia) and rs9271192 is a significant ct-eQTL for the
gene in multiple brain cell types (Table 1). Both of these
SNPs are also eSNPs for HLA-DBS in the brain in
neurons only.

There were 657 gene—SNP eQTL pairs comprising 16
unique eGenes that were significant in blood and brain
overall as well as in specific cell types in both blood and
brain (Supplementary Table S7). None of these eGenes
were observed in significant pathways enriched for AD
genes, however, they included AD-associated genes HLA-
DRB1 and HLA-DRBS.
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Fig. 1 Significant gene-SNP eQTLs and ct-eQTLs in blood and brain tissue genome-wide. A Venn diagram shows the number of overlapping
eQTLs and ct-eQTLs in blood and brain. Gold color indicates significant eQTLs that are cell-type-specific. Orange color indicates significant eQTLs that
are shared between blood and brain. B Cell-type distributions of significant genome-wide ct-eQTL results in blood and brain.
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eQTLs and ct-eQTLs among previously established AD loci “~ 88 § § 8588
Slightly more than half (42/80 =52.5%) of the estab- 3 85 ¢ § 82&5
lished AD associations (Supplementary Table S3) are : °c°c s = f2eF
eGene targets for significant eQTLs in blood (Supple- = Sy 5 4 % %« % &
mentary Table S8). By comparison, only seven established g‘ é gg Eg ég ££5s8
AD loci were eGene targets for significant eQTLs in the @ L e BY oY o6 oo
brain, among which OARDI was significant in endothelial olnn o~ wom
cells only (Supplementary Table S8). Many GWS SNPs é’g E ; g g % E ® o
for AD risk are eSNPs affecting the expression of the Pa |na o6 &6 ~--c0o
nearest gene, which is usually recognized as the causative
gene, but several GWS SNPs target other genes (Supple- z
mentary Table S9). For example, AD-associated eSNPs - %J% :%% o
rs113986870 and rs2732703 in the MAPT/KANSLI region = g2§8 B
target ARLI7A in blood, but are paired in seven of eight g 5 5 g 5 g E
eQTLs and ct-eQTLs with LRRC37A2 in the brain = |8 sEsd_ .5
(Supplementary Table S9). HLA-DRBI is the only AD v |FF Sefs==20
gene with a significant ct-eQTL in blood, whereas many g 5} 3 3 3 322
AD genes have significant blood eQTLs. In the brain, only ES|¥8 8 8 Hg=g
four AD loci (CRI, HLA-DRB1/DRBS, IQCK, and MAPT/ A DA
KANSLI) have significant brain eQTLs of which HLA- g |33 ¢ ¢ 2289
DRBI1/DRBS and MAPT/KANSLI are the only brain ct- 10
eQTLs, noting that all are significant in microglia, neu- g g |88 5 ¥ Z28835%
rons, and endothelial cells. 2 o 4 4 5839 4
Next, we evaluated whether the most significant eSNPs E § % é é g % é g %
and SNPs genome-wide significantly associated with AD g2 (3% & ¢ 835 2
status (i.e,, AD-SNPs) co-localize and thus to identify a 9
single shared variant responsible for both signals (pos- " 2
terior probability of shared signals (PP4)>0.8). This E g, e
analysis revealed eight eQTL/ct-eQTL signals that colo- ¥ 2T E
calized with seven AD GWAS signals and half of the o é g 2
colocalized signals involved a ct-eQTL (Table 2 and s E E)% g
Supplementary Fig. S2). Two different eSNPs for CD2AP, g |sx= ZE < "
rs4711880 (eQTL P = 1.4 x 107°%) and rs13201473 (NK/ 2 |29 o 5
CD8+T cell ct-eQTL P=147x10""), flank CD2AP ¢ |88 £ _ B .. 5
GWAS SNP rs10948363 which is also the second most < g 253 | .8
significant eQTL (P = 2.32 x 107104) and the second most . '__.% E % % S f S5 65 E §
significant ct-eQTL in NK cells/CD8 + T cells (P = 2.66 x £ g |a8 5 3 83358 % g\
10~?). These three SNPs span a 9.0-kb region in intron 2 3 g |55 8 2 wgw, |hK 3
and are in complete linkage disequilibrium (LD, * = 1.0), s § KRR 8 § Ezg3g g g
indicating that any one or more of them could affect the 2 z :‘ ; ; : : ; Z ;m °3
function of target gene CD2AP. Rs6557994 is the most § S |55 & 8 5835 _g g
significant eSNP for and located in PTK2B (blood inter- 5 g s
feron ct-eQTL P=2.58 x 10~°) and is moderately corre- § 2’ < E %
lated with the PTK2B GWAS SNP (rs28834970, * = 0.78, GIlEl g |22 8 5 _zix |53
P=1.58 x 10~?). Thus, it is not surprising that rs6557994 % s 2 |68 & o §8s% § g
is also significantly associated with AD risk (P=8.19 x alg % % gr g8 o é g 28
1077). Rs6557994 is also correlated with a GWAS SNP in _<° & a 188 8 » 8838 fo—: 2
CLU, located approximately 150 kb from PTK2B, that is I Sl |z ¢ ¢ ©vgd =59
not significantly associated with the expression of any E N . e S2E®g < %
gene. Because PTK2B and CLU are independent AD risk 2 § é g g % ;“Z g i:i £9
loci*’, it is possible that this eSNP has an effect on AD v ‘3‘; § % % i ¥ E ¥ g
pathogenesis through independent pathways (Supple- N g8 & 3 3 é 2 o
mentary Fig. S2). The most significant eSNP in MADD % é, % % é % % g % g ;E
(rs35233100, P=2.88x10"'%) was predicted to have ©= | & IFI & § f-c-9 |28
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functional consequences because it is a stop-gained
mutation. This brain eQTL is colocalized (PP4 = 0.95)
and weakly correlated with a GWAS SNP (P=1.91 x
10~°) in CELFI rs10838725 (r* =0.12).

ct-eQTLs genome-wide

Examination of the distribution of the significant ct-
eQTL results genome-wide showed that nearly two-thirds
of the ct-eQTLs in blood occurred in interferon response/
antibacterial cells which are defined as type I interferon
viral response cells in upregulated genes and type II
interferon antibacterial inflammatory response cells in
downregulated genes®*, whereas brain ct-eQTLs are highly
represented in endothelial cells, neurons, and microglia
(Fig. 1B and Supplementary Table S10). Further
examination of significant results within myeloid cell
lineages (i.e, microglia and monocytes/macrophages)
which account for a large proportion of the genetic risk
for late-onset AD'® revealed that 3234 or 10.6% of all
significant ct-eQTLs in blood were in monocytes/mac-
rophages. This subset includes 128 unique eGenes which
are significantly enriched in the AD amyloid secretase
pathway (FDR P =0.013, Supplementary Table S11). A
total of 974 or 30.1% of ct-eQTLs including 4 of the 20
most significant eGenes in monocytes/macrophages are
located within 1 Mb of established AD loci. One of the
eGenes in this top-ranked group (HLA-DRBS5) is an
established AD gene, and three others that are near
established AD loci (DLG2 near PICALM*, C4BPA near
CRI*°, and MYOIE near ADAMI10 *') are reasonable AD
gene candidates based on evidence using non-genetic
approaches (Table 3). Microglia accounted for 15,560
(30.5%) of significant ct-eQTLs in the brain (Supple-
mentary Table S10) which involved 304 unique eGenes.
Approximately 52% of significant ct-eQTLs in microglia
are located in AD regions including five of the 20 most
significant ct-eQTLs in this group (Table 3). One of these
five eGenes is an established AD gene (HLA-DRBI) and
two others (ALCC®*? and WNT3%) have been linked to
AD in previous studies.

Overlap of eQTLs and ct-eQTLs among myeloid cell types

Considering significant eGene—eSNP pairs in myeloid
cell types, 251 pairs including five distinct eGenes
(BTNL3, FAMI118A, HLA-DOB, HLA-DRBI1, and HLA-
DRB5) are shared between microglia and monocytes/
macrophages (Table 4A and Fig. 2A). Three of these pairs
involving eSNPs rs3763355, rs3763354, and rs1183595100
have the same target gene HLA-DOB and occur only in
microglia and monocytes/macrophages (Table 4B).
Among the significant ct-eQTLs in the brain, the cell
types with the largest proportion that were also significant
in monocytes/macrophages were microglia (1.6%) and
neurons (1.3%) (Table 4). Conversely, among the
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significant ct-eQTLs in blood, the cell types with the
largest proportion that were also significant in microglia
were NK/CD + T cells (12.9%) and monocytes/macro-
phages (7.8%). Among ct-eQTLs which are significant
only for one cell-type each in blood and one in the brain,
monocytes/macrophages shared three ct-eQTLs with
microglia but with no other brain cell types (Fig. 2B and
Table 4C). By comparison, microglia shared 63 ct-eQTLs
with interferons/antibacterial cells, but with no other
blood cell types. The proportions of overlap of ct-eQTLs
between blood and brain across ten paired cell types are
significantly different (Fisher’s Exact test y2 =789.8, P=
2.2 x 107'%). The much larger number of ct-eQTLs in
microglia that were common with interferons/bacterial
cells than monocytes/macrophages may reflect the sub-
stantially greater proportion of significant eQTLs in blood
involving interferons/antibacterial cells (64%) than
monocytes/macrophages (10.6%) (Supplementary Table
S10). The only other ct-eQTLs that were unique to a pair
of cell types in brain and blood cell type involved neurons
paired with neutrophils (7 =3) and with interferons/
antibacterial cells (n = 65) (Fig. 2B).

Effect of AD status on significant eQTLs and ct-eQTLs
None of the significant eQTLs and ct-eQTLs observed
in the brain (Table 1) were influenced by the inclusion of
AD status in the analysis models. Stratified analyses
revealed that the top findings involving eSNPs that were
previously associated with AD at the genome-wide sig-
nificant level were evident in both AD cases and controls
(Supplementary Table 12A). Although most of the find-
ings were more significant in AD cases than controls
(noting that the ROSMAP brain sample of AD cases was
44% larger than the control sample), the effect size for
most eSNP—eGene pairs was similar. However, patterns
among AD cases and controls differed when focusing on
the most significant eQTLs and ct-eQTLs in established
AD genes. For example, eQTLs observed in undiffer-
entiated brain cells involving CR1 paired with rs6656401
(P=7.85x10"%?), in endothelial cells involving HLA-
DRBI paired with rs73399473 (P = 2.5 x 10" *°) and HLA-
DRB5 paired with rs1064697 (P=2.18x10"'%), in
microglia involving HLA-DRBI paired with rs72847627
(P=4.43x10""), and in neurons involving ECHDC3
paired with rs866770710 (P=5.79 x 10™'?) were sig-
nificant only in AD cases (Supplementary Table 12B).
Other eQTLs observed in multiple cell types involving
these same genes (HLA-DRBI: rs111976080, P =1.68 x
107%%  HLA-DRBS:  rs2395517, P=8.64x10""?
rs9271184, P =542 x 10~*, and rs80141235, P =3.94 x
10°) were significant only in controls. Several other
eQTLs and ct-eQTLs in CR1, HLA-DRBI, and HLA-DRBS
were highly significant in one group but showing a much
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less significant effect in the opposite direction in the
other group.

Among the 386 eGenes that were significant in both
blood and brain (Supplementary Table S5), 87 were dif-
ferentially expressed between AD cases and controls
(Supplementary Table S13). This includes WWOX (P,q; =
1.02x 10™%) and LRRC2 (P,q;=2.38 x 10 >) which have
been associated with AD risk by GWAS****,

Discussion

We identified several novel AD-related eQTLs that
highlight the importance of cell-type-dependent context.
It is noteworthy that there were more significant ct-
eQTLs in the brain (z =51,098) than blood (n = 30,405)
even though the dataset containing expression data from
blood (FHS) is several times larger than the brain
expression dataset (ROSMAP). This could be due to
greater cell-type heterogeneity in the brain, the enrich-
ment of AD cases in the ROSMAP dataset who may show
different patterns of gene expression compared to persons
without AD, or highly variable gene expression across cell
types in the nervous system®. Because expression studies
in the brain are often constrained by the small number of
specimens compared to studies in other tissues, post-
mortem changes that may affect gene expression in the
brain®®, and the growing recognition that AD is a systemic
disease® ", incorporating expression data from multiple
tissues can enhance discovery of additional genetic
influences on AD risk and pathogenesis.

Although most significant findings were tissue-specific,
the 386 distinct eGenes among more than 24,000 sig-
nificant gene-SNP eQTL pairs that were shared between
blood and brain were enriched in the apoptosis signaling
pathway which has been suggested to contribute to the
underlying pathology associated with AD***!, Six estab-
lished AD genes (CR1, ECHDC3, HLA-DRBI1, HLA-DRBS,
LRRC2, and WWOXM’”’M) were shared eGenes in the
brain and blood. They were also involved in eQTLs and
ct-eQTLs that showed different patterns of association in
cases versus controls (i.e., CRI, HLA-DRBI1, HLA-DRBS,
and ECHD3) or differentially expressed in AD cases ver-
sus controls (i.e., WWOX and LRRC2).

The complement receptor 1 (CRI) gene encodes a

# ct-eQTLs unique to cell-type pair

# ct-eQTLs common to cell-type pair

Microglia

# ct-eQTLs unique to cell-type pair

o on O O

# ct-eQTLs common to cell-type pair

Monocytes/macrophages

@Number in parentheses represent the proportion of ct-eQTLs for each cell type on the left that were also observed in either microglia or monocytes/macrophages.

(C) Overlap of significant eQTLs in brain and blood with ct-eQTLs in myeloid cell types.

5 3 transmembrane glycoprotein functioning in the innate

S = immune system by promoting phagocytosis of immune

a4 d o o complexes, cellular debris, and AB**. CRI is an eGene for

several eSNPs, including AD GWAS peak SNP rs6656401

located within the gene, in brain and blood eQTLs and the

2 effects on CRI expression are opposite in blood and brain.
é = There are multiple possible explanations for the effect
§ " B g direction differences across tissues. The effect of eSNP
<« 8 o 2 L g rs6656401 on CRI expression may be developmental,
2 f 3| g § S ?é; noting that the average age of the FHS subjects (a group
" S 212 =25 with expression data in blood) is more than 30 years
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Fig. 2 Intersection of significant gene-SNP eQTL pairs between cell types in blood and brain tissue. A Venn diagram showing overlap of ct-
eQTL pairs in myeloid cell types (microglia and monocytes/macrophages). B Number of significant eQTLs unique to and that overlap cell types in
blood and brain. The bar chart on the left side indicates the number of significant eQTLs involving each cell type and the bar chart above the matrix
indicates the number of significant eQTLs that are unique to each cell type and set of cell types. Pink colored bar indicates the number of eQTLs pairs
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m Significant gene-SNP pairs present only in myeloid cells

younger than the ROSMAP subjects (group with expres-
sion data in the brain). The difference between brain and
blood may also reflect postmortem changes in the brain
that are not indicative of expression in vivo. Alternatively,
these effects may be related to AD because few FHS
subjects were AD cases at the time of blood draw, whereas
60% of subjects in the ROSMAP sample are AD cases.
This idea is supported by the observation of a larger and
positive effect of rs6656401 on CRI expression in AD
(f=0.020) compared to control brains (5= —0.0086).
Opposite effect directions of expression in brain and
blood from AD patients compared to controls have been
observed for several ribosomal genes®’. GWS variants
located in the region spanning ECHDC3 and USP6NL

have previously been associated with AD**. Altered
ECHDCS3 expression in AD brains*® supports the idea that
this gene has a role in AD. Knockout of WWOX in mice
leads to aggregation of amyloid-p (AP) and Tau, and
subsequent cell death®®*”. LRRC2 is located in a region
including GWS variants that modify the inverse rela-
tionship between education attainment and AD?%. A
recent study showed that the expression of a LRRC2 long
noncoding RNA (LCCR2-AS1) is significantly increased in
children with autism spectrum disorder compared to
children with normal development™,

The human leukocyte antigen (HLA) region is the key
susceptibility gene in many immunological diseases
and many associations have been reported between
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neurodegenerative diseases and HLA haplotypes™. In
addition, the most widely used marker to examine acti-
vated microglia in normal and diseased human brains is
HLA-DR and microglia activation increases with the
progression of AD*>*!, HLA-DRBS5 and HLA-DRBI have
been implicated in numerous GWAS studies as sig-
nificantly associated with AD risk?**” and appeared fre-
quently among significant results in blood and brain in
this study. Rs9271058, which is located approximately
17.8 kb upstream of HLA-DRBI, is significantly associated
with AD risk (P=5.1x10"%*" and when paired with
HLA-DRBI is a significant eQTL and ct-eQTL in multiple
cell types in blood and brain including myeloid lineage
cells (i.e., monocytes/macrophages and microglia). This
eSNP is also a significant eQTL in the brain and specifi-
cally in neurons when paired with HLA-DRBS.
Rs9271192, which is adjacent to rs9271058 and also sig-
nificantly associated with AD risk (P =2.9 x 10" '*)%, is a
significant eQTL and ct-QTL with multiple cell types in
brain but not blood when paired with HLA-DRBS and
HLA-DRBI.

Significant associations for AD have been reported with
variants spanning a large portion of the major histo-
compatibility (MHC) region in HLA class I, II, and III
loci****%3, While the strongest statistical evidence for
association in this region is with variants in HLA-DRBI 2
fine mapping in this region suggests that a class I haplo-
type (spanning the HLA-A and HLA-B loci) and a class II
haplotype (including variants in HLA-DRB1, HLA-DQAI,
and HLA-DQBI) are more precise markers of AD risk.
Given the complexity of the MHC region and extensive
LD, further work is needed to confirm whether this is a
true eQTL or a signal generated from a specific HLA
allele or haplotype. Although functional studies may be
required to discern which HLA variants have AD relevant
consequences and HLA polymorphisms methods would
be required to detect differential gene expression between
the HLA alleles, our findings support a role for the
immune system in AD*”** and the hypothesis that a large
proportion of AD risk can be explained by genes
expressed in myeloid cells™’.

The potential importance and relevance to AD of
eQTLs and ct-eQTLs in myeloid cell types are supported
by the observation that a large portion of GWS ct-eQTLs
we identified map within 1 Mb of established AD loci, and
58% (12/20 in monocytes/macrophages and 11/20 in
microglia) of the most significant eGenes have been pre-
viously implicated in AD. DLG2 encodes a synaptic pro-
tein whose expression was previously reported as
downregulated in an AD proteome and transcriptome
network®® and inversely associated with AD Braak stage®.
Genome-wide significant associations of AD risk with
PTPRG was observed in a family-based GWAS>® and with
CLNK in a recent large GWAS for which the evidence was
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derived almost entirely with a proxy AD phenotype in the
UK Biobank®”. NFXLI is a novel putative substrate for
BACEI, an important AD therapeutic target®®. FCRL5
may interact with the APOE*E2 allele and also modifies
AD age of onset®”. C4BPA was shown to be consistently
downregulated in MCI and AD patients, and the protein
encoded by this gene accumulates in AP plaques in AD
brains®>®°. Lower levels of the PAM have been observed
in the brains and CSF of AD patients compared to healthy
controls®" and MYOIE is expressed by anti-inflammatory
disease-associated microglia®’. As a calcium channel
protein, CACNB2 may affect AD risk by altering calcium
levels which could cause mitochondrial damage and then
induce apoptosis®>®3.,

Likewise, several eGenes of top-ranked ct-eQTLs in
microglia that are not established AD loci may have a role
in the disease. It was shown that copy number variants
(CNVs) near HNRNPCLI overlapped the coding portion
of the gene in AD cases but not controls®*. A region of
epigenetic variation in ALLC was associated with AD
neuropathology®>. FAM2IB, a retromer gene in the
endosome-to-Golgi retrieval pathway, was associated with
AD in a candidate gene study®. Vacuolar sorting proteins
genes in this pathway including SORLI have been func-
tionally linked to AD through the trafficking of AB®®. One
study demonstrated that WNT3 expression in the hip-
pocampus was increased by exercise and alleviated AD-
associated memory loss by increasing neurogenesis”.
Expression of RPLY is downregulated in severe AD® and
significantly differs by sex among persons with the APOE
¢4 allele®®. Significant evidence of association with a
TRIM49B SNP was found in a genome-wide pleiotropy
GWAS of AD and major depressive disorder (MDD)®.

HLA-DOB, which is one of the five distinct eGenes
(BTNL3, FAM118A, HLA-DOB, HLA-DRBI, and HLA-
DRBS) for significant ct-eQTLs shared between microglia
and monocytes/macrophages, and is the target gene for
three eSNPs (rs3763355, rs3763354, and rs1183595100)
that were evident only in these myeloid cell types. These
eSNPs have similar eQTL p-values in both cell types, but
have slightly larger effect sizes in monocytes (Fig. 2). The
effect of rs3763355 on expression is in opposite directions
in monocytes and microglia which suggests HLA-DOB
may be acting in different immune capacitates in AD in
blood and brain. Though the functions of the genes
BTNL3 and FAM118A are unknown, a BTNL8-BTNL3
deletion has been correlated with TNF and ERK1/AKT
pathways, which have an important role in immune reg-
ulation inducing inflammation, apoptosis, and prolifera-
tion, suggesting the deletion could be correlated to
inflammatory disease’®. This suggests that the majority of
the shared myeloid cell-type genes—the HLA genes and
possibly BTNL3—are all immune-related. Ct-eQTLs
involving microglia and monocytes/macrophages had a
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larger proportion of total intersection, an isolated set
interaction and a statistically significant overlap (P < 1.0 x
10731, demonstrating a stronger connection than other
brain/blood cell types in this study and thus providing
further evidence for the importance of the immune
system in AD.

The proportions of significant ct-eQTLs in NK cells/
CD8 + T cells, monocytes/macrophages, and eosino-
phils are comparable to those observed in reference
blood tissue (https://www.miltenyibiotec.com/US-en/
resources/macs-handbook/human-cells-and-organs/
human-cell-sources/blood-human.html#gref), (https://
www.stemcell.com/media/files/wallchart/WA10006-
Frequencies_Cell_Types_Human_Peripheral_Blood.pdf).
Similarly, significant eQTL distributions in endothelial
cells, neurons, and glia are consistent with reference brain
tissue’!. The majority of significant blood eQTLs were
type I interferon response cells which cross-regulate with
pro-inflammatory cytokines that drive the pathogenesis of
autoimmune diseases including AD and certain heart
diseases”> "* and the enrichment of interferon ct-eQTLs
in this study could possibly be due to the high proportion
of subjects these diseases in the FHS dataset. In contrast,
the proportion of significant ct-eQTLs among glial cells is
much lower in astrocytes and oligodendrocytes and three-
fold higher in microglia than in reference brain tissue
(https://www.stemcell.com/media/files/wallchart/WA10006-
Frequencies_Cell_Types_Human_Peripheral_Blood.pdf).
Because many AD risk genes are expressed in myeloid cells
including microglia'®, the large number of microglia ct-
eQTLs is consistent with the high proportion of AD
subjects in the ROSMAP dataset.

Several SNPs previously reported to be associated with
AD at the GWS level were associated with eGenes that
differ from genes ascribed to AD loci and thus may have a
role in AD. Karch et al. observed that the expression of
PILRB, which is involved in immune response and is the
activator receptor to its inhibitory counterpart PILRA, an
established AD gene’>”®, was highest in microglia'’.
CNN2, the eGene for eSNP rs4147929 located near the
end of ABCA7, significantly alters extracellular AP levels
in human induced pluripotent stem cell-derived neurons
and astrocytes’’. Rs4147929 also targeted HMHAI which
plays several roles in the immune system in an HLA-
dependent manner’®. The eSNP/GWAS SNP rs3740688
located in SPII also affects expression of MYBPC3 and
MADD. MYBPC3 was recently identified as a target gene
for eSNPs located in CELFI and MS64A6A in a study of
eQTLs in blood for GWS AD loci’®. MADD is expressed
in neurons'', is involved in neuronal cell death in the
hippocampus®, and was shown to be a tau toxicity
modulator®’. Although eSNP rs113986870 in KANSLI
when paired with the nearby eGene LRRC37A2 was a
significant brain eQTL and ct-eQTL, LRRC37A2 encodes
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a leucine-rich repeat protein that is expressed primarily in
testis and has no apparent connection to AD. However,
rs113986870 also significantly influenced the expression
of another gene in this region, ARLI7A, that was pre-
viously linked to progressive supranuclear palsy by ana-
lysis of gene expression and methylation®”,

The aim of this study was to identify context-dependent
(i.e., cell-type-specific) eQTLs in blood and brain among
older individuals including AD cases using a genome-wide
approach. Previous studies have evaluated ct-eQTLs using
purified cells, but they focused on only one or two cell
types”'°. Other studies examined multiple cell types but
using expression data generated from individuals who
were on average much younger than the FHS and ROS-
MAP participants*®**** With the exception of a recent
report by Patrick et al. who applied a deconvolution
approach to estimate cell-type proportions from in cor-
tical tissue obtained from ROSMAP participants but did
not examine ct-eQTLs*®, our study is one of the first to
study eQTLs and ct-eQTLs in a sample enriched for AD
cases and link these findings to established AD genes and
AD risk.

Our study has several noteworthy limitations. The
proxy genes individually or collectively may not accurately
depict cell-type-specific context. In addition, the com-
parisons of gene expression in blood and brain may yield
false results because they are based on independent
groups ascertained from a community-based longitudinal
study of health (FHS—blood) and multiple sources for
studies of AD (ROSMAP—brain) which were not mat-
ched for age, sex, ethnicity and other factors which may
affect gene expression. Moreover, the FHS cohort con-
tains many elderly but relatively few AD cases, whereas
~60% of the ROSMAP participants in this autopsy sample
are AD cases. Although the dataset for eQTL analysis in
blood was much larger than the dataset derived from the
brain, the effect sizes associated with many of the eQTLs
common to both tissues were similar. Also, findings in the
brain may reflect postmortem changes unrelated to dis-
ease or cell-type different expression®®. Another limitation
of our findings is that some cell types are vastly under-
represented compared to others. Because myeloid cell
types are represented in only a small proportion of the
total cell populations in the brain and blood (generally
~10%), it is difficult to identify myeloid-specific signals'>.
Despite this limitation, many of the most significant and
noteworthy results of this study involved monocytes/
macrophages and microglia.

Conclusion

Our observation of cell-type-specific expression pat-
terns for established and potentially novel AD genes,
finding of additional evidence for the role of myeloid cells
in AD risk, and discovery of potential novel blood and
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brain AD biomarkers highlight the importance of cell-
type-specific analysis. Future studies that use more robust
computational approaches such as deconvolution to reli-
ably estimate cell type proportions®>™°, compare cell-
type-specific differential gene expression among AD cases
and controls using single-cell RNA-sequencing or cell
count data and conduct functional experiments are nee-
ded to validate and extend our findings.
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