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a b s t r a c t

TMA20 (MCT-1), TMA22 (DENR) and TMA64 (eIF2D) are eukaryotic
translation factors involved in ribosome recycling and re-initiation.
They operate with P-site bound tRNA in post-termination or (re-)
initiation translation complexes, thus participating in the removal of
40S ribosomal subunit frommRNA stop codons after termination and
controlling translation re-initiation on mRNAs with upstream open
reading frames (uORFs), as well as de novo initiation on some specific
mRNAs. Here we report ribosomal profiling data of S.cerevisiae strains
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with individual deletions of TMA20, TMA64 or both TMA20 and
TMA64 genes. We provide RNA-Seq and Ribo-Seq data from yeast
strains grown in the rich YPD or minimal SD medium. We illustrate
our data by plotting differential distribution of ribosomal-bound
mRNA fragments throughout uORFs in 50-untranslated region (50

UTR) of GCN4 mRNA and on mRNA transcripts encoded in MAT locus
in the mutant and wild-type strains, thus providing a basis for
investigation of the role of these factors in the stress response,
mating and sporulation. We also document a shift of transcription
start site of the APC4 gene which occurs when the neighboring
TMA64 gene is replaced by the standard G418-resistance cassette
used for the creation of the Yeast Deletion Library. This shift results in
dramatic deregulation of the APC4 gene expression, as revealed by
our Ribo-Seq data, which can be probably used to explain strong
genetic interactions of TMA64 with genes involved in the cell cycle
and mitotic checkpoints. Raw RNA-Seq and Ribo-Seq data as well as
all gene counts are available in NCBI Gene Expression Omnibus (GEO)
repository under GEO accession GSE122039 (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc¼GSE122039).
& 2019 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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ubject area
 Biology
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 Protein Synthesis, Translational Control, Ribosome, Bioinformatics,

Transcriptomics, Translatomics

ype of data
 Table and figures

ow data was acquired
 Ribosome profiling and RNA-Seq of wild-type or knockout yeast

strains were performed. Sequences were obtained using Illumina
HiSeq. 2000.
ata format
 Raw and analyzed

xperimental factors
 Saccharomyces cerevisiae BY4741 wild-type strain and BY4741-based

strains with TMA20, TMA64 or both TMA20 and TMA64 knockouts
were maintained in rich (YPD) or minimal (SD) media.
xperimental features
 In the mid-log exponential phase, yeast cells were pretreated with
cycloheximide and collected. cDNA libraries of ribosome-bound
mRNA and total mRNA from wild-type and knockout strains were
performed as described previously [1]. Sequenced reads were trim-
med, read mapping and counting was performed.
ata source location
 Moscow State University (Moscow, Russia)

ata accessibility
 Analyzed data is presented in the article. Raw RNA-Seq and Ribo-Seq

data as well as all gene counts are available in NCBI Gene Expression
Omnibus (GEO) repository under GEO accession GSE122039 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE122039).
elated research article
 N/A
Value of the data

� The data provides a gene expression landscape of yeast strains lacking TMA20 and/or TMA64
proteins, which are orthologous to mammalian translation factors MCT-1 and eIF2D, thus

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039


D.S. Makeeva et al. / Data in Brief 23 (2019) 103701 3
expanding our knowledge about individual functional roles of these two translation factors in a
living cell.

� An abnormal translation of the MATa2 mRNA derived from the MAT locus of MATa yeast strain is
detected, which can be used for explanation of sporulation defects previously detected in the
TMA64 deletion strain.

� Quantitative Ribo-Seq data provides essential information of translational changes in the knockout
strains including altered uORFs translation in 5’ UTR of mRNA encoding important transcription
regulator GCN4, thus providing a basis for investigating the role of these proteins in the stress
response.

� The RNA-Seq data highlights transcription abnormalities within the APC4 gene locus, caused by
replacement of the adjacent TMA64 gene by the standard G418 or HYG resistance cassettes
commonly used for generating gene deletions, which can be probably used to explain previously
observed strong genetic interactions of TMA64 with genes involved in the cell cycle and mitotic
checkpoints.

� The deep sequenced Ribo-Seq and RNA-Seq are applicable for detailed bioinformatics analysis of
translation events, such as prediction of alternative open reading frames.
1. Data

In this study we present ribosome profiling data generated from the wild-type BY4741 S.cerevisiae
strain and strains lacking translation factors TMA20 (MCT-1), TMA64 (eIF2D) or both of them at the
same time. Information on all performed experiments is shown in Table 1. Raw Ribo-Seq and RNA-
Seq data are available online in the NCBI Gene Expression Omnibus repository (GEO accession:
GSE122039, https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE122039). Supplementary
Table S1 and Supplementary Figure S1 contain analyzed NGS data, as described below. Examples of
differentially translated and transcribed genes in wild-type and knockout strains are presented in
Figs. 1–3.

In contrast to a dataset previously obtained in a study by Young et al. [2], here we present ribo-
some profiling data not only for double knockout yeast strains, but also for strains with individual
deletions of TMA20 and TMA64. This allows studying transcriptional and translational changes caused
Table 1
Summary of datasets obtained in the study.

Sample Sample name Yeast strain name Yeast strain genotype Growth media Sample type

1 wt1_ribo wt MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 YPD Ribo-Seq
2 wt1_rna YPD RNA-Seq
3 wt2_ribo YPD Ribo-Seq
4 wt2_rna YPD RNA-Seq
5 wt_sd_ribo SD Ribo-Seq
6 wt_sd_rna SD RNA-Seq
7 tma20_ribo Δtma20 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

tma20Δ:KanMX4
YPD RiboSeq

8 tma20_rna YPD RNA-Seq
9 tma20_sd_ribo SD Ribo-Seq
10 tma20_sd_rna SD RNA-Seq
11 tma64_ribo Δtma64 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

tma64Δ:KanMX4
YPD Ribo-Seq

12 tma64_rna YPD RNA-Seq
13 tma64_sd_ribo SD Ribo-Seq
14 tma64_sd_rna SD RNA-Seq
15 tma20tma64_ribo Δtma20Δtma64 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

tma64Δ:HygMX4 tma20Δ:KanMX4
YPD Ribo-Seq

16 tma20tma64_rna YPD RNA-Seq
17 tma20tma64_sd_ribo SD Ribo-Seq
18 tma20tma64_sd_rna SD RNA-Seq

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039
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https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc&equal;GSE122039


Fig. 1. Ribo-Seq and RNA-Seq coverage of MATa locus in the studied yeast strains. According to Ribo-Seq signals, MATa2-2 ORF
is probably translated in mutant strains. The Y axis tracks show total read coverage (positive and negative values correspond to
the coverage of the direct and reverse complementary strands respectively).
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specifically by the absence of individual translation factors TMA20 (MCT-1) or TMA64 (eIF2D). Due to
cycloheximide addition to yeast culture medium before harvesting the cells, distribution of mapped
reads from Ribo-Seq sets may slightly vary from data described by Young et al. According to a pre-
vious study [3], use of the inhibitor in such a fashion is likely to cause blurring of local density effects,
but also strengthens Ribo-Seq signals at translation initiation sites, facilitating analysis of ribosome
distribution over uORFs.
2. Experimental design, materials, and methods

2.1. Cell maintenance and cDNA libraries preparation

RNA-Seq and Ribo-Seq сDNA libraries were prepared from total RNA samples or ribosome-bound
RNA samples, respectively, for both the wild-type BY4741 yeast strain and three knockout strains



Fig. 2. Ribo-Seq and RNA-Seq coverage of the 50 UTR of the yeast GCN4 gene. Ribo-Seq profiles show ribosome occupancy at
different uORFs that regulate translation of the main coding region. The Y axis tracks show total read coverage (positive and
negative values correspond to the coverage of the forward and reverse complementary strands respectively).

D.S. Makeeva et al. / Data in Brief 23 (2019) 103701 5
(with individually deleted TMA20 or TMA64 genes, or with a double deletion of TMA20 and TMA64,
hereafter referred as wt, Δtma20, Δtma64 and ΔΔtma20tma64, respectively). The libraries were
sequenced, resulting in 9 RNA-Seq and 9 Ribo-Seq data sets. Table 1 summarizes information about all
of the sequencing experiments.

The experimental procedure in general followed the ribosome profiling protocol described in [1].
Briefly, yeast cells were grown to an exponential phase in either rich YPD (1% yeast extract, 2%
peptone, 2% glucose) or minimal SD (0,67% YNB w/o amino acids with ammonium sulfate, 2% glucose,
complete amino acid supplementation) media. Cycloheximide was added to yeast media to a final
concentration of 100 mg/ml and growth was continued for 3 more minutes; then cells were harvested
by filtration, resuspended in polysome lysis buffer (20mM Tris pH 8.0, 140mM KCl, 1.5mM MgCl2,
100 g/ml cycloheximide, 1% Triton), flash frozen in liquid nitrogen and homogenized by grinding.
Then a portion of each cell lysate was used for total RNA isolation, while another part was treated
with RNase I for polysome disassembly, applied to a sucrose gradient for fractionation, followed by
isolation of a monosome fraction and extraction of ribosome-protected mRNA fragments for ribosome
profiling. mRNA was isolated using Oligo(dT) beads and ribosome-bound RNA was isolated from
sucrose fractions using acidic-phenol extraction. Further ribosome profiling and RNA-Seq library
preparations were performed as described previously [1]. Two biological replicates indicated as WT1
and WT2 were performed for wild-type strain maintained in YPD.



Fig. 3. Ribo-Seq and RNA-Seq coverage of the region between the TMA64 and APC4 genes. Data suggests that strains with
TMA64 knockout exhibit extended 50 UTR of APC4 gene leading to translation of novel uORFs. The Y axis tracks show total read
coverage (positive and negative values correspond to the coverage of the forward and reverse complementary strands
respectively).
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2.2. Sequence data processing and analysis

Reads were trimmed with cutadapt v1.18 [4] and mapped to the Saccharomyces_cerevisiae.R64-1-
1.90 (Ensembl) genome assembly using the respective genome annotation. The read mapping and
counting were performed with STAR v2.5.3a [5]. The genomic signal plots (Figs. 1–3) were generated
by the svist4get software [6] using bedGraph profiles constructed from bam alignments by samtools
and bedtools [7,8]. Transcription start site coordinates for MAT locus [9] and GCN4, TMA64 and APC4
genes [10] were used for 5’ UTR mapping in Figs. 2 and 3.
3. Data analysis

3.1. Ribosome profiling of yeast strains lacking TMA20 and/or TMA64 genes

Translation factor TMA64 and homologs of its N- and C-terminal regions, TMA20 and TMA22
respectively (eIF2D, MCT-1, and DENR in mammals) are proteins involved in translation termination,
re-initiation, and ribosome recycling. Initially, eIF2D and heterodimer MCT-1�DENR were assumed to
provide a non-canonical translation initiation pathway as they facilitate GTP-independent delivery of
Met-tRNAi

Met and some elongator tRNAs to the 40S ribosomal P-site [11,12]. In addition, in vitro and
in vivo studies demonstrated that TMA64/eIF2D, TMA20/MCT-1, and TMA22/DENR are able to pro-
mote the post-terminational tRNA and mRNA release from the 40S ribosomal subunit both in yeast
and mammals [2,13]. The absence of these factors, together with the 40S recycling failure, led to
deregulated translation re-initiation downstream of both short and full-size translated open reading
frames in different organisms [2,14–16].

The C-terminal regions of TMA64/eIF2D and TMA22/DENR contain the SUI1 domain, which is also
present in the translation factor SUI1/eIF1. Structural data indicate that the SUI1 domains of all three
factors have similar positions in the P-site of the 40S ribosomal subunit with a conserved β-loop
protruding toward a codon-anticodon duplex formed by mRNA and a P-site tRNA [17,18]. In accor-
dance with biochemical data, this suggests that during recycling, TMA64/eIF2D and the heterodimer
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TMA20�TMA22 (MCT-1�DENR) may operate in a manner similar to SUI1/eIF1 in translation initiation,
or control initiator tRNA access to re-initiating ribosomal complexes after uORF translation.

Raw and analyzed Ribo-Seq and RNA-Seq data sets for wild-type, individual Δtma20 and Δtma64,
as well as double ΔΔtma20tma64 knockout yeast strains were obtained and uploaded into the NCBI
Gene Expression Omnibus repository (GEO accession: GSE122039, https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc¼GSE122039). The initial analysis revealed that they included deep RNA-Seq
and Ribo-Seq data with more than 10 million uniquely mapped and counted reads within gene CDS.
In general, in a half of the samples, �50% of the total library length was composed of uniquely
mapped reads. Across all samples, 60 to 90% of themwere located within annotated CDS and included
in the gene counts. Metagene start- and stop-centric profiles for Ribo-Seq data exhibited clear triplet
periodicity (Supplementary Fig. S1). Supplementary Table S1 provides an overview of mapped reads
as well as gene-level read counts for all experiments and descriptive statistics on the generated
sequencing data.
3.2. Examples of data illustrating differential transcription and translation in wt and knockout strains

Two different gene cassettes, MATα and MATa, either of which can be present in the MAT locus of
S.cerevisiae genome, define the mating type of yeast. Each mating-specific cassette encodes two
transcripts directed from the opposite DNA strands by a shared bidirectional promoter: either MATa1
and MATa2 in a-type strains, or MATα1 and MATα2 in α-type strains (Fig. 1) [9]. All of the transcripts
except MATa2 encode functional proteins – transcription factors that determine mating type or
diploid phenotype (reviewed in [19,20]). While MATa2 is considered to be non-functional [21,22], it
nevertheless contains two ORFs (Fig. 1), presumably originating from an original coding region with
similarity to MATα2 via an internal frameshift [9,23]. The second ORF could still encode a remarkably
conserved amino acid sequence with a high similarity to a portion of MATα2 [9,24] that represents its
DNA-binding domain [25,26]. The corresponding protein (MATa2-2) could compete with MATα2 for
DNA binding or even have its own transcription factor activity [27]. However, its synthesis should be
inhibited by presence of the first ORF in the MATa2 mRNA, which can be regarded as an uORF for the
MATa2-2 coding region. Since TMA20 and TMA64 knockout strains have an upregulated translation
re-initiation and/or readthrough activities [2,16,28], it was interesting to illustrate our ribosome
profiling data with a footprint coverage of MATa locus present in BY4741 strain derivatives. As the
sequenced S288C strain is MATα, Ribo-Seq and RNA-Seq reads were re-mapped to MATa locus
sequence taken from GenBank (accession number V01313.1)[9]. Fig. 1 provides data on Ribo-Seq and
RNA-Seq read coverage of MATa locus of the studied yeast strains. This data can be used to explain the
role played by TMA20 and TMA64 translation factors in mating and sporulation programs [29–32].

Another example involves GCN4, the global transcriptional regulator, which is activated during
amino acid starvation. Expression of the GCN4 mRNA is controlled by a peculiar mechanism based on
differential translation re-initiation on four short uORFs in its 5’ UTR (reviewed in [33]). Fig. 2 shows
the 5’ proximal region of the GCN4 transcript, with differential ribosome footprint coverage of uORFs
in different strains. Our data can be used for further investigation of TMA20 and TMA64 roles in
uORF-mediated translational control of stress response.

APC4, the gene encoding a subunit of anaphase-promoting complex, is located in the same genetic
locus as TMA64 and shares a 238-bp promoter region with it. The corresponding mRNAs are syn-
thesized from opposite DNA strands. In the Δtma64 and ΔΔtma20tma64 strains the TMA64 coding
sequence was replaced with G-418 or hygromycin resistance gene cassettes (KanMX or HygMX),
respectively. Fig. 3 shows differential RNA-Seq coverage of the 238 bp region, flanked by segments of
the APC4 and TMA64 coding regions or KanMX/HygMX cassettes, in different yeast strains. This data
may likely account for the observed strong genetic interactions of TMA64 with genes involved in the
cell cycle and mitotic checkpoints [34] and cell cycle abnormalities of TMA64 knockout strains [35].
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