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Abstract: We prepared red clays by introducing different percentages of PbO, Bi2O3, and CdO. In
order to understand how the introduction of these oxides into red clay influences its attenuation
ability, the mass attenuation coefficient of the clays was experimentally measured in a lab using
an HPGe detector. The theoretical shielding capability of the material present was obtained using
XCOM to verify the accuracy of the experimental results. We found that the experimental and
theoretical values agree to a very high degree of precision. The effective atomic number (Zeff) of
pure red clay, and red clay with the three metal oxides was determined. The pure red clay had the
lowest Zeff of the tested samples, which means that introducing any of these three oxides into the
clay will greatly enhance its Zeff, and consequently its attenuation capability. Additionally, the Zeff for
red clay with 10 wt% CdO is lower than the Zeff of red clay with 10 wt% Bi2O3 and PbO. We also
prepared red clay using 10 wt% CdO nanoparticles and compared its attenuation ability with the
red clay prepared with 10 wt% PbO, Bi2O3, and CdO microparticles. We found that the MAC of the
red clay with 10 wt% nano-CdO was higher than the MAC of the clay with microparticle samples.
Accordingly, nanoparticles could be a useful way to enhance the shielding ability of current radiation
shielding materials.

Keywords: red clay; bulk metal oxides; nano-CdO; MAC; Zeff

1. Introduction

Most countries around the world consider nuclear technology to be an alternative
energy source to solve the problem of nonrenewable energy, which will run out one day.
Due to the increased use of radioisotopes and radiation-emitting devices in various medical
and industrial fields, it is necessary to study the ability of some readily available materials
for use in construction, such as concrete, rocks and clay, to protect against gamma rays [1–4].

It is well known that materials with a high atomic number and density are very useful
as ionizing radiation shields. The most common materials used for these purposes are lead,
alloys, glasses, composites, some types of concrete, and clay materials [5–8].

Clay has been used since antiquity, in Mesopotamia, Egypt, Africa, and the Middle
East; and more recently in Roman and Islamic civilizations in Asia, North America, Me-
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dieval Europe, and so on. Civilizations have built entire cities out of clay materials. Clay
products are now used by more than a third of the world’s population due to their high
quality and resistance to weathering. Clay material in architecture is a part of the heritage
of almost every nation on every continent.

In many developed and developing countries, clay materials are used for building
and construction. Clay products, such as ceramic pots, fired bricks, and tiles (for ceilings
and floors) are less expensive and more durable than cement, and they are environmentally
friendly and safe building materials that are widely available at low prices in various
regions [9–11]. Furthermore, clay has refractory properties such as a high melting point,
thermochemical stability, abrasion resistance, and thermal shock resistance. One of the
most important characteristics that distinguishes clay and from other materials is that it
is non-toxic. Due to these characteristics, clay materials are suitable for use as shielding
materials (designing radiation shields from clay materials) [12–14].

With the emergence of nanotechnology as a progressive branch of science in recent
years, various types of nanoparticles have been used to design radiation shields. The
advantage of using nanomaterials in this field is that the distances between molecules are
very small, increasing the possibility of photon collisions with atoms of the material, and
thus improving the material’s ability to attenuate photons [15–18].

Nuclear engineers have placed a high value on nanocomposites containing metals or
oxides of heavy elements, and their research has focused on developing these nanocom-
posites for use as an alternative to traditional radiation shields due to their promising
properties, such as their lightweight, and desirable mechanical, chemical, and physical
properties [19,20]. The majority of previous research has focused on developing some types
of clay mixed with some heavy oxides for use as radiation shields, but very few studies
have focused on developing clays mixed with nano-scale particles of heavy oxides [21].

Some types of Egyptian clay, which are natural building materials that may be con-
sidered for use as a radiation-shielding materials, will be investigated in this study. Clay
can be found in relatively large reserves northeast of the city of Aswan in Egypt. Many
companies produce it for the local ceramics and tile industries, mainly in Wadi Abu Sabira
and Wadi Abu Ajaj. Due to the industrial importance of Aswan clay, some technical studies
have been conducted to investigate its physical properties, either in its raw state as used
for the manufacture of ceramics and tiles, or as a mixture with other raw materials [22].

Red clay is a clean and environmentally friendly building material that can be used as a
radiation shield in radiation protection applications, or it can be added to concrete mixtures
in certain proportions as an alternative to sand, resulting in an increase in its density, which
leads to an increase in gamma ray attenuation. This form of clay’s high melting point is
indicative of its potential thermal stability in the case of prolonged exposure to high-energy
radiation, and its compressive strength is appropriate for the production of high-strength
shielding materials [23].

However, to the best of the authors’ knowledge, studies related to the radio protective
properties of these clays are almost non-existent, which prompted the researchers in this
work to study the radio protective properties of red clay found in the Aswan region of
Egypt, after adding a group of heavy-metal oxides as both micro- and nano-scale particles.
In this work, some red clay originating from ceramic samples was prepared and the
chemical composition was deduced by EDX analysis. The attenuation parameters of these
samples were experimentally determined and compared with theoretical values produced
by the XCOM software. The effective atomic number (Zeff ) was calculated for a broad
energy range.

2. Materials and Methods

First, the red clay samples were collected from Aswan city, Egypt, then dried, crushed,
and sieved using a sieve with a hole diameter of 100 µm. Secondly, micro-scale metal
oxides (PbO, Bi2O3 and CdO) were purchased from the El-Gomhouria Company in Egypt.
The average particle size of these oxides ranged from 50 to 100 µm, and their purity was up
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to 99%. Meanwhile, nano-scale cadmium oxide (CdO) particles (average size 40 nm) were
purchased from the NanoTech Company in Egypt, where they were chemically prepared.
The red clay was mixed with the proportions of oxides shown in Table 1, and blended well
by a mixer to obtain a homogeneous mixture. This mixture of powders was added to a
proportion of water (mixture: water = 3:1) to form the compound, then put in a plastic
container and allowed to dry for two weeks. Thus, 10 samples were prepared.

Table 1. Chemical composition and densities of prepared ceramic-based red clay samples.

Sample
Weight

Percentage
(%)

Density
(g·cm−3)

Weight Fraction of Elements (%)

Al O Si Ti Fe Pb Bi Cd

Red clay (R.C) 100 1.982 ± 0.005 18,036 49,132 27,238 1.186 4.407 - - -
R.C + PbO 90:10 2.151 ± 0.003 16,232 44,932 24,512 1.067 3.964 9.283 - -
R.C + PbO 70:30 2.602 ± 0.018 12,628 36,547 19,067 0.833 3.085 27.849 - -

R.C + Bi2O3 90:10 2.150 ± 0.012 16,232 45,245 24.,512 1.068 3.964 - 8.970 -
R.C + Bi2O3 70:30 2.147 ± 0.005 12,627 37,487 19,068 0.833 3.086 26.910
R.C + CdO 90:10 2.562 ± 0.008 16,232 45,460 24,512 1.066 3.964 - - 8.754

R.C + CdO NPs 90:10 2.152 ± 0.017 16,320 45,372 24,475 1.054 3.976 - - 8.791
R.C + CdO 70:30 2.565 ± 0.004 12,628 38,134 19,067 0.833 3.086 - - 26,262

R.C + CdO NPs 70:30 2.599 ± 0.020 12,522 38,152 19,004 0.835 3.087 - - 26,398
R.C + PbO + Bi2O3 + CdO 70:10:10:10 2.581 ± 0.011 12,628 37,389 19,067 0.833 3.086 9.283 8.969 8.754

These samples were left for two weeks to dry, and a sample of each type was then
taken to measure its chemical composition by energy dispersive X-ray (EDX) analysis, as
shown in Table 1. From knowledge of their compositions, the MAC could be theoretically
calculated using the WinXCom program [24–26]. The radiation shielding parameters
were experimentally determined by the narrow-beam method. A high-purity germanium
(HPGe) detector was used, alongside point sources of different energies in cases where their
activities and other specifications could be found (Table 2) [27–33]. The sample was placed
between the source and the detector using a collimator and lead shield. The schematic
diagram of the experimental measurement technique is shown in Figure 1. Measurements
were undertaken for a time sufficient for the statistical uncertainty of the area under the
peak to be less than 1%, and the count rate was calculated in the presence and absence of
the sample. The MAC is calculated according to the following equation [34–36]:

MAC =
1

x·ρ ln
A

AO
(1)

where A and A0 represent the areas under the peak, and the count rates obtained from
the spectrum in the presence and absence of the absorbing sample, respectively, × (cm)
represents the thickness of the measured clay sample, and ρ (g/cm3) the density. The linear
attenuation coefficient or LAC is defined as the probability of photons interacting with
matter per unit path length, and was calculated to determine other important shielding
parameters (such as HVL and TVL) where the LAC equals MAC*ρ. The HVL and TVL
represent the thicknesses needed to attenuate 50% and 90% of the initial photon intensity,
respectively, and can be evaluated by the following equations [37,38]:

HVL =
ln 2

LAC
, TVL =

ln 10
LAC

(2)

Table 2. The activities and other specifications for point sources that are used in this study.

PTB
Nuclide Energy (keV) Emission

Probability
Initial Activity

(kBq)
Reference

Date
Uncertainty

(kBq)

Am-241 59.52 35.9 259

1 January
2009

±2.6

Ba-133
80.99 34.1

275.3 ±2.8356.21 21.4
Cs-137 661.66 34.1 385 ±4.0

Co-60
1173.23 99.9

212.1 ±1.51332.50 99.982
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Figure 1. The schematic diagram of the experimental setup for the narrow-beam method.

The effective atomic number (Zeff) is another useful radiation interaction factor that
is used to describe the attenuating properties of mixtures or compounds in terms of the
elements present, and depends on the incoming photon energy. Zeff values for the studied
polymers can be obtained using Equation (3) [39]:

Ze f f =
∑i fi Ai(MAC)i

∑j
Aj
Zj
(MAC)j

(3)

where fi, Ai, and Zi refer to the mole fraction, atomic weight, and an atomic number of each
constituent element in the selected polymer, respectively.

3. Results and Discussion

Figure 2 shows the mass attenuation coefficient (MAC) for the tested clays with
different micro-samples as a function of energy between 0.015 and 15 MeV. The values were
calculated using the XCOM software. In this work, red clay, which is used as a building
material, was prepared using three oxides: PbO, CdO, and Bi2O3. In Figure 2, 10 wt%
PbO, CdO, and Bi2O3 was added to the red clay, and the figure presents the effect of this
addition on MAC. In the low-energy region (energies less than 70 MeV), it can be seen that
the red clay with 10 wt% CdO has a greater MAC than the red clay with PbO and Bi2O3.
This difference is due to the k-absorption edges of Cd, Pb, and Bi, which occur at 26.71, 88,
and 90.53 keV, respectively. Due to Cd’s k-absorption edge, it has a high attenuation ability,
near 20–30 keV, causing it to have a higher MAC value than PbO and Bi2O3. Meanwhile,
as the energy approaches 80 keV, the k-absorption edges of Pb and Bi cause the clays with
these two elements to have a higher MAC than the clay with CdO.

In order to understand the influence of introducing PbO, Bi2O3, and CdO into red clay
on its attenuation ability, the MAC and LAC of the clays were experimentally measured
in a lab, and from these experimental values the HVL, TVL, and MFP ewere determined.
Before analyzing the shielding ability of the clays, it is important to verify the accuracy of
the experimental results, as all the conclusions rely on it. For this, the theoretical shielding
capability of a material is obtained using XCOM, and then these results are compared
with the experimental data. The theoretical results of red clay (no additives), red clay with
10 wt% PbO, red clay with 10 wt% Bi2O3, and red clay with 10 wt% CdO were compared
at four different energies, as shown in Figure 3. All four tested parameters (MAC, lAC,
HVL, and MFP) had a good level of agreement between their experimental and theoretical
results, at all energies, and for all tested samples. For instance, the difference between
the experimental and theoretical MAC for red clay with 10 wt% CdO at 0.0596 MeV is
negligible, meaning that the two values agree to a very high degree of precision. The
same results were found for the other samples and the other tested parameters. This result
proves that the experimental setup used in this study can be reliably used to determine the
shielding ability of the investigated clays.
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Figure 4 shows the difference between the experimental and simulated XCOM re-
sults of four different parameters at four selected energies. To ensure the validity of the



Materials 2021, 14, 7878 6 of 11

experimental results, the accuracy of the obtained values was determined for the red clay
samples with 30 wt% PbO, Bi2O3 and CdO instead of 10 wt%, to test whether increasing
the amount of additives affected the reliability of the results. This figure has similar trends
to the previous figure; namely, the difference between the XCOM and the experimental
results was extremely small (within an acceptable experimental error). This once again
proves that the experimental setup used in this work provides accurate data for red clay
with both low and high amounts of PbO, Bi2O3, and CdO.
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(b) LAC at 0.356 MeV, (c) HVL at 0.662 MeV and (d) TVL at 1.173 MeV for different 30% wt doped
oxide-clays.

The effective atomic number (Zeff) of pure red clay, and red clay with 10 wt% PbO,
Bi2O3 and CdO is illustrated in Figure 5a, while Figure 5b shows the results for red clay
with 30 wt% PbO, Bi2O3, and CdO, as well as for a red clay sample with 10 wt% of PbO,
Bi2O3, and CdO (totaling 30 wt% metal oxide). Figure 5a demonstrates that pure red clay
has the lowest Zeff out of the tested samples, which means that introducing any of these
three oxides into the clay will greatly enhance its Zeff, and, consequently, its attenuation
capability. In addition, the figure shows that the Zeff for red clay with 10 wt% CdO is lower
than the Zeff of red clay with 10 wt% Bi2O and PbO, which is expected as Cd has a lower
atomic number than Bi and Pb. Meanwhile, pure red clay has a Zeff value of about 10–15,
15 at the lowest tested energy and then smoothly decreasing down to a constant value.
The first subfigure also revealed a peak for the CdO clay and two peaks for both the PbO
and Bi2O3 clays. These peaks can be attributed to the k-absorption edges of Cd, Pb, and
Bi. In Figure 5b, the Zeff for red clay with 30 wt% CdO is once again lower than the Zeff of
the clays with 30 wt% PbO and Bi2O3, as well as the clay with 10 wt% CdO, 10 wt% PbO,
and 10 wt% Bi2O3. One peak was observed for the red clay with 30 wt% CdO and two
peaks for the other samples, which confirms the conclusion that these peaks occur because
of the presence of Pb and Bi. In both figures it can be seen that the maximum Zeff occurs
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at the lowest tested energy, and that the minimum values occur in the moderate-energy
range (which is due to the Compton scattering effect). When comparing the Zeff values for
the clay sample with 10 wt% PbO to the sample with 30 wt% PbO, it can be seen that Zeff
increases with an increase in PbO content, meaning that the Zeff of the red clay with 30 wt%
PbO is greater than that of the sample with 10 wt% PbO. Therefore, adding more PbO
to the clay samples improves the shielding ability of the red clay. This same conclusion
applies to increased amounts of both CdO and Bi2O3.
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The MAC for red clay with 10 wt% PbO, Bi2O3, and CdO microparticles were com-
pared with the MAC of red clay with 10 wt% CdO nanoparticles at four different energies
(Figure 6a). This comparison tested the effect of decreasing particle size on the MAC of
the red clays. The figure shows that the MAC of the red clay with 10 wt% nano-CdO
was higher than the MAC of the clay containing microparticle samples. This difference
is most evident at the lowest tested energy, and decreases as the energy increases. This
result suggests that nanoparticles could be a useful way to enhance the shielding ability of
current radiation-shielding materials.

Since the red clays containing nanoparticles outperformed the clays with microparti-
cles, another red clay with 30 wt% nano-CdO was prepared, and the MAC for this sample
was compared with that of the 30 wt% micro-PbO, Bi2O3, and CdO, as well as to that of a
sample with 10 wt% micro-PbO, 10 wt% micro-Bi2O3, and 10% wt% micro-CdO. The results
for these samples are graphed in Figure 6b. This figure shows that the MAC for the red
clay with nano-CdO is higher than the MAC of the clay containing micro-PbO, CdO and
Bi2O3, which is especially apparent at the first tested energy. Therefore, it can be concluded
that one method to improve the shielding ability of materials is to introduce nanoparticles
rather than using microparticles. Additionally, it can be said that nano-CdO can be used as
an alternative to PbO to create a more environmentally friendly shielding material.
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Finally, the present ceramic samples based on red clay were compared with two
other materials used as a shielding material in nuclear facilities (concrete [40], and white
ceramic [41]) as shown in Figure 7, where the HVL values were 4.581; 4.582; 3.175; 3.049;
3.525; 3.526; and 3.001 (cm) for concrete; white ceramic; R.C with 30 wt% PbO; R.C with
30 wt% Bi2O3; R.C with 30 wt% bulk CdO; R.C with 10 wt% PbO, 10 wt% Bi2O3 and
10 wt% CdO; and R.C with 30 wt% nano-CdO, respectively. The results indicated that the
present ceramic-materials-based red clay has good radiation-shielding features.
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4. Conclusions

In summary, this work started by collecting red clays from Aswan city in Egypt and
blending them with various percentages of three oxides (PbO, Bi2O3 and CdO) with the
aim of fabricating novel clay materials with enhanced gamma-radiation-shielding features.
The MAC for the prepared materials was experimentally measured and compared with
the theoretical results determined by XCOM. The measured and XCOM data agree to a
very high degree of precision. Accordingly, the experimental setup used in this study can
be reliably used to determine the shielding ability of the investigated clays. The Zeff of
pure red clay, red clay with 10 wt%, and red clay with 30 wt% PbO, Bi2O3, and CdO is
reported. The Zeff results demonstrated that introducing any of these three oxides into
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clay will greatly enhance its Zeff, and, consequently, its attenuation capability. The Zeff for
red clay with 30 wt% CdO is lower than the Zeff of the clays with 30 wt% PbO and Bi2O3,
and the clay with 10 wt% CdO, 10 wt% PbO, and 10 wt% Bi2O3. Additionally, we found
that the Zeff increases with an increase in PbO content, meaning that the Zeff of the red clay
with 30 wt% PbO is greater than that of the sample with 10 wt% PbO. We compared the
MAC of red clay with nano-CdO, to that of red clay with micro-PbO and micro-Bi2O3, to
understand the influence of particle size on the attenuation ability of the red clays. We
found that the MAC for the red clay with nano-CdO was higher than the MAC of red
clay wih micro-PbO, CdO, and Bi2O3. Therefore, it can be concluded that one method to
improve the shielding ability of materials is to introduce nanoparticles rather than using
microparticles. Additionally, it can be said that nano-CdO can be used as an alternative to
PbO to create a more environmentally friendly shielding material.
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