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Abstract: Metastasis involves the migration of cancer cells from a primary tumor to invade
and establish secondary tumors in distant organs, and it is the main cause for cancer-related
deaths. Currently, the conventional cytostatic drugs target the proliferation of malignant cells,
being ineffective in metastatic disease. This highlights the need to find new anti-metastatic
drugs. Toxins isolated from snake venoms are a natural source of potentially useful molecular scaffolds
to obtain agents with anti-migratory and anti-invasive effects in cancer cells. While there is greater
evidence concerning the mechanisms of cell death induction of several snake toxin classes on cancer
cells; only a reduced number of toxin classes have been reported (i.e., disintegrins/disintegrin-like
proteins, C-type lectin-like proteins, C-type lectins, serinproteases, cardiotoxins, snake venom
cystatins) as inhibitors of adhesion, migration, and invasion of cancer cells. Here, we discuss
the anti-metastatic mechanisms of snake toxins, distinguishing three targets, which involve
(1) inhibition of extracellular matrix components-dependent adhesion and migration, (2) inhibition
of epithelial-mesenchymal transition, and (3) inhibition of migration by alterations in the
actin/cytoskeleton network.
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1. Introduction

Currently, anticancer therapies target the uncontrolled clonal proliferation of cancer cells
with cytostatic drugs, which are an effective therapeutic strategy for certain cancer types such as
hematological malignancies. However, in solid cancers, the proliferation is accompanied by the ability
to invade and execute metastasis, involving different molecular mechanisms that are not inhibited or
affected by conventional anti-cancer drugs. Therefore, to search for and design specific drugs to inhibit
invasion and metastasis for treatment of solid cancers is a highly relevant issue [1].

The composition of solid tumors is heterogeneous, having several cancer cell subpopulations
with different tumorigenic properties [2]. In a tumor, cancer cells acquire mutations that confer
them with different proliferative capacities and survival advantages. A subpopulation, named
metastasis-initiating cells (MICs), exhibits high plasticity to adapt their metabolic and proliferative
requirements, ability to enter and exit dormancy state, and resistance to apoptosis and immune evasion,
which is responsible for metastatic growth [3]. For example, during the initial steps of tumor growth
of cancer cells confined to epithelium, certain colonies of malignant cells can form a carcinoma in
situ separated from the stroma. In some cells, mutations provide the ability to establish a physical
relationship with stroma and changes in extracellular signals from the microenvironment, triggering
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the secretion of soluble factors by stromal and hematopoietic cells [4,5] and inducing phenotypic
changes in cancer cells known as epithelial–mesenchymal transition (EMT). This process recapitulates
properties displayed by tissues during the embrionary development [6] that facilitate the dissociation
of cancer cell from the tumor bulk and dissemination to distant organs, being considered a prerequisite
for invasion and metastasis [2,7].

Metastasis is a complex process in which cancer cells disseminate from a primary tumor to invade
a distant organ, this ability characterizes the tumor malignancy [6]. It has been described that about
90% of cancer-related deaths are caused by a metastatic disease [8]. It is clear that dissemination
to specific organs depends upon blood flow patterns and of the relationship of the migrating cells
with distant organ microenvironments, the stromal cell content, vascular architecture, presence of
growth factors, metabolic substrates, and signaling molecules. These characteristics can be permissive
or antagonistic to metastatic colonization, determining whether these cells grow to form secondary
tumors [9].

The detailed mechanistic insight of the metastatic process contrast with the minimal progress in
the identification of effective therapeutic targets and in the design of new anti-metastatic drugs [1].
Based on structural characteristics and their known interactions with macromolecules, toxins isolated
from snake venoms may represent a natural source of molecular scaffolds to obtain agents with
anti-migratory and anti-invasive effects in cancer cells. In this review, we summarize recent evidence
on the inhibitory effect of snake toxins on adhesion, migration, and invasion of cancer cells.

2. Snake Toxins as Inhibitors of Cancer Metastasis

There is ample literature showing that several isolated or recombinant snake venom toxins
exhibit anti-cancer effects in vitro and in vivo preclinical models, inducing cell death via mitochondrial
apoptotic pathway (intrinsic pathway) or necrosis [10–12]. In addition, certain toxins such as snake
venom metalloproteases (SVMPs), disintegrins, phospholipases A2, C-type lectins (CLP), vascular
apoptosis inducing proteins, and L-amino acid oxidases are able to inhibit angiogenesis [13–15] and
activate the immune response during tumorigenesis [16]. While greater evidence on mechanisms of
death induction of snake toxins on cancer cells have been reported, reduced information on the inhibitory
mechanisms of adhesion, migration, and invasion of metastatic cancer cells is available. Despite the
aforementioned information, it is possible distinguish three anti-metastatic mechanisms exhibited
by at least six different snake toxin classes (Figure 1): involving (1) inhibition of extracellular matrix
components (ECM)-dependent adhesion and migration, (2) inhibition of epithelial-mesenchymal
transition, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.
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Figure 1. Anti-metastatic targets for snake toxins. Snake toxins inhibit pro-migratory and pro-
invasive signals stimulated by extracellular matrix proteins and growth factors such as epidermal 
growth factor (EGF), hepatocyte growth factor (HGF), and transforming growth factor beta (TGF-β) 
though (1) inhibition of extracellular matrix (ECM) components-dependent adhesion and migration, 
(2) inhibition of migration by alterations in the actin/cytoskeleton network, and (3) inhibition of 
epithelial–mesenchymal transition (EMT). Dis: disintegrins; CLP: C-type lectin-like proteins; KSP: 
Kunitz-type serinprotease; C-Lectins: C-type lectins; CTX-III: cardiotoxin III; Sv-cystatin: snake 
venom cystatin. 

3. Inhibition of Extracellular Matrix Component-Dependent Adhesion and Migration 

During the initial steps of metastasis, it is required the interaction between ECM components 
and cancer cell, involving the ability of these cells to adhere to ECM components and migrate through 
them [17]. Integrins are the major receptor family present on the cell surface for adhesion to the ECM 
and include heterodimeric, transmembrane glycoproteins composed of α and β subunits [18], whose 
dimerization leads to 24 integrin pairs with distinct extracellular ligand-binding specificities [18]—
such as collagen, laminin, vitronectin, and fibronectin—through the tripeptide motif Arg-Gly-Asp = 
RGD [19]. Abundant evidence has correlated the increased overexpression of certain integrins αvβ3, 
α5β1, and αvβ6 with cancer progression [20–22]. Integrins activate intracellular signaling that control 
cytoskeleton organization, cell polarity, and formation of leading edge of migrating cancer cells [22], 
being an attractive anti-cancer target for new antagonist molecules [23,24].  

Three toxin classes (snake venom disintegrins, C-type lectin-like protein, and Kunit-like 
serinprotease inhibitor) have been reported with anti-migratory effect mediated by interaction with 
integrins in cancer cells, which are summarized in Table 1. 

Snake venom disintegrins are small non-enzymatic proteins mostly derived from proteolytic 
processing of precursors that contain a metalloprotease domain, known as snake venom 
metalloproteases (SVMPs), which are phylogenetically related with ADAMs (a disintegrin and 
metalloprotease) [25–28]. This protein family, commonly found in the venoms of the Viperidae 
snakes [26] and some rear-fanged snakes [28–35], is classified according to their modular architecture 
with multiple non-catalytic domains in SVMP P-I, P-II, and P-III classes. Disintegrins are derived 
from proteolytic processing of P-II SMVP class and usually exhibit the canonical “RDG” integrin-
recognition motif; however, non-canonical integrin-binding motif—such as “MLD”, “KTS”, and 

Figure 1. Anti-metastatic targets for snake toxins. Snake toxins inhibit pro-migratory and
pro-invasive signals stimulated by extracellular matrix proteins and growth factors such as epidermal
growth factor (EGF), hepatocyte growth factor (HGF), and transforming growth factor beta (TGF-β)
though (1) inhibition of extracellular matrix (ECM) components-dependent adhesion and migration,
(2) inhibition of migration by alterations in the actin/cytoskeleton network, and (3) inhibition
of epithelial–mesenchymal transition (EMT). Dis: disintegrins; CLP: C-type lectin-like proteins;
KSP: Kunitz-type serinprotease; C-Lectins: C-type lectins; CTX-III: cardiotoxin III; Sv-cystatin: snake
venom cystatin.

3. Inhibition of Extracellular Matrix Component-Dependent Adhesion and Migration

During the initial steps of metastasis, it is required the interaction between ECM components
and cancer cell, involving the ability of these cells to adhere to ECM components and migrate
through them [17]. Integrins are the major receptor family present on the cell surface for adhesion
to the ECM and include heterodimeric, transmembrane glycoproteins composed of α and β

subunits [18], whose dimerization leads to 24 integrin pairs with distinct extracellular ligand-binding
specificities [18]—such as collagen, laminin, vitronectin, and fibronectin—through the tripeptide motif
Arg-Gly-Asp = RGD [19]. Abundant evidence has correlated the increased overexpression of certain
integrins αvβ3, α5β1, and αvβ6 with cancer progression [20–22]. Integrins activate intracellular
signaling that control cytoskeleton organization, cell polarity, and formation of leading edge of
migrating cancer cells [22], being an attractive anti-cancer target for new antagonist molecules [23,24].

Three toxin classes (snake venom disintegrins, C-type lectin-like protein, and Kunit-like
serinprotease inhibitor) have been reported with anti-migratory effect mediated by interaction with
integrins in cancer cells, which are summarized in Table 1.

Snake venom disintegrins are small non-enzymatic proteins mostly derived from proteolytic
processing of precursors that contain a metalloprotease domain, known as snake venom metalloproteases
(SVMPs), which are phylogenetically related with ADAMs (a disintegrin and metalloprotease) [25–28].
This protein family, commonly found in the venoms of the Viperidae snakes [26] and some rear-fanged
snakes [28–35], is classified according to their modular architecture with multiple non-catalytic domains
in SVMP P-I, P-II, and P-III classes. Disintegrins are derived from proteolytic processing of P-II SMVP
class and usually exhibit the canonical “RDG” integrin-recognition motif; however, non-canonical
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integrin-binding motif—such as “MLD”, “KTS”, and “VGD”—are exhibited in some snake venom
disintegrins [36,37]. In addition, proteolysis from P-III SVMP class originates disintegrin-like
proteins, which have covalently bound the “disintegrin-like” and “cysteine (Cys)-rich” domains [27].
Comprehensive classification and structural characteristics of SVMP are found in Takeda et al., 2012 [27]
and Takeda, 2016 [38].

A disintegrin isolated from the venom of the Middle American rattlesnake (Crotalus simus tzabcan)
named tzabcanin [39], which has 71 amino acids and contains the canonical RGD-binding domain,
exhibits a weak or null cytotoxic effect on cancer cell lines [39], but remarkable inhibitory effect of
fibronectin- and vitronectin-dependent cell adhesion. This toxin binds αvβ3-integrins, which is the
main receptor of the ECM protein vitronectin, inhibiting the adhesion and migration of melanoma and
lung cancer cells [40].

Table 1. Snake toxins that inhibit the adhesion and migration of cancer cells by interaction with
ECM components.

Toxin Name Snake Species Adhesive
Motif

Integrin
Target

ECM
Ligand Effect Ref.

r-Cam-dis
recombinant
disintegrin

Crotalus
adamanteus RGD αvβ3 laminin-1 Inhibition of adhesion in

pancreatic cancer cells [41]

r-Colombistatins
recombinant

disintegrin-like
domains from

Class-III SVMP

Bothrops
colombiensis ECD n.d. collagen I Inhibition of adhesion in

SK-Mel-28 melanoma cells [42]

DisBa-01,
recombinant
disintegrin

Bothrops
alternatus RGD αvβ3 fibronectin

Loss of cell directionality of
migrating oral squamous

carcinoma cells
[43]

r-mojastn-1,
recombinant
disintegrin

Crotalus
scutulatus
scutulatus

RGD
αvβ3,
α3,

and β1,

fibronectin
and

vitronectin

Inhibition of adhesion and
migration of BXPC-3

pancreatic cancer cell line
[44,45]

r-viridistatin-2,
recombinant
disintigrin

Crotalus viridis
viridis RGD αvβ3

fibronectin
and

vitronectin

Inhibition of adhesion,
migration and invasion of

several cancer cell lines
[44,46]

Lebecin, C-type
lectin-like protein

Macrovipera
lebetina - αvβ3

fibronectin
and

fibrinogen

Inhibition of adhesion and
migration of MDA-MB-231

breast cancer cells
[47]

PIVL, Kunitz-type
serin protease

inhibitor

Macrovipera
lebetina

transmediterranea
RGN αvβ3

fibronectin
and

fibrinogen

Inhibition of adhesion,
migration and invasion of

human glioblastoma
U87 cells

[48]

n.d.: not determined.

DisBa-01, a recombinant RGD-disintegrin produced from a cDNA venom gland library of
Bothrops alternatus, inhibits in vivo angiogenesis and pulmonary metastasis [49]. In oral squamous
carcinoma cells, DisBa-01 selectively decreases the migration speed and directionality of fibronectin-
stimulated migration, increasing the adhesion area and rate of adhesion maturation. It lacks effects on
migration of non-malignant cells such as fibroblasts. DisBa-01 exhibits a high affinity on fibronectin
binding receptor αvβ3 integrin [43]. Other recombinant disintegrins from Viperidae species have
been reported such as αvβ3 integrin antagonists, inhibiting the migration of cancer cells (Table 1).
Additional disintegrins and disintegrin-like proteins from snake venoms reported with anti-cancer
effect can be found in Selistre-de-Araujo et al., 2010 [50].

Interestingly, Lebecin, and PIVL isolated from Macrovipera lebetina venom, which belong two
different toxin classes C-type lectin-like protein and Kunitz-type serin protease inhibitor, respectively,
exhibit inhibitory effect on fibrinogen- and fibronectin-stimulated adhesion and migration.
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Lebecin is a C-type lectin-like protein with α and β subunits of 129 and 131 amino acids,
respectively [47]. In triple-negative breast cancer MDA-MB-231 cells, lebecin does not affect the
viability. However, it inhibits the fibrinogen- and fibronectin-dependent adhesion and migration in
a dose-dependent manner [47]. It has been described that lebecin interacts with αvβ3 integrin;
but based on the high identity of its amino acid sequence with other C-type lectin-like protein
previously reported from Macrovipera lebetina venom with inhibitory effect on adhesion, migration,
and invasion of cancer cells [51,52], it has been suggested that lebecin can block other integrins such as
α5β1 [47].

PIVL is a monomeric polypeptide chain bound by three disulfide linkages, which inhibits trypsin
activity and lacks effects on the viability but blocks αvβ3 integrin-dependent migration, affecting the
motility and cell directionality persistence of cancer cells [48]. PIVL also exhibits in vitro and in vivo
anti-angiogenic effects [53].

4. Inhibition of Epithelial–Mesenchymal Transition

Epithelial–mesenchymal transition (EMT) is a process in which epithelial cells transdifferentiate
into mesenchymal cells, losing their morphoinmunophenotypic characteristics. Interestingly,
EMT occurs in normal and healthy tissues during angiogenesis and lymphangiogenesis; but in
certain pathological conditions such as chronic inflammation, fibrosis and cancer is reactivated [6].
In tumors, EMT-like transitions involve the loss of components related with cell-cell interactions,
apico-basal cell polarity and reorganization of cytoskeleton. Cancer cells with EMT have tumorigenic
properties that non-EMT cells do not exhibit, such as a high migratory state that promote invasion
and metastasis [4,5], lacking response to signals of oncogene-induced senescence [54] and resistance to
anti-cancer drugs [55–57].

EMT can be induced by growth factors such as transforming growth factor beta (TGF-β),
epidermal growth factor (EGF), hepatocyte growth factor (HGF), insulin-like growth factors 1 and 2 [40],
activating RAS, Notch, and Wnt signalings which have been associated with poor prognosis and
cancer progression [58,59]. During EMT, there is a reduction of the epithelial marker E-cadherin and
an increase of the expression of mesenchymal markers vimentin, N-cadherin [60], as well as activation
of transcription factors Snail, Slug, Twist, which act as repressor of E-cadherin [5,61].

Cardiotoxin III (CTX-III), a membrane toxin from Taiwan cobra (Naja naja) venom [62], inhibits the
migration of cancer cells by reversion of EGF- and HGF-induced EMT. Previously, CTX-III has been
described as a potent inductor of cell death in several human cancer cell lines [63–65] and a migration
inhibitor of oral and breast cancer cells through activation of JNK and p38, without effect on ERK
signaling, producing decreased metalloproteases-2 and -9 (MMP-2/-9) levels [66,67].

In breast cancer cells, the paracrine role of epidermal growth factor (EGF) and its receptor EGFR
(ErbB-1) contribute to invasion, intravasation, and metastasis [68] through activation of extracellular
signal-regulated kinase 1/2 (ERK1/2), STAT3, or PI3K/Akt signaling, promoting the EMT [69–71].
CTX-III inhibits the EGF-induced EMT in breast cancer cells, reducing EGFR phosphorylation and
activation PI3K/Akt and ERK1/2. It reduces the MMP-9 levels [72] and the mesenchymal markers
vimentin and N-cadherin and increases E-cadherin levels, inhibiting EGF-induced invasion and
migration [72,73]. A similar effect of CTX-III on hepatocyte growth factor (HGF)-stimulated migration
and invasion in breast cancer cells has been described [73–75].

Cancer cells can excrete cysteine-cathepsins, which are endopeptidases located intracellularly
in endolysosomal vesicles [76] that are essential during the breakdown the ECM to promote the
invasion and metastasis [77]. During EMT, cancer cells exhibit an increased extra- and intra-cellular
proteolysis mediated by cathepsins, matrix metalloproteinases, urokinase-type plasminogen activator
(uPA), and serinproteases such as kallikreins [78]. This proteolytic activity removes surface molecules
involved in cell adhesion such as E-cadherin [79,80], limiting the cell–cell interaction and remodeling
the extracellular matrix to uncover binding epitopes recognized by integrins and to form trials for
cell migration [81]. Cysteine-cathepsins are regulated by natural inhibitors such as cystatins [82],
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which represent a group constituted by three types (type 1-stenfins, type-2 cystatins, type 3-kininogens)
of cystatin domain containing proteins [83]. From Naja naja atra venom, it has been isolated a snake
venom cystatin (Sv-cystatin) that exhibits a shorter sequence than other type-2 cystatins, such as
cystatin M and cystatin C [84]. For this snake toxin, inhibitory effects on invasion and metastasis
mediated by reduction of EMT markers has been described in MHCC97H liver cancer cells [85].
Sv-cystatin decreases the cathepsin B activity, MMP-2, and MMP-9 levels, increasing E-cadherin and
decreasing EMT proteins N-cadherin and twist [85].

5. Alterations in the Actin/Cytoskeleton Network

During migration and invasion of cancer cells, the actin cytoskeleton is remodeled under
extracellular stimuli, which is mediated by several receptors, including integrins [19]. Small GTPases
Rho, Rac, and Cdc42 participate in the intracellular signaling involved in the control of the actin
cytoskeleton architecture required for cell motility in individual and collective migration [86], which is
a common signaling for normal and cancer cells [2]. The cell protrusion of a leading edge relies on
Cdc42 and Rac activities, which are coupled to Rho activity-dependent contractility, supporting the
movement of the cell body forward [87]. Consistent with the essential role of the cytoskeleton in
promoting cancer migration, its deregulation may cause anti-adhesive and anti-migratory effects.
Two snake venom calcium-dependent (C-type) lectins alter the actin/cytoskeleton network in cancer
cells. C-type lectins identified from snake venoms are classified in two groups: C-type glycan-binding
lectins; and C-type lectin-like proteins, which do not interact with sugars. The C-type glycan-binding
lectins are homodimeric non-enzymatic proteins that contain a carbohydrate recognition domain
(CRD), binding mainly with galactose [88].

Daboialectin, a low molecular weight C-type lectin isolated from Daboia russelii venom, produces
morphological changes, including spindle-like shape with loss of cell–cell contacts in lung cancer cells
A549 [89]. This snake toxin decreases the mRNA and protein levels of small GTPases Rho and Rac and
increases the Cdc42 expression, which is in accordance with remarkable decrease of F-actin content,
inhibition of migration and invasion observed in lung cancer cells treated with it [89].

BJcuL is a C-type lectin from Bothrops jararacussu venom composed by a disulfide-linked dimer
with high affinity for glycoproteins containing β-D-galactosides [90]. BJcuL binds to cancer cells
without affecting the adhesion of these cells to fibronectin, laminin, and type I collagen; however,
it produces complete actin filament disorganization and disassembly in malignant cells [91]. This toxin
does not block the integrin signaling [92], but it binds to cell surface with ECM glycoproteins, such as
its substrate D-galactose, promoting the actin disassembles, an event that could accelerate cancer cell
detachment from ECM, producing cell death [91].

6. Concluding Remarks

Given that malignant cells during metastasis exhibit molecular mechanisms different from those
shown by non-metastatic and highly proliferative cancer cells, the conventional cytostatic drugs,
which mainly target the cell proliferation, lack effects on the capacity to disseminate and grow in
distant sites of metastatic cancer cells. This review highlights the need to search new anti-metastatic
drugs. We identified three anti-metastatic mechanisms of action for at least six classes of toxins from
snake venoms: (1) inhibition of ECM components-dependent adhesion and migration, (2) inhibition of
EMT, and (3) inhibition of migration by alterations in the actin/cytoskeleton network.

These toxins may represent a natural source of molecular scaffolds to design new anti-migratory
and anti-invasive agents by obtaining recombinant proteins or small molecules that act as antagonists
of integrin signaling or inductors of actin disassembling by binding of cell surface glycoproteins.
A selective inhibition of the signaling machinery involved in the cancer cell migration without affect
those of migrating non-malignant cells is an important challenge for the new anti-metastatic drugs.

Interestingly, all anti-cancer evaluations on tumorigenic properties—such as proliferation,
angiogenesis, invasion, and metastasis of malignant cells—have been performed with toxins isolated from
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front-fanged snake species, especially from Viperidae species; however, the potential therapeutic applications
of toxins described from rear-fanged snake species—e.g., [28,30–32,93–95]—remain unexplored.

An extensive development and conjugation of drug delivery systems with some snake toxins,
which has reduced the toxicity and improved the selectivity toward cancer cells [96,97], highlight their
promising applications as direct anti-cancer agents or potential tools for the development of novel
therapeutic strategies [16]. Finally, the in vivo validation of anti-metastatic effect described on in vitro
cancer cell lines is a pending issue for drug discovery from snake toxins.
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