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'is article investigates the estimation of the parameters for power hazard function distribution and some lifetime indices
such as reliability function, hazard rate function, and coefficient of variation based on adaptive Type-II progressive
censoring. From the perspective of frequentism, we derive the point estimations through the method of maximum
likelihood estimation. Besides, delta method is implemented to construct the variances of the reliability characteristics.
Markov chain Monte Carlo techniques are proposed to construct the Bayes estimates. To this end, the results of the Bayes
estimates are obtained under squared error and linear exponential loss functions. Also, the corresponding credible intervals
are constructed. A simulation study is utilized to assay the performance of the proposed methods. Finally, a real data set of
COVID-19 mortality rate is analyzed to validate the introduced inference methods.

1. Introduction

To achieve a balance between the total time spent in the ex-
periment and the number of units used in the experiment, the
experiment must be subjected to a good control system (cen-
soring scheme) that allows the experimenter to obtain results
that enable him to make good statistical inference. At the same
time, the working experimental units are saved for future use, as
well as the cost and time associated with testing. Type-I (time)
and Type-II (failure of units) censoring schemes are the oldest
and most common censoring schemes. In these two types of
censoring schemes, units cannot be withdrawn from an ex-
periment until the final stage or the number of units fails.

Balakrishnan and Sandhu [1] introduced the progressive
Type-II censoring that has more flexibility than the Type-II
censoring in allowing units to be withdrawn from the test at
different observed failure times. Briefly, it can be described
as follows: assume that n independent units are placed in the
life test and the observed failure times m(m≤ n), which are
called a progressive sample as X1:m:n <X2:m:n < . . . < Xm:m:n,
are prefixed. Besides, the scheme R � (R1, R2, . . . , Rm) is a
prefixed censoring plan. At the first failure occurrence X1,
the surviving units R1 are randomly withdrawn from the
test; then, at the second failure occurrence X2, the surviving
units R2 are randomly withdrawn from the test and so on
until the occurrence of the mth failure and therefore the
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remaining surviving units Rm � n − m − 􏽐
m− 1
i�1 Ri are with-

drawn from the test and the test is terminated; see Figure 1.
For more details and extensive reviews of the literature on
progressive Type II censoring, readers may refer to Balak-
rishnan [2], Balakrishnan and Sandhu [3], and EL-Sagheer
[4].

Kundu and Joarder [5] introduced a Type-II progressive
hybrid censoring scheme; the experiment in this type is ter-
minated at a prescribed time T with a progressive Type-II right
censored. It is clear that this type of censoring has the same
disadvantage of the Type-I censoring (time), in which m is
random and may be a small number. For this reason, Ng et al.
[6] developed the adaptive Type-II progressive censoring
scheme as a mix of Type-II progressive censoring and Type-I
censoring. 'is type allows R1, R2, . . . , Rm to depend on the
failure times so that the effective sample size is always m, which
is fixed in advance. 'us, the life testing experiment can save
both the total test time and the cost induced by failure of the
units. 'is censoring scheme can be described as follows:
consider n identical units under observation in a life testing
experiment and suppose the experimenter provides a time T,
which is an ideal total test time, but we may allow the ex-
periment to run over time T. If the mth progressively censored
observed failure occurs before time T (i.e., Xm: m: n <T), the
experiment terminates at the time Xm: m: n. Otherwise, once the
experimental time passes time T but the number of observed
failures has not reached m, we would want to terminate the
experiment as soon as possible. 'erefore, we should leave as
many surviving units on the test as possible. Suppose J is the
number of failures observed before time T, that is,
XJ:m:n ≤T<XJ+1:m:n, J � 0, 1, . . . , m, where X0:m:n ≡ 0 and
Xm+1:m:n ≡ ∞. After the experiment passed time T, we set
RJ+1 � . . . � Rm− 1 � 0 and Rm � n − m − 􏽐

J
i�1 Ri. 'is for-

mulation leads us to terminate the experiment as soon as
possible if the (J + 1)th failure time is greater than T for
J + 1<m. One extreme case is when T⟶∞, which means
time is not the main consideration for the experimenter; then
we will have a usual progressive Type-II censoring scheme with
the prefixed progressive censoring scheme (R1, . . . , Rm).
Another extreme case can occur when T � 0, which means we
always want to end the experiment as soon as possible; then, we
will have R1, . . . , Rm− 1 � 0 and Rm � n − m, which results in
the conventional Type-II censoring scheme. For extensive
reviews of the literature on the adaptive Type-II progressive
censoring scheme, readers may refer to Cramer and Iliopoulos
[7], Mohie El-Din et al. [8], and El-Sagheer et al. [9], which can
be briefly described by Figures 2 and 3.

From Figures 1 and 2, we observe that the value of T

plays an important role in the determination of the values of
Ri , i � 1, 2, . . . , m, and is a compromise between a shorter
experimental time and a higher chance to observe extreme
failures.

Mugdadi [10] proposed the two-parameter power
hazard function distribution, denoted by PHFD (θ, λ) as an
alternative to the Weibull, Rayleigh, and exponential dis-
tributions and studied its different properties. 'is dis-
tribution has increasing hazard rate function (HRF) for
λ> 0, and it has decreasing HRF for − 1< λ< 0. 'e prob-
ability density function (PDF), cumulative distribution

function (CDF), reliability function RF, and HRF are given,
respectively, by

f(x; θ, λ) � θx
λ exp −

θ
λ + 1

x
λ+1

􏼨 􏼩, θ> 0, λ> − 1, x> 0,

F(x; θ, λ) � 1 − exp −
θ

λ + 1
x
λ+1

􏼨 􏼩, θ> 0, λ> − 1, x> 0,

(1)

r(x) � exp −
θ

λ + 1
x
λ+1

􏼨 􏼩, θ > 0, λ> − 1, x> 0, (2)

h(x) � θx
λ
, θ> 0, λ> − 1, x> 0, (3)

where θ and λ are the scale and shape parameters, re-
spectively. 'e PHFD has been shown to be useful for
modeling and analyzing the life time data in medical and
biological sciences, engineering, and so on. 'is distri-
bution is a very flexible model that approaches different
models when its parameters are changed. It contains the
following special models: PHFD refers to Rayleigh (β)

when θ � 1/β2 and λ � 1, PHFD reduces to Weibull (θ, 1)
when λ � θ − 1, and PHFD is exponential distribution
with mean 1/θ when λ � 0.

'e coefficient of variation is used in many science areas
such as medical sciences, chemistry, biology, economics,
finance, engineering, and reliability theory to assess ho-
mogeneity of bone test samples, dose-response studies,
wildlife studies, and other fields; see Subrahmanya Nairy and
Rao [11], Creticos et al. [12], Versaci et al. [13], and El-
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Figure 1: Description of progressive Type-II censoring scheme.
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Figure 3: Experiment terminates after time T, that is, Xm: m: n ≥T.
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Sagheer et al. [9]. Given a set of observations from PHFD
(θ, λ), the sample coefficient of variation (CV) is

CV �

��������������
E X

2
􏼐 􏼑 − [E(X)]

2
􏽱

E(X)
, E(X)≠ 0, (4)

whereE(X) and E(X2) are the first and the secondmoments
of the PHFD (θ, λ), given by

E(X) �
θ

λ + 1
􏼠 􏼡

− 1/λ+1

Γ
λ + 2
λ + 1

􏼠 􏼡, (5)

E X
2

􏼐 􏼑 �
θ

λ + 1
􏼠 􏼡

− 2/λ+1

Γ
λ + 3
λ + 1

􏼠 􏼡, (6)

where Γ(ϖ) is the gamma function Γ(ϖ) � 􏽒
∞
0 zϖ− 1e− zdz.

'us,

CV � Q(λ), (7)

where

Q(λ) �

���������������������������

Γ(λ + 3/λ + 1) − [Γ(λ + 2/λ + 1)]
2

􏽱

Γ(λ + 2/λ + 1)
, λ> 0. (8)

Inferences for the PHFD have been studied by several
authors including Kınacı [14] discussed the stress-strength
reliability model for PHFD, El-Sagheer [15] investigated the
problem of point and interval estimations of the parameters
for PHFD based on progressive Type-II censoring scheme,
Mugdadi and Min [16] discussed Bayes estimation of PHFD
based on a complete and Type-II censored samples, and
Khan [17] established the recurrence relations for single and
product moments of generalized order statistics from the
PHFD. Recently, El-Sagheer et al. [18] constructed the
Bayesian and non-Bayesian approaches for the lifetime
performance index with the progressive Type-II censored
sample from the PHFD. In this article, we use the adaptive
Type-II progressive censored (AT2PC) scheme to study the
problem of estimating the shape and scale parameters, RF,
HRF, andCV for two-parameter PHFD.

'e structure of the paper is organized as follows. Section
2 deals with the maximum likelihood estimate and as-
ymptotic confidence intervals. Bayesian estimates using
Markov chain Monte Carlo technique are provided in
Section 3. In Section 4, a simulation study is conducted to
compare the performance of these estimation methods. A
real data set of COVID-19 is presented to illustrate the
application of the proposed inferences in Section 5. Finally, a
brief conclusion is given in Section 6.

2. Maximum Likelihood Inference

Suppose that x � XR
1: m: n < XR

2: m: n < . . . <XR
m: m: n is a

AT2PC-order statistics from the PHFD with progressive
censored scheme R � (R1, R2, . . . , Rm). According to Ng
et al. [6], the log-likelihood function ℓ � log L(θ, λ; x)

without normalized constant can be written as

ℓ∝m log θ + λ􏽘
m

i�1
log xi −

θ
λ + 1

· 􏽘
m

i�1
Rix

λ+1
i + 􏽘

j

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(9)

where xi is used instead of xR
i: m: n: k. After differentiating ℓ

with respect to θ and λ, respectively, and equating each of
them to zero, the likelihood equations can be written as
follows:

m

θ
−

1
λ + 1

􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0,

(10)

􏽘

m

i�1
log xi −

θ
λ + 1

􏽘

m

i�1
Rix

λ+1
i log xi + 􏽘

j

i�1
x
λ+1
i log xi

⎡⎢⎣

+ n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m log xm

⎤⎥⎥⎦ +
θ

(λ + 1)
2

􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦ � 0.

(11)

From (10), the MLE of θ can be illustrated as

􏽢θ � m
1

􏽢λ + 1
􏽘
m

i�1
Rix

􏽢λ+1
i + 􏽘

J

i�1
x

􏽢λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
􏽢λ+1
m

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦

− 1

.

(12)

Since (10) and (12) do not have closed-form solutions,
Newton–Raphson iteration method is widely used to obtain
the desiredMLEs in such situations. For more details, see El-
Sagheer [4]. OnceMLEs of θ and λ are obtained, theMLEs of
r(t), h(t), and CV for a given mission time t can be obtained
after replacing θ and λ by 􏽢θ and 􏽢λ according to the invariant
property of the MLEs as

􏽢r(t) � exp −
􏽢θ

􏽢λ + 1
t
􏽢λ+1

􏼨 􏼩,

􏽢h(t) � 􏽢θt
􏽢λ
,

􏽢CV � Q(􏽢λ).

(13)

2.1. Approximate Confidence Intervals. According to Cohen
[19], the Fisher information matrix (FIM), which is defined
by the negative expectation of the partial second derivative of
the log-likelihood function, is needed to construct the ap-
proximate confidence intervals (ACIs) for parameters
Λ � (θ, λ).
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I(Λ) � E −
z2ℓ

zΛizΛl

􏼢 􏼣
i,l�1,2

� Iil􏼂 􏼃2×2.

(14)

'e elements of the FIM are

I11 �
− m

θ2
,

I12 �

I21 � −
1

λ + 1
􏽘

m

i�1
Rix

λ+1
i log xi + 􏽘

J

i�1
x
λ+1
i log xi + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m log xm

⎡⎢⎢⎣ ⎤⎥⎥⎦

+
1

(λ + 1)
2 􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦,

(15)

I22 � −
θ

λ + 1
􏽘

m

i�1
Rix

λ+1
i log xi( 􏼁

2
+ 􏽘

J

i�1
x
λ+1
i log xi( 􏼁

2⎡⎣

+ n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m log xm( 􏼁

2⎤⎥⎥⎦ +
2θ

(λ + 1)
2

􏽘

m

i�1
Rix

λ+1
i log xi + 􏽘

J

i�1
x
λ+1
i log xi + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m log xm

⎡⎢⎢⎣ ⎤⎥⎥⎦

−
2θ

(λ + 1)
3 􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(16)

Since MLE has asymptotic normality property under
certain regularity conditions, the estimator 􏽢Λ � (􏽢θ, 􏽢λ) has
asymptotic distribution 􏽢Λ − Λ⟶ N(0, I− 1(Λ)), and the
inverse matrix of I(Λ) is

I
− 1

(􏽢Λ) �
Var(􏽢θ) Cov(􏽢θ, 􏽢λ)

Cov(􏽢λ, 􏽢θ) Var(􏽢λ)

⎡⎣ ⎤⎦. (17)

'us, the 100(1 − c)% ACIs of Λ is

􏽢Λi − zc/2

�������

Var 􏽢Λi􏼐 􏼑

􏽱

, 􏽢Λi + zc/2

�������

Var 􏽢Λi􏼐 􏼑

􏽱

􏼔 􏼕, i � 1, 2, (18)

where Var(􏽢Λi) � I− 1
ii , i � 1, 2. zc/2 is the percentile of the

standard normal distribution with right-tail probability c/2.

2.2. Delta Method. In order to construct the ACIs of r(t),
h(t), and CV, we need to find the variances of them. So,
Greene [20] implemented the delta method for this purpose.
In this method, for analytically computing the variance, a

linear approximation of the functions of theMLEs is created,
and then the variance of the simpler linear function that can
be used for large sample inference is computed. Let W �

(zΔ/zθ, zΔ/zλ) be the first partial derivative of
Δ � (r(t), h(t),CV). 'en, the approximate estimates of
variances 􏽢Δ � (􏽢r(t), 􏽢h(t), 􏽢CV) can be written as

Var(􏽢Δ)≃ W
T
I

− 1
(􏽢Λ)W􏼐 􏼑

↓(Λ�􏽢Λ)
, (19)

where WT is the transpose matrix of W. 'us, the (1 −

c)100% ACIs for 􏽢Δ can be given by

􏽢Δ − zc/2

������

Var(􏽢Δ)
􏽱

, 􏽢Δ + zc/2

������

Var(􏽢Δ)
􏽱

􏼔 􏼕. (20)

Moreover, Meeker and Escobar [21] suggested using the
natural approximation for the log-transformed MLE to
prevent the negative lower bound of the ACIs. 'us, two-
sided (1 − c)100% normal ACIs for 􏽢Θ � 􏽢θ, 􏽢λ, 􏽢r(t), 􏽢h(t) or
􏽢CV are given by
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􏽢Θ exp −
zc/2

�������

Var( 􏽢Θ)

􏽱

􏽢Θ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, 􏽢Θ exp

zc/2

�������

Var( 􏽢Θ)

􏽱

􏽢Θ

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. (21)

3. Bayesian Inference

To characterize the problems more rationally and reason-
ably, we must take into consideration both the information
from observed sample data and the prior information; this is
the main idea of Bayesian inference. In this section, Bayesian
inference procedures using Markov chain Monte Carlo
(MCMC) technique are proposed to estimate the parameters
θ and λ as well as r(t), h(t), and CV under both squared
error (SE) and linear exponential (LINEX) loss functions.
Also, the corresponding CRIs are constructed under MCMC
technique. We consider here that the parameters θ and λ
follow the gamma prior distributions with PDFs

π1(θ)∝ θa1− 1 exp − b1θ􏼈 􏼉, θ> 0,

π2(λ)∝ λa2− 1 exp − b2λ􏼈 􏼉, λ> 0,

⎧⎨

⎩ (22)

where a1, b1, a2 and b2 reflect the knowledge of prior about
(θ, λ) and they are assumed to be known and nonnegative
hyperparameters. In addition, the parameters θ and λ as well
as the corresponding priors are considered here to be in-
dependent. Further, the joint prior of the parameters θ and λ
can be written as

π(θ, λ)∝ θa1− 1λa2− 1 exp − b1θ − b2λ􏼈 􏼉. (23)

Via Bayes’ theorem across using the likelihood function
L(θ, λ; x) with the joint prior π(θ, λ), the joint posterior
density π∗(θ, λ| x) of θ and λ can be obtained as

π∗ θ, λ| x( 􏼁 �
L θ, λ; x( 􏼁 × π(θ, λ)

􏽒
∞
0 􏽒
∞
0 L θ, λ; x( 􏼁 × π(θ, λ)dθdλ

∝ θm+a1− 1λa2− 1
􏽙

m

i�1
x
β
i

⎡⎣ ⎤⎦

· exp − b1θ − b2λ􏼈 􏼉exp −
θ

λ + 1
􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭.

(24)

Under SE loss function, the Bayesian estimator of any
function of θ and λ, say φ(θ, λ), is given by

􏽢φBS(θ, λ) � Eθ,λ| x[φ(θ, λ)]

�
􏽒
∞
0 􏽒
∞
0 φ(θ, λ)L θ, λ; x( 􏼁 × π(θ, λ)

􏽒
∞
0 􏽒
∞
0 L θ, λ; x( 􏼁 × π(θ, λ)dθdλ

.

(25)

Under LINEX loss function, we have

􏽢φBL(θ, λ) � Eθ,λ| x e
− cφ(θ,λ)

􏽨 􏽩

�
􏽒
∞
0 􏽒
∞
0 e

− cφ(θ,λ)
L θ, λ; x( 􏼁 × π(θ, λ)

􏽒
∞
0 􏽒
∞
0 L θ, λ; x( 􏼁 × π(θ, λ)dθ dλ

,

(26)

where c≠ 0. It is clear that the ratio of two integrals in (25)
and (26) cannot be obtained in a closed form. 'us, it is
necessary to use suitable numerical methods to approximate
these integrals. So, in this case, we apply MCMC technique
to obtain the Bayes estimates of θ, λ, r(t), h(t), and CV and
corresponding credible intervals (CRIs).

3.1. Markov Chain Monte Carlo Technique. MCMC tech-
nique is one of the most general technique for an estimation,
which is provided here to compute the Bayes estimates and
the corresponding CRIs for θ, λ, r(t), h(t), and CV. It is
known that there are several procedures of MCMC tech-
nique available in which samples are generated from the
conditional posterior densities. One of the simplest MCMC
procedures is the Gibbs sampling procedure, which was
proposed by Geman and Geman [22]. Another procedure is
considered the Metropolis–Hastings (M-H) algorithm,
which was proposed by Metropolis et al. [23] and later
extended by Hastings [24]. A more general procedure of
MCMC procedures which we will use is considered the M-H
within Gibbs sampling. Gibbs sampler is required to de-
compose the joint posterior distribution into full conditional
distributions for each parameter and then sample from
them. From (26), the posterior conditional density function
of θ given λ can be written as

π∗1 θ | λ, x( 􏼁∝ θm+a1− 1 exp
− θ
λ + 1

􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦ − b1θ
⎧⎨

⎩

⎫⎬

⎭. (27)

Similarly,
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π∗2 λ | θ, x( 􏼁∝ λa2− 1 exp − b2λ􏼈 􏼉 􏽙

m

i�1
x
β
i

⎡⎣ ⎤⎦exp −
θ

λ + 1
􏽘

m

i�1
Rix

λ+1
i + 􏽘

J

i�1
x
λ+1
i + n − m − 􏽘

J

i�1
Ri

⎛⎝ ⎞⎠x
λ+1
m

⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎨

⎩

⎫⎬

⎭. (28)

Moreover, the conditional posterior density of θ given in
(27) is gamma density with shape parameter (m + a1) and
scale parameter (1/λ + 1[􏽐

m
i�1 Rix

λ+1
i + 􏽐

J
i�1 xλ+1

i +

(n − m − 􏽐
J
i�1 Ri)x

λ+1
m ] − b1). 'us, by implementing any

gamma generating routine, samples of θ can be simply
generated. In addition, the conditional posterior density of λ
cannot be reduced analytically to well-known distribution.
So, according to Tierney [25], M-H algorithm within Gibbs
sampling with normal proposal distribution is used to
conduct the MCMC methodology. 'e hybrid M-H algo-
rithm and Gibbs sampler works as follows:

(1) Start with an (θ(0) � 􏽢θ, λ(0) � 􏽢λ), and set k � 1.
(2) Generate θ(k) from gamma distribution

π∗1(θ | λ(k− 1), x).
(3) Using M-H algorithm, generate λ(k) from

π∗2(λ(k− 1) | θ(k), x) with the N(λ(j− 1),Var(􏽢λ)) pro-
posal distribution, where Var(􏽢λ) is from a variance-
covariance matrix.

(a) Generate λ∗ from N(λ(j− 1),Var(􏽢λ)).
(b) Evaluate the acceptance probability

ψλ � min 1,
π∗2 λ∗|θ(k)

, x􏼐 􏼑

π∗2 λ(j− 1)
|θ(k)

, x􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦. (29)

(c) Generate a ρ1 from a uniform (0, 1) distribution.
(d) If ρ1 <ψλ, accept the proposal and set λ(k) � λ∗;

else, set λ(k) � λ(k− 1).

(4) Compute r(t), h(t), and CV as

r
(k)

(t) � exp −
θ(k)

λ(k)
+ 1

t
λ(k)+1

􏼨 􏼩,

h(k)
(t) � θ(k)tλ

(k)

,

CV(k)
� Q λ(k)

􏼐 􏼑.

(30)

(5) Set k � k + 1.
(6) Reiterate Steps (3–5) N times.
(7) Under SE and LINEX loss functions, the Bayes es-

timate of ζ (where ζ � α, β, δ, λ, r(t), h(t), and CV)
can be obtained by

􏽢ζBS �
1

N − M
􏽘

N

k�M+1
ζ(k)

,

􏽢ζBL �
− 1
c
log

1
N − M

􏽘

N

k�M+1
e

− cζ(k)

⎛⎝ ⎞⎠, c≠ 0,

(31)

where M is the burn-in period and ζ(k)
� θ(k), λ(k),

r(k)(t), h(k)(t), and CV(k).

(8) To compute the CRIs of ζ, order
ζM+1

, ζM+2
, . . . , ζN

􏽮 􏽯 as ζ[1]
, ζ[2]

, . . . , ζ[N− M]
􏽮 􏽯.

'en, the (1 − c)100% symmetric CRIs of ζ is

ζ(N− M)(c/2), ζ(N− M)(1− c/2)􏽨 􏽩. (32)

4. Simulation Study

Monte Carlo simulations were implemented utilizing 1000
AT2PC samples for each simulation to compare the esti-
mators of parameters θ and λ as well as some lifetime pa-
rameters r(t), h(t), and CV discussed in the preceding
sections. By using Mathematica ver. 12, all computations
were conducted. We conducted a simulation study using
different combinations of T, n, and m and different censored
scheme R. We used the algorithm proposed by Ng et al. [6]
to simulate an AT2PC sample from the PHFD with pa-
rameters (θ, λ) � (2, 1.5). 'e true values of r(t), h(t), and
CV at time t � 0.4 are evaluated to be 0.9222, 0.506, and
0.4279, respectively. 'e performance of estimators is
evaluated in terms of mean square error (MSE), which is
computed as MSE � 1/N 􏽐

N
k�1 (􏽢ϕ(k)

i − ϕi)
2, where

N � 10000, i � 1, 2, . . . , 5, ϕ1 � θ, ϕ2 � λ, ϕ3 � r(t),
ϕ4 � h(t), and ϕ5 � CV for the point estimates, also average
lengths (ALs) and coverage probability (CPs), which are
computed as the number of CIs that covered the true values
divided by 1000, for interval estimates. Bayes estimates and
the CRIs are computed based on (N � 12000) MCMC
samples and discard the first values (M � 2000) as “burn-
in.” In addition, we assume the informative gamma priors
for θ and λ, that is, when the hyperparameters are ai � 1 and
bi � 2, i � 1, 2. Moreover, 95% CRIs were computed for each
simulated sample. In our study, we consider two different
values of T � 3, 5 and the following censoring schemes (CS):

(i) I: R1 � n − m, Ri � 0 for i≠ 1
(ii) II: R(m+1)/2 � n − m, Ri � 0 for i≠ (m + 1)/2 if m

odd; Rm/2 � n − m, Ri � 0 for i≠m/2 if m even
(iii) III: Rm � n − m, Ri � 0 for i≠m

'e results of MSE, ALs, and CPs of estimates are shown
in Tables 1–5.

5. Application of COVID-19 Data

In this section, for illustrative purposes, a real-life data for
the coronavirus is presented to inspect the inference pro-
cedures discussed in the previous sections. We consider the
set of real-life data, which is reported by Almongy et al. [26].
'is data represents a COVID-19 mortality rate data that
belongs to Italy of 59 days, which is recorded from 27
February to 27 April 2020. 'e data are as follows:
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4.571 7.201 3.606 8.479 11.410 8.961 10.919 10.908 6.503 18.474
11.010 17.337 16.561 13.226 15.137 8.697 15.787 13.333 11.822 14.242
11.273 14.330 16.046 11.950 10.282 11.775 10.138 9.037 12.396 10.644
8.646 8.905 8.906 7.407 7.445 7.214 6.194 4.640 5.452 5.073
4.416 4.859 4.408 4.639 3.148 4.040 4.253 4.011 3.564 3.827
3.134 2.780 2.881 3.341 2.686 2.814 2.508 2.450 1.518

. (33)

For the goodness of fit test, we compute the Kolmo-
gorov–Smirnov (K–S) distances between the empirical
distribution and the fitted distribution functions. 'e K–S is
0.09254 and the associated p-value is 0.73124. 'erefore,

according to the p-value, we can say that the PHFD fits quite
well to the above data. Empirically, Q − Q and P − P plots
are shown in Figure 4, which clearly show that the PHFD fits
the data very well.

Table 1: MSE, ALs, and CPs of estimates for the parameter θ.

(T, n, m) CS MLE
Bayesian MLE Bayesian

SE
LINEX ACIs CRIs

c � − 0.5 c � 0.5 ALs CPs ALs CPs

(3, 30, 20)

I 0.0785 0.0654 0.0663 0.0632 2.5355 0.921 2.1011 0.945
II 0.0813 0.0764 0.0786 0.0746 2.6472 0.932 2.3125 0.938
III 0.0856 0.0827 0.0835 0.0778 2.8141 0.926 2.5212 0.941

(3, 50, 30)

I 0.0723 0.0614 0.0625 0.0567 2.1457 0.934 1.7855 0.951
II 0.0756 0.0661 0.0675 0.0594 2.3655 0.957 1.9567 0.961
III 0.0786 0.0723 0.0736 0.0657 2.5471 0.935 2.0248 0.947

(3, 75, 50)

I 0.0663 0.0526 0.0539 0.0489 1.6899 0.948 1.4797 0.953
II 0.0689 0.0578 0.0586 0.0525 1.7436 0.943 1.5963 0.954
III 0.0711 0.0628 0.0634 0.0579 1.8654 0.949 1.6387 0.953

(5, 30, 20)

I 0.0896 0.0817 0.0824 0.0756 2.8992 0.938 2.5470 0.944
II 0.0913 0.0863 0.0874 0.0799 2.9245 0.941 2.6894 0.948
III 0.0934 0.0897 0.0905 0.0846 2.9652 0.949 2.7333 0.953

(5, 50, 30)

I 0.0846 0.0798 0.0803 0.0713 2.5634 0.941 1.9999 0.946
II 0.0884 0.0865 0.0869 0.0754 2.6391 0.951 2.1368 0.963
III 0.0929 0.0914 0.0921 0.0815 2.7452 0.949 2.4786 0.958

(5, 75, 50)

I 0.0735 0.0718 0.0726 0.0633 1.8947 0.951 1.5648 0.956
II 0.0776 0.0752 0.0764 0.0685 1.9544 0.949 1.7865 0.974
III 0.0819 0.0781 0.0796 0.0716 2.1345 0.947 1.9845 0.959

Table 2: MSE, ALs, and CPs of estimates for the parameter λ.

(T, n, m) CS MLE
Bayesian MLE Bayesian

SE
LINEX ACIs CRIs

c � − 0.5 c � 0.5 ALs CPs ALs CPs

(3, 30, 20)

I 0.0456 0.0413 0.0426 0.0396 3.1453 0.939 2.7969 0.941
II 0.0477 0.0438 0.0446 0.0416 3.3451 0.948 2.9455 0.958
III 0.0489 0.0458 0.0466 0.0425 3.5660 0.936 3.1555 0.947

(3, 50, 30)

I 0.0412 0.0375 0.0382 0.0336 2.7994 0.947 2.4755 0.951
II 0.0439 0.0399 0.0404 0.0361 2.9456 0.936 2.6363 0.948
III 0.0458 0.0427 0.0436 0.0399 3.1887 0.929 2.8623 0.958

(3, 75, 50)

I 0.0355 0.0314 0.0325 0.0288 2.2365 0.936 1.9945 0.947
II 0.0376 0.0356 0.0361 0.0329 2.4569 0.951 2.1479 0.956
III 0.0407 0.0387 0.0396 0.0354 2.7695 0.958 2.3694 0.961

(5, 30, 20)

I 0.0661 0.0639 0.0648 0.0521 3.5891 0.934 3.1114 0.965
II 0.0692 0.0665 0.0674 0.0567 3.7561 0.939 3.3654 0.947
III 0.0747 0.0723 0.0738 0.0639 3.8956 0.941 3.5666 0.951

(5, 50, 30)

I 0.0559 0.0536 0.0544 0.0457 3.2548 0.918 2.9457 0.939
II 0.0593 0.0576 0.0584 0.0483 3.4568 0.925 3.1452 0.947
III 0.0665 0.0627 0.0637 0.0549 3.7655 0.928 3.4690 0.947

(5, 75, 50)

I 0.0422 0.0409 0.0399 0.0326 2.7966 0.938 2.2310 0.947
II 0.0478 0.0453 0.0468 0.0356 2.9145 0.958 2.4777 0.961
III 0.0511 0.0478 0.0489 0.0376 3.1321 0.949 2.5562 0.955
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Under the previous data, we use the algorithm proposed
by Ng et al. [6] to generate an AT2PC sample with m � 30,
T � 5, and R � {3, 0, 2, 0, 1, 0, 2, 0, 0, 3, 0, 3, 0, 1, 2, 0, 0, 3, 0, 0,

2, 1, 0, 3, 0, 1, 0, 2, 0, 0}. 'us, the resulting AT2PC sample is
as follows:

1.518 2.450 2.508 2.686 2.780 2.814 2.881 3.148 3.341 3.564

3.827 4.040 4.253 4.408 4.416 4.571 5.073 5.452 7.201 7.214

7.445 8.479 10.139 10.282 10.908 11.273 11.822 11.950 14.242 16.046

. (34)

Based on the previous sample of AT2PC, the MLEs and
ACIs for θ, λ, r(0.4), h(0.4), and CV are determined to be as

in Table 6. Moreover, to compute the Bayesian estimates, the
prior distributions of the parameters need to be specified.

Table 3: MSE, ALs and CPs of estimates for r(t).

(T, n, m) CS MLE
Bayesian MLE Bayesian

SE
LINEX ACIs CRIs

c � − 0.5 c � 0.5 ALs CPs ALs CPs

(3, 30, 20)

I 0.0256 0.0217 0.0223 0.0195 0.3546 0.942 0.2865 0.951
II 0.0273 0.0246 0.0257 0.0219 0.3855 0.935 0.3159 0.947
III 0.0315 0.0284 0.0296 0.0256 0.4163 0.932 0.3674 0.949

(3, 50, 30)

I 0.0212 0.0199 0.0209 0.0164 0.3144 0.925 0.2569 0.938
II 0.0256 0.0228 0.0235 0.0189 0.3465 0.912 0.2932 0.941
III 0.0291 0.0264 0.0276 0.0227 0.3774 0.925 0.3256 0.948

(3, 75, 50)

I 0.0156 0.0138 0.0149 0.0115 0.2761 0.939 0.2234 0.957
II 0.0194 0.0166 0.0176 0.0141 0.2998 0.947 0.2611 0.966
III 0.0235 0.0196 0.0211 0.0187 0.3266 0.939 0.2998 0.954

(5, 30, 20)

I 0.0331 0.0294 0.0315 0.0245 0.4154 0.939 0.3722 0.959
II 0.0366 0.0348 0.0359 0.0291 0.4465 0.936 0.4100 0.947
III 0.0412 0.0380 0.0398 0.0342 0.4867 0.928 0.4568 0.941

(5, 50, 30)

I 0.0273 0.0234 0.0246 0.0202 0.3567 0.954 0.2994 0.955
II 0.0344 0.0317 0.0325 0.0269 0.3769 0.947 0.3325 0.961
III 0.0395 0.0369 0.0378 0.0312 0.3966 0.939 0.3678 0.949

(5, 75, 50)

I 0.0213 0.0187 0.0199 0.0169 0.2999 0.941 0.2413 0.952
II 0.0269 0.0245 0.0257 0.0188 0.3255 0.939 0.2864 0.957
III 0.0298 0.0267 0.0279 0.0215 0.3710 0.940 0.3387 0.949

Table 4: MSE, ALs, and CPs of estimates for h(t).

(T, n, m) CS MLE
Bayesian MLE Bayesian

SE
LINEX ACIs CRIs

c � − 0.5 c � 0.5 ALs CPs ALs CPs

(3, 30, 20)

I 0.0082 0.0077 0.0079 0.0072 0.6235 0.939 0.5494 0.946
II 0.0085 0.0081 0.0082 0.0074 0.6641 0.950 0.5772 0.951
III 0.0087 0.0084 0.0085 0.0077 0.6994 0.941 0.6156 0.948

(3, 50, 30)

I 0.0076 0.0072 0.0073 0.0066 0.5569 0.939 0.4756 0.955
II 0.0078 0.0075 0.0076 0.0071 0.5836 0.954 0.5199 0.961
III 0.0080 0.0077 0.0079 0.0074 0.6123 0.948 0.5644 0.953

(3, 75, 50)

I 0.0065 0.0062 0.0063 0.0058 0.4863 0.953 0.3956 0.948
II 0.0069 0.0066 0.0067 0.0062 0.5236 0.946 0.4387 0.952
III 0.0075 0.0072 0.0073 0.0067 0.5722 0.954 0.4867 0.956

(5, 30, 20)

I 0.0088 0.0082 0.0083 0.0077 0.7499 0.949 0.6722 0.961
II 0.0091 0.0086 0.0087 0.0081 0.7935 0.960 0.7155 0.965
III 0.0095 0.0091 0.0093 0.0085 0.8321 0.954 0.7601 0.949

(5, 50, 30)

I 0.0081 0.0077 0.0079 0.0071 0.6535 0.938 0.5767 0.945
II 0.0085 0.0082 0.0083 0.0074 0.6944 0.951 0.6258 0.953
III 0.0087 0.0085 0.0086 0.0079 0.7312 0.949 0.6699 0.956

(5, 75, 50)

I 0.0074 0.0069 0.0071 0.0065 0.5469 0.951 0.4777 0.961
II 0.0079 0.0075 0.0077 0.0071 0.5861 0.954 0.5231 0.948
III 0.0083 0.0079 0.0081 0.0076 0.6324 0.949 0.5697 0.952

8 Computational Intelligence and Neuroscience



Table 5: MSE, ALs, and CPs of estimates for CV.

(T, n, m) CS MLE
Bayesian MLE Bayesian

SE
LINEX ACIs CRIs

c � − 0.5 c � 0.5 ALs CPs ALs CPs

(3, 30, 20)

I 0.0102 0.0092 0.0099 0.0087 1.0625 0.949 0.9298 0.951
II 0.0135 0.0118 0.0127 0.0091 1.1542 0.939 0.9874 0.952
III 0.0168 0.0143 0.00159 0.0098 1.2231 0.938 1.0561 0.948

(3, 50, 30)

I 0.0091 0.0087 0.0088 0.0075 0.9187 0.945 0.8255 0.954
II 0.0096 0.0093 0.0094 0.0078 0.9763 0.952 0.8796 0.952
III 0.0099 0.0096 0.0097 0.0082 1.1875 0.950 0.9555 0.961

(3, 75, 50)

I 0.0074 0.0071 0.0072 0.0067 0.8599 0.947 0.7834 0.948
II 0.0079 0.0077 0.0078 0.0072 0.9475 0.939 0.8566 0.950
III 0.0084 0.0081 0.0083 0.0075 1.0122 0.945 0.9323 0.947

(5, 30, 20)

I 0.0156 0.0132 0.0146 0.0099 1.3547 0.929 1.0984 0.939
II 0.0191 0.0179 0.0185 0.0118 1.5891 0.951 1.2354 0.958
III 0.0223 0.0200 0.0217 0.0157 1.6932 0.948 1.4199 0.958

(5, 50, 30)

I 0.0111 0.091 0.0099 0.0085 1.1547 0.939 0.9277 0.947
II 0.0163 0.0137 0.0148 0.0093 1.2369 0.945 1.1352 0.961
III 0.0199 0.0175 0.0186 0.0103 1.4251 0.952 1.2874 0.948

(5, 75, 50)

I 0.0086 0.0083 0.0084 0.0077 0.9584 0.949 0.8756 0.951
II 0.0091 0.0088 0.0089 0.0081 0.9999 0.952 0.9274 0.962
III 0.0097 0.0094 0.0096 0.0085 1.1023 0.948 0.9876 0.955
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Figure 4: Graphical fitting of the PHFD.
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Since we have no prior information, we assume that non-
informative gamma priors for θ and λ, that is, when the
hyperparameters are ai � 0.0001 and bi � 0.0001, i � 1, 2.
Under MCMC technique, the posterior analysis was done
across combining M-H algorithm within Gibbs sampler. To
conduct the MCMC algorithm which was described in
Section 3.1, the initial values of the parameters θ and λ were
taken to be their MLEs. In addition, 12000 MCMC samples
were generated. To avoid the effect of the initial values
(starting point), we expunge the first 2000 samples as “burn-
in.” Table 6 shows the Bayesian estimates as well as 95% CRIs
for θ, λ, r(0.4), h(0.4), and CV.

6. Conclusion

'e purpose of this paper is to develop different methods to
estimate the unknown quantities θ, λ, r(t), h(t), and CV of
the PHFD using AT2PC scheme, which is introduced by Ng
et al. [6]. 'e MLEs as well as ACIs using asymptotic dis-
tributions are obtained. Furthermore, to obtain the CIs of
the reliability characteristics and coefficient of variation, we
used delta method. It is clear that, after studying the Bayesian
estimates, the posterior distribution equations of the un-
known quantities are complicated and so hard to reduce
analytically to well-known forms. For this reason, we have
applied MCMC technique to compute the Bayes estimators.
'e Bayes estimates have been computed under both SE and
LINEX loss functions. For illustrative purpose, real data set
of COVID-19 mortality rates is considered. To check and
compare the performance of the proposed methods, a
simulation study was implemented with different sample
sizes (T, n, m) and different CSs (I, II, III). According to the
results, we note the following:

(1) As expected, from Tables 1–5, as sample sizes (n, m)

increases, the MSEs and ALs decrease.
(2) FromTables 1–5, it is clear that theMSEs and ALs for

all estimates at time T � 3 are smaller than those at
time T � 5.

(3) For fixed sample sizes and observed failures, the first
scheme I is the best scheme in the sense of having
smaller MSEs and ALs.

(4) Bayes’ estimates have the smallest MSEs and ALs for
all estimates. Hence, Bayes’ estimates perform better
than the MLEs.

(5) Bayes’ estimate under LINEX with c � 0.5 provides
better estimates for all estimates because of having
the smallest MSEs.

(6) Bayes’ estimates under LINEX for the choice c � 0.5
perform better than their estimates for the choice c �

− 0.5 in the sense of having smaller MSEs.
(7) Bayes’ estimates under SE perform better than their

estimates under LINEX with c � − 0.5 in the sense of
having smaller MSEs.

(8) From Tables 1–5, we observe that as the time T

increases, the MSEs and ALs associated with all
estimates increase.

(9) Both MLE and Bayesian methods have very close
estimates and their ACIs have quite high CPs
(around 0.95). Also, the Bayesian CRIs have the
highest CPs.
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