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ABSTRACT

Endothelial cells (ECs),  forming a semi-permeable barrier between the interior space of blood vessels and 
underlying tissues, control such diverse processes as vascular tone, homeostasis, adhesion of platelets, and 
leukocytes to the vascular wall and permeability of vascular wall for cells and fluids. Mechanisms which 
govern the highly clinically relevant process of increased EC permeability are under intense investigation. It 
is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hall mark of 
inflammatory diseases such as acute lung injury and its severe form, acute respiratory distress syndrome. Little is 
known about processes which determine the endothelial barrier enhancement or protection against permeability 
increase. It is now well accepted that extracellular purines and pyrimidines are promising and physiologically 
relevant barrier-protective agents and their effects are mediated by interaction with cell surface P2Y receptors 
which belong to the superfamily of G-protein-coupled receptors. The therapeutic potential of P2Y receptors 
is rapidly expanding field in pharmacology and some selective agonists became recently available. Here, we 
present an overview of recently identified P2Y receptor agonists that enhance the pulmonary endothelial barrier 
and inhibit and/or reverse endothelial barrier disruption. 
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INTRODUCTION

The vascular endothelium is a semi-selective diffusion 
barrier between the plasma and interstitial fluid and is 
critical for normal vessel wall homeostasis. The endothelial 
permeability is regulated by the balance between 
centripetal and centrifugal intracellular forces, provided 
by the contractile machinery and the elements opposing 
contraction, respectively. The latter include tethering 
complexes, responsible for cell–cell and cell–matrix 
contacts, and systems granting cell rigidity and preventing 

cell collapse, such as actin filaments, microtubules, 
and intermediate filaments.[1] Some naturally occurring 
substances such as sphingosine-1-phosphate[2] and the 
second messenger cAMP[3] are known to enhance the 
endothelial barrier. Recently, much attention has been 
given to the therapeutic potential of  purinergic agonists 
and antagonists for the treatment of  cardiovascular and 
pulmonary diseases.[4,5] Purines and pyrimidines function 
as signaling molecules (receptor legends), which are 
released extracellularly from different sources in the body 
and subsequently reach the target organs.[6] Numerous 
published data obtained in in vitro and in vivo models 
suggest that they could be physiologically relevant factors 
protecting the endothelial barrier.[7,8] ATP, for example, 
can be released into the bloodstream from platelets[9] and 
red blood cells,[10,11] and its concentrations may temporarily 
exceed 100  µM.[12] Furthermore, the endothelium is a 
source of  ATP locally within the vascular bed and ATP 
is released constitutively across the apical membrane of  
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the endothelial cells (EC).[13] Enhanced release of  ATP 
is observed from the EC in response to various stimuli, 
including hypotonic challenge,[13] calcium agonists,[13] shear 
stress,[14] thrombin,[14] ATP itself[15] and bacterial endotoxin, 
lipopolysaccharide (LPS).[16] Extracellular ATP may signal 
directly[17,18] and this signaling is mediated, in part, by P2Y 
purinergic receptors.[19,20] 

Purine and pyrimidine receptors (simply called 
purinoceptors) are divided into two classes: P1 or adenosine 
receptors and P2, which recognize primarily extracellular 
ATP, ADP, UTP, and UDP.[6,21] The P2 receptors are 
further subdivided into two subclasses. P2X receptors are 
extracellular ATP-gated calcium-permeable nonselective 
cation channels that are modulated by extracellular Ca2+, 
Na+, Mg2+, Zn2+, and Cu2+. Subtypes are defined according 
to the molecular structure of  cloned mammalian P2 
receptors, discriminated by different numerical subscripts 
(P2Xn or P2Yn). This forms the basis of  a system 
of  nomenclature that will replace the earlier subtype 
nomenclature (including P2X, P2Y, P2U, P2T, and P2Z 
receptors) as correlations between cloned and endogenous 
receptors are established.[22] Several studies demonstrated 
that P2X receptors are abundant in EC.[23–25] However, the 
P2X specific agonist, AMP-CCP, was completely inactive 
in human pulmonary artery endothelial cell (HPAEC)[26] 
and human lung microvascular endothelial cell (HLMVEC) 
monolayers (our unpublished data) suggesting that P2X 
receptors are unlikely to be involved in ATP-mediated 
pulmonary EC barrier enhancement/protection. 

P2Y receptors are members of  the G-protein-coupled 
receptors (GPCRs) superfamily, which consists of  seven 
transmembrane domains, three extracellular and three 
intracellular loops, extracellular N- and intracellular 
C-termini. The receptors are coupled to their immediate 
effectors, heterotrimeric G-proteins, and function as 
guanidine exchange factors (GEFs). In the inactive state, 
heterotrimeric G-proteins are presented in the cell as 
αβγ trimers. Gα-subunit is dissociated from Gβγ dimer 
upon GTP binding and, as a result, two functionally-
active effectors (Gα and Gβγ) emerge. Signaling cascades 
dependent upon Gα and Gβγ activation by P2Y receptors 
will be discussed further in the text. In mammalian cells 
of  different origin, the expression of  39 distinct G-protein 
subunits has been documented: 21 α-subunits, 6 β-subunits, 
and 12 γ-subunits. These numbers suggest a remarkable 
variety of  possible heterotrimer combinations. However, 
not all of  them can be realized because of, for example, a 
tissue-specificity of  some subunits.[27] 

P2Y purinoceptors are activated by extracellular ATP/

ADP/UTP/UDP-glucose/β-NAD. To date, eight P2Y 
receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, 
P2Y13, and P2Y14) were identified in mammalian cells.
[28,29] Expressions of  P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and 
P2Y14 purinoceptors had been shown in the endothelia or 
cultured EC.[23,29-32] Heterotrimeric G-proteins activated by 
P2Y receptors in the EC belong to four functionally distinct 
subfamilies: Gs, Gq/11, Gi, and G12/13. Activations of  
these particular G-proteins determine a cell response upon 
agonist stimulations. Here, we have focused on the effects 
of  purine/pyrimidine-induced P2Y-mediated signaling on 
the endothelial integrity and respective cascades resulting 
an enhancement/loss of  barrier function will be discussed.

SIGNALING PATHWAYS ACTIVATED UPON P2Y 
RECEPTOR STIMULATION

Endothelial integrity as well as endothelial barrier function 
is determined by cell–cell and cell–matrix contacts 
physically and functionally linking to the EC cytoskeleton. 
Purinoceptor-mediated signaling pathways affecting 
endothelial barrier function initiate dynamic changes 
in cytoskeleton organization, regulation of  proteins 
linking cytoskeletal structures to adherens junctions (AJ), 
tight junctions (TJ), and focal adhesion (FA) contacts, 
protein components of  AJ, TJ, and FA. AJ and TJ play 
an essential role in the endothelial cell–cell contacts. 
Vascular endothelial cadherin (VE-cadherin) is a major 
component of  AJ, transmembrane protein involved in 
homotypic contacts with adjacent cells. Binding between 
extracellular domains of  VE-cadherin molecules is Ca2+-
dependent, and a removal of  Ca2+-ions from cell culture 
medium lead to a quick disassembly of  AJ and a loss 
of  the EC monolayer integrity.[33,34] The cytoplasmic 
domain of  VE-cadherin is linked to the cortical actin 
via β/α-catenins stabilizing AJ as such providing a basis 
for dynamic reorganization of  cell–cell contacts. The 
EC TJ consists of  transmembrane proteins claudins, 
occludins, and junctional adhesion molecules (JAM) 
linked to cytoplasmic proteins such as zonula occludens. 
Actin-mediated disassembly/stabilization of  the cell–cell 
contacts can be determined by phosphorylation levels 
of  actin-associated 20 kDa regulatory myosin light chain 
(MLC20). The phosphorylation/dephosphorylation status 
of  MLC20 plays an important role in actin cytoskeleton 
organization in the EC and therefore critical for endothelial 
barrier function.[35,36] Phosphorylation of  MLC20 at its 
Thr-18/Ser-19 residues by Ca2+/calmodulin-dependent 
MLC kinase (MLCK) or Rho kinase (ROCK) leads to 
actomyosin contraction, centripetal force-driven AJ and 
results in a loss of  the EC monolayer integrity, intercellular 
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gap formation, and hyperpermeability.[37-39] By contrast, the 
pathways leading to dephosphorylation of  MLC20 by MLC 
phosphatase (MLCP) or Ser/Thr protein phosphatase 1 
(PP1), result in the formation of  a thick cortical actin ring, 
cell relaxation and spreading. Highly-specific interaction 
between MLCP with its protein substrate, MLC20, is 
determined by myosin phosphatase targeting regulatory 
subunit of  PP1 (MYPT1), the regulatory subunit of  PP1. 
Moreover, an interaction of  MLCP and MLC20 can be 
abolished, if  MYPT1 is phosphorylated by ROCK at 
Thr-696/Thr-850.[40-42] This inhibitory modification of  
MYPT1 prevents MLCP-dependent dephosphorylation of  
MLC20 and therefore has a negative effect on the barrier 
function amplifying F-actin stress fiber formation. As 
generally considered, an activation of  small GTPase RhoA 
is crucial for the endothelial hyperpermeability. Expression 
of  constitutively active RhoA in the EC is sufficient to 
induce the monolayer integrity loss.[43] Furthermore, 
various edemagenic factors (such as thrombin, vascular 
endothelial growth factor (VEGF), transforming growth 
factor β (TGF-β), lysophosphatidic acid (LPA), microtubule 
destabilizers (nocodazole, 2-methoxyestradiol), etc.) were 
shown to compromise the endothelial barrier by a RhoA-
dependent mechanism[43-46] and an inhibition of  either 
RhoA or its effector, ROCK, could significantly protect 
the barrier function of  the challenged EC.[44,46] 

In the EC, agonist-mediated activation of  P2Y receptors 
may enhance or decrease a barrier function of  the 
endothelium [Figure 1]. Stimulated P2Y11 receptor 
promotes Gs protein activation,[47-50] direct interaction of  
free Gαs-subunit with plasma membrane adenylate cyclase 
(AC), and elevation of  cAMP levels in targeted cells.[51] 
Numerous publications indicate that the second messenger 
cAMP has a critical role in a positive modulation of  the 
barrier function.[52-57] The cAMP-dependent activation of  
protein kinase A (PKA) has indispensible consequences as 
a potent positive regulator of  endothelial integrity. Recently 
published data suggest that PKA may prevent RhoA 
activation by phosphorylation of  RhoGDI at Ser-174[58] and 
stimulate MLCP via phosphorylation of  MYPT1 at Ser-
695,[39] shifting the EC to the relaxed shape by prevention 
of  MLC20 phosphorylation and stress fibers formation. 
Besides, a generation of  cAMP may lead to alternative, 
PKA-independent activation of  Exchange Protein directly 
Activated by cAMP (Epac1) and its down-stream effectors, 
Rap1 and Rac1.[52,53,55-57,59,60] 

Purinoceptor P2Y14 is involved in heterotrimeric Gi-
protein-mediated signaling, which results in an interaction 
of  free Gαi-subunit with AC and inhibition of  cAMP 
synthesis.[38,61] Besides, Gi-protein-derived Gβγ-dimers 

initiate PI3-kinase (PI3-K) or phospholipase Cβ (PLCβ) 
signaling pathways.[28,62,63] PI3-K activates PKB/Akt[64] and 
ERK1/2.[65] PLC activation results in elevation of  inositol 
1,4,5-triphosphate (IP3) and diacylglycerol (DAG) levels and 
may follow by [Ca2+]i influx due to stimulation of  plasma 
membrane and endoplasmic reticulum Ca2+-channels.[63] 
Elevation of  [Ca2+]i and DAG levels can induce activation 
of  several PKC isoforms.[66] In case of  the regulation of  
RhoA/ROCK signaling, the PKCα isoform functions 
as a PKA antagonist, since it may activate this pathway 
by direct phosphorylation of  the upstream effectors, 
RhoGDI and RhoGEF,[67] increasing, therefore, MLC20 
phosphorylation. PKCα may also regulate AJ disassembly 
via phosphorylation of  p120 and β-catenin.[68] P1-
purinoceptor-mediated activation of  Gαi subunits has also 
been shown to promote an upregulation of  p38 MAPK[65] 
and may possibly activate JNK by ROCK-dependent 
phosphorylation[69]; however, these pathways were not 
described for P2Y-mediated Gi-signaling. The p38 MAPK 
can initiate stress fiber formation via phosphorylation of  
actin-capping protein hsp27 and its further dissociation 
from actin filaments.[8,70] Another important event related to 
Gi protein-mediated signaling is an activation of  Src protein 
tyrosine kinase (PTK).[71,72] In the EC, Src family PTK may 
modulate the barrier function by tyrosine phosphorylation 
of  major protein components of  AJ and TJ, although the 
effect of  such phosphorylation on endothelial permeability 
still needs to be clarified.[73-75]	

Gq/11-protein-mediated signaling is activated by agonist 
stimulation of  P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 

Figure 1: Schematic representation of the P2Y-receptor-activated 
signaling network in ECs. Potential endothelial barrier-protective 
and barrier-disruptive pathways are shown by red and black arrows, 
respectively (see detailed explanation in the text)
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receptors.[47,48,76-81] Free Gαq or Gα11 interact with 
PLCβ and enhance synthesis of  IP3 and DAG.[63] This 
essentially results in [Ca2+]i influx and activation of  PKC 
isoforms.[50] Extensive studies performed in the EC have 
demonstrated Ca2+-dependent activation of  endothelial 
nitric oxide (NO) synthase (eNOS) (via direct interaction 
with Ca2+/calmodulin and/or via phosphorylation by 
Ca2+/calmodulin-dependent protein kinase II (CaMKII)).
[82,83] NO stimulates guanylate cyclase (GC), resulting in an 
elevation of  second messenger cGMP levels and cGMP-
dependent protein kinase G (PKG) activation.[84] This 
pathway serves as a negative feedback control of  Ca2+ 
influx through down-regulation of  endoplasmic reticulum 
(ER) IP3-sensitive channels and plasma membrane Ca2+-
influx channels[85,86] and increases Ca2+ uptake by ER via 
activation of  ER Ca2+ ATPases.[85] Thus, eNOS/GC/PKG 
pathway can down-regulate the barrier-compromising 
Ca2+-mediated cell signaling. In human umbilical vein EC 
(HUVEC), stimulatory phosphorylation of  eNOS at Ser-
1177 can be activated by extracellular ATP, UTP, or ADP. 
Inhibitory analysis suggested an involvement of  P2Y1, 
P2Y2, and, possibly, P2Y4 receptors in the activation of  
eNOS via [Ca2+]i increase and DAG-dependent PKCδ.[87] 
Another protein target of  activated PKG is vasodilator-
stimulated phosphoprotein (VASP), a protein regulating 
actin polymerization.[88] PKG/PKA-phosphorylated VASP 
has been detected in endothelial cell–cell junctions (TJ and 
AJ).[89,90] Although an entire role of  VASP phosphorylation 
in endothelial contraction/relaxation remains unclear, this 
modification correlates with an enhancement of  the barrier 
function in P2Y agonist-stimulated EC monolayers.[26,89] 

P2Y2 receptor can also activate Gα12-dependent pathways. 
This signaling requires an interaction of  the purinoceptor 
with αvβ3-integrin, since it can be inhibited either by αv-
integrin antisense oligonucleotides or by point mutation 
in an integrin-binding sequence of  the P2Y2 receptor.
[91] Activation of  G12 protein positively modulate Rho-
guanine nucleotide exchange factor (p115Rho-GEF) via 
its interaction with Gα12 subunit[92] or by activated PKCα 
phosphorylation.[93] This, in turn, can promote RhoA-
dependent ROCK activation and phosphorylation of  
MLC20 and MYPT1.

Elevation of  cytosolic Ca2+ in the EC is a common 
consequence of  activation of  most P2Y receptors coupled 
to Gs (via cAMP-activated Ca2+-channels), Gq/11 and 
Gi (via IP3-mediated Ca2+ release). [Ca2+]i is essential for 
activation of  eNOS and endothelium-derived release of  
vasorelaxant, NO,[94,95] however, an elevation of  cytosolic 
Ca2+ is certainly a negative factor for endothelial integrity. 
Nevertheless, in extracellular purine-activated EC, Ca2+ 

influx is a transient and its effect does not overcome the 
barrier enhancement.[26,96]

P2Y RECEPTORS EXPRESSION ANALYSIS IN 
PULMONARY ENDOTHELIUM

Earlier studies indicated that the most abundant P2 
receptor in EC is P2X4[25] and the other study indicates 
that P2X4, P2Y11, P2Y1, and P2Y2 are the most 
expressed P2 receptors in HUVEC.[23] However, in rabbit 
pulmonary artery EC, the mRNA expression analysis 
indicates that P2Y1, P2Y2, and P2Y4 receptors are 
abundantly expressed, but not P2Y6 receptors.[97] Since the 
expression pattern of  P2Y receptors in pulmonary ECs 
has not been reported earlier, we have used highly clinically 
relevant human EC to study the mRNA expression. Our 
quantitative Real-Time RT-PCR (qPCR) analysis of  P2Y 
mRNA expression identifies mRNA for P2Y1, P2Y2, 
P2Y11, P2Y12, and P2Y14 receptors in both macro 
(HPAEC) and micro (HLMVEC) vascular pulmonary EC  
[Figure 2]. Interestingly, P2Y receptors expression levels 
is quite different in these two closely related cell types of  
pulmonary vasculature. The P2Y11 receptor (coupled to 
both Gq and Gs) was highly expressed, P2Y14 receptor 
expression was moderate and the other P2Y receptors 
(P2Y1, Y12, and Y2) expression was low to very low levels 
in HPAEC. However, the mRNA expression levels P2Y 
receptors were quite different in HLMVEC compared to 
HPAEC and they all distributed quite significantly [Figure 
2]. Our results suggest that P2Y receptors signaling are 
different in these closely related cell types and detailed 
studies with receptor-specific agonists and antagonists 
are needed in order to develop P2Y receptor-based 
therapeutics.

Figure 2: Quantitative Real-Time PCR analysis of the P2Y receptors 
mRNA expression in both HPAEC and HLMVEC. The P2Y receptor 
expression was normalized with 18S ribosomal RNA
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ROLE OF P2Y RECEPTORS IN PULMONARY EC 
BARRIER ENHANCEMENT

Since multiple P2Y receptors are expressed at various levels 
on the pulmonary EC [Figure 2], it is essential to emphasize 
the P2Y receptor(s) responsible for the pulmonary 
endothelial barrier enhancement and protection against 
various insults. The possible interactions between naturally 
occurring receptor agonists and P2Y receptors expressed 
on pulmonary EC are very complex. The data regarding 
role of  purines and pyrimidines in the maintenance 
and alteration of  EC barrier are contradictory. Barrier-
protective property of  ATP has been reported.[96,98] On 
the other hand, P2Y1-receptor agonists, 2-methylthio ATP 
(2meS-ATP) and ADP decreased cell size and enhanced 
permeation of  FITC-labeled dextran through HUVEC  
monolayers.[99] ATP was found to increase paracellular 
permeability of  microvascular endothelium in frog 
microvessels.[99,100] Our studies demonstrate that ATP and 
its stable analogs significantly increase the transendothelial 
resistance (TER) in highly clinically relevant human 
pulmonary EC via P2Y receptors.[26] Recent studies 
showed that β-nicotinamide adenine dinucleotide (β-NAD), 
an important co-enzyme for cellular metabolism, is an 
important vascular mediator,[101,102] elicits cellular effects 
through activation of  P2Y1/Y11 receptors.[103,104] In 
addition to ATP, the β-NAD secreted extracellularly from 
endothelium.[105] Our recent studies demonstrated that 
extracellular β-NAD significantly enhances the pulmonary 
endothelial barrier in a dose-dependent manner via P2Y 
receptors.[80] 

SIGNIFICANCE OF SPATIAL DISTRIBUTION 
P2Y RECEPTORS IN ENDOTHELIUM AND ITS 
RELEVANCE TO THE BARRIER PROTECTION

We have shown that various P2Y receptors are expressed 

in pulmonary EC at various levels [Figure 2]. However, the 
expression levels of  these receptors on apical and basal 
side of  the pulmonary endothelium are not known. We 
speculate that extracellular purines and pyrimidines released 
from the blood cells (for example, platelets), apical side of  
EC or alveolar epithelial cells (basal side of  EC) stimulate 
P2Y receptors based on their expression pattern (apical 
or basal). In addition, a recent study indicated the hetero-
oligomerization between two metabotrofic purinoceptors, 
P2Y1 and P2Y11, co-expressed in HEK293 cells, 
promotes agonist-induced internalization of  the P2Y11 
receptor, which itself  is unable to undergo endocytosis.
[106] Moreover, the agonist profile for the co-expressed 
P2Y1 and P2Y11 was different from the agonist profile 
established for cells expressing the P2Y11 receptor only. 
The hetero-oligomerization of  the P2Y1 and P2Y11 
receptors modifies the functions of  the P2Y11 receptor 
in response to extracellular nucleotides. Further, a recent 
study indicate that the human bronchial epithelia express 
P2Y6 receptors on both apical and basolateral membranes 
and that the cAMP/PKA pathway regulates apical but 
not basolateral P2Y6 receptor-coupled ion transport.[107] 
Therefore, selective activation of  specific P2Y receptors 
responsible for barrier protection might form a basis for 
the treatment of  various lung disorders. The therapeutic 
potential of  P2Y receptors is rapidly expanding field in 
pharmacology and some selective agonists became recently 
available.

Table 1 represents both native and synthetic P2Y agonists 
and antagonists that were used to study P2Y receptors. The 
P2Y agonist or antagonist can be purchased from Sigma-
Aldrich (St. Louis, MO) or Tocris Biosciences (Ellisville, 
MO). The pharmacological armamentarium for P2Y 
receptors is limited and agonists that exhibit high-affinity 
selectivity among P2Y receptors as well as resistance to 
ectoenzyme-catalyzed metabolism are few. More studies 

Table 1: List of P2Y receptors agonist/antagonist (native and synthetic)
P2Y receptors Native/Synthetic

Agonist Antagonist
Y1 MRS 2179, MRS 2365, 2-MeSADP, ADP,

(3-NAD
MRS 2500, MRS 22279, MRS 2179

Y2 UTP, ATP, UTPyS, MRS 2768 AR-C 126313, Suramin
Y4 UTP, UTPyS ATP, Suramin
Y6 UDP, UTP, UDP(3S, PSB 0474 MRS 2578
Y11 BzATP, ATPyS, ATP, (3-NAD NF 157, NF 340
Y12 2-MeSADP (b), ADP (a), ATP (a) ARC 66096, 2-MeSAMP
Y13 2-MeSADP, ATP, 2-MeSATP MRS 2211
Y14 UDP-glucose, UDP-galactose,  

UDP-N-acetyl-glucosamine, MRS 2690
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are needed in order to characterize the agonist profile of  
expressed multiple P2Y receptors on the apical or basal side 
of  EC and the pathophysiological agonist concentrations 
that selectively activate P2Y receptors. Future detailed 
studies including expression analysis on both apical and 
basal EC membrane will help to establish conditions for 
possible P2Y receptor based therapies.

PROTECTIVE EFFECTS OF P2Y RECEPTORS 
MEDIATED SIGNALING AGAINST BACTERIAL 

TOXINS-INDUCED PULMONARY EC 
HYPERPERMEABILITY

The pulmonary EC lining the vessels are in contact with 
each other and render the vascular wall into a tight barrier. 
Any breach in the EC barrier results in leakage of  fluid 
from the lumen of  the vessels into the interstitial tissue 
and/or alveolar lumen, severely impairing gas exchange. 
Disruption of  the vascular barrier is a prominent feature 
of  acute lung injury (ALI)/acute respiratory distress 
syndrome (ARDS) syndrome and results in pulmonary 
edema formation and subsequent respiratory dysfunction 
or failure.[108-110] The barrier-compromising mechanisms of  
bacterial toxins (for example, Gram-negative endotoxin, 
LPS) revealed in in vitro models of  pulmonary endothelial 
dysfunction have been demonstrated to target the actin 
cytoskeleton inducing actin stress fiber formation and 
intercellular gaps.[54,111] An essential step of  such remodeling 
was an activation of  MLC20-specific protein kinases, 
namely, ROCK and nonmuscle MLCK.[112,113] As the result, 
mono- and di-phospho-MLC20 could be detected in LPS-
treated cultured EC and in lung tissue of  LPS-challenged 
mice. Significance of  activation of  the MLC20-kinases 
for the endothelial barrier integrity in vivo was confirmed 
in murine model of  ALI (intratracheal instillation of  
LPS). Inhibitors of  ROCK[113] and MLCK,[112] as well as 
depletion of  MLCK expression in vivo,[112] significantly 
attenuated the barrier dysfunction. These findings formed 
a basis for an application of  the endothelium-protective 
agents such as agonists of  P2Y purinoceptors. Indeed, the 
agonists stimulating heterotrimeric Gs-protein-coupled 
purinoceptors activate AC and elevate cAMP levels in the 
EC have been considered as the barrier protectors, since 
cAMP could reverse the barrier-compromising effects.
[54,80,114] However, activation of  heteromeric G-proteins 
Gq and Gi2 may also to be barrier-protective upon 
extracellular ATP stimulation.[26] Our recent studies with 
agonists of  P2Y receptors (ATP, ATPγS, and β-NAD) in 
a clinically relevant HPAEC[26,80,115] and a murine model of  
LPS-induced ALI[115] demonstrate the barrier protection. 
Despite the obvious importance of  the EC barrier, 

significant information concerning its regulation is still 
lacking. Furthermore, a paucity of  information exists 
concerning the mechanisms involved in preservation of  
barrier integrity. Therefore, novel strategies to protect the 
EC barrier could have a profound clinical impact.
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