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THE BIGGER PICTURE Machine learning methods have been practically employed for metagenomic
phenotype prediction and biomarker discovery in clinical diagnostic investigations. Deep learning methods
have also been explored as potential tools, but their practical applications are hindered by high dimension-
ality and low sample size. In this paper, we developed the unsupervised microbial embedding, grouping,
and mapping algorithm (MEGMA) to enhance the downstream tasks of disease prediction and key
biomarker recognition. Our study suggests that, through MEGMA unsupervised learning, structured multi-
channel and signal-amplified metagenomic feature maps can be constructed to enhance downstream su-
pervised tasks of disease prediction and key biomarker recognition.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Metagenomicanalysishasbeenexplored fordiseasediagnosisandbiomarkerdiscovery.Lowsamplesizes,high
dimensionality, andsparsityofmetagenomicdatachallengemetagenomic investigations.Here, anunsupervised
microbial embedding, grouping, and mapping algorithm (MEGMA) was developed to transform metagenomic
data into individualizedmultichannelmicrobiome2Drepresentationbymanifold learningandclusteringofmicro-
bial profiles (e.g., composition, abundance, hierarchy, and taxonomy). These 2D representations enable
enhanced disease prediction by establishedConvNet-basedAggMapNetmodels, outperforming the commonly
used machine learning and deep learning models in metagenomic benchmark datasets. These 2D representa-
tions combined with AggMapNet explainable module robustly identified more reliable and replicable disease-
prediction microbes (biomarkers). Employing the MEGMA-AggMapNet pipeline for biomarker identification
from5diseasedatasets,84%of the identifiedbiomarkershavebeendescribed inover74distinctworksas impor-
tant for these diseases. Moreover, the method also discovered highly consistent sets of biomarkers in cross-
cohort colorectal cancer (CRC) patients and microbial shifts in different CRC stages.
INTRODUCTION

Metagenomic analysis has been explored for non-invasive diag-

nosis and biomarker discovery.1,2 Machine learning (ML) and

deep learning (DL) methods facilitate metagenomics-based dis-

ease prediction and the discovery of consistent, replicable, and

cross-cohort microbial biomarkers.3–9 However, metagenomic
This is an open access article under the CC BY-N
data of individual clinical investigations are typical of low sample

sizes (dozens-to-hundreds of samples),3,4,10 high dimensionality

(hundreds-to-thousands of microbes),3,4,10 sparsity (sparsely

distributed across taxonomic hierarchies), and high variations

(biological and environmental).11 These problems confound sta-

tistical inference and learning outcomes to random chances and

false discoveries12 and mask the identification of genuine
Patterns 4, 100658, January 13, 2023 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Metagenomic MEGMA pipeline and ConvNet-based AggMapNet for host disease prediction and replicable biomarker identifi-

cation

(A) The unsupervisedMEGMA to embed and group the hostmicrobes, thenmap themon to a regular 2D gridmap and finally transform themetagenomic data into

the color image-like 2D microbiomeprint.

(B) The supervised ConvNet-based AggMapNet architecture for host phenotype prediction with the multichannel 2D microbiomeprints as inputs.

(legend continued on next page)
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biomarkers.12,13 DL outcomes are difficult to interpret, particu-

larly in microbiome-wide association studies.9,14 Instead of the

end-to-end DL methods, ML methods with feature selection

strategy have been practically used for metagenomic investiga-

tions of low sample sizes.3,4,15 For example, the ‘‘Meta-Singer’’

is to rank the microbial features based on the aggregation of

identified features from multiple ML models,9 while the novel

‘‘predomics’’ tool employs the genetic algorithm to find the

best number of features for simple condition models, leading

to better accuracy and interpretability than the previous state-

of-the-art (SOTA) ML models using fewer features.15 However,

microbiome data are complex, and ML methods with fewer

selected features may be limited in the representation capability

of the models and in learning complex patterns from the data.14

New interpretable DLmethods are needed for enhanced learning

and interpretability of metagenomic data to complement existing

ML and DL methods.

The widely used metagenomic ML methods include the least

absolute shrinkage and selection operator (LASSO), ensemble

tree-based random forest (RF), and support vector machines

(SVMs) in combination with various feature selection tech-

niques.3–5 They learn unordered 1D vectors of taxa or microbe

abundances. These tabular 1D vectors of high dimensionality

and sparsity are not the most appropriate data form for efficient

DL. The disease prediction capability of DL may be improved by

converting metagenomic data into phylogenetically ordered

representations based on taxa hierarchical trees.6 Hence,

appropriate metagenomic representation is important for

enhanced learning. Two convolutional neural networks

(ConvNets) Ph-CNN7 and PopPhy-CNN8,9 have been developed

with the abundances of the taxonomically ordered microbes and

2D matrix of the embedded phylogenetic tree as input data,

respectively.

Moreover, to alleviate the over-fitting issue when conducting

disease predictions by DL, a promising algorithm,

Met2Img,16,17 has been introduced to exploit taxonomic (the

so-called ‘‘Fill-up’’) and manifold embeddings (MEs), such as

t-distributed stochastic neighbor embedding (t-SNE) to trans-

form abundance data into ‘‘synthetic images,’’ which enables

the efficient exploration of ConvNets for disease classification

based on the image created.17 In the ‘‘synthetic images,’’ the

abundances are binned to generate the color space based on

a given color map type. Testing results have indicated that the

integration of phylogenetic information alongside abundance

data improves classification performances.16,17 While the

Met2Img tool can generate color "synthetic images," the corre-

sponding color space simply duplicates the abundance informa-

tion, but it lacks the local-coherence characteristics on the trans-

formed images and has overlap issues of the feature points (FPs)

when using MEs, such as t-SNE.16 Nevertheless, highly efficient

ConvNet models rely on the recognition of 2D local-coherence

and multichannel characters of natural color image data.18 Nat-

ural images are highly structured and low-noise data, where

character-distinguishing features of the data are concentrated
(C) The host phenotype prediction scenarios frommetagenomic data and biomark

using ConvNet-based AggMapNet. These were tested for host phenotype pre

(explanation saliency map of important features) on five disease datasets cirrh

colorectal cancer (CRC).
in local regions of images. The restructuring of metagenomic

data into spatially correlated 2D color image-like data is still

needed for efficient DL with ConvNets.

In this work, we developed an unsupervised metagenomic mi-

crobial embedding, grouping, and mapping algorithm (MEGMA)

to transform tabular metagenomic data into spatially correlated

color image-like 2D representations named 2D microbiome-

prints (3D tensor data in the form of width, height, and channel).

Each channel contains a group of microbes, marked with a

different color (Figure 1A). The MEs and position mappings

were used to enhance the local connectivity and local coherence

of image-like 2D representations, while the grouping operations

were used to generate the multichannel (i.e., the number of the

colors) characteristics of the 2D representations. Therefore, the

final MEGMA 2D microbiomeprints are structured multichannel

3D feature maps (Fmaps) for enhanced performances in the

subsequent learning tasks. For example, ConvNet-based

AggMapNet (Figure 1B) DL models can be trained with

MEGMA 2D microbiomeprints as inputs to learn the metage-

nomic data for disease prediction and biomarker discovery

(Figure 1C).

Nineteen publicly available low sample size metagenomic da-

tasets were used in this study, including a Disease-Set18,9 and a

Disease-Set216,17 that are related to five diseases (cirrhosis,

obesity, type 2 diabetes [T2D], inflammatory bowel disease

[IBD], and colorectal cancer [CRC]), and two sets of recently

published CRC gut metagenomic CRC-Nation3 and CRC-

Stage4 datasets (Table 1). All these datasets used in our study

were directly obtained from the processed data and results in

previous studies. These datasets cover a different number of mi-

crobial species, and the metagenomic taxonomic profiles are

generated by different pipelines, such as the MetaPhlAn2,19

the mOTU2,20 and the SILVA Living Tree Project (LTP).21

We evaluated whether the ME methods are better than the

random uniform embedding (RUE) method in generating 2D mi-

crobiomeprints. Moreover, the performances of ConvNet-based

AggMapNet models trained on multichannel 2D microbiome-

prints were compared with those trained on single-channel

grayscale 2D microbiomeprints to determine if the former is

more superior than the latter. These enable AggMapNet models

to outperform the commonly used ML and DL models in the

metagenomic benchmark datasets of Disease-Set1 (Table S1).

We also compared MEGMA with the existing method

Met2Img16,17 to assess which image-like 2D representation gen-

eration algorithm performs better for disease prediction

(Table S2).

We further show that the AggMapNet explainable module in the

analysis of the 2Dmicrobiomeprints led to the identification of the

important microbes (IMs), consistent with literature-reported bio-

markers and biological mechanisms. A saliency map22 is used to

reflect the degree of importance of a feature (i.e., a microbe) in

the input 2D microbiomeprints. On the identification of the bio-

markers for the Disease-Set1, 84 of the 100 identified IMs, which

include the top 20 species for each disease of cirrhosis, IBD,
er discovery based on theMEGMApersonal multichannel 2Dmicrobiomeprints

dictions and important disease-specific microbial biomarkers identification

osis, obesity, type 2 diabetes (T2D), inflammatory bowel disease (IBD), and

Patterns 4, 100658, January 13, 2023 3



Table 1. Summary of the human gut metagenomic datasets in this study

Data Group Reference Dataset No. of cases No. of controls No. of species

Disease-Set1 PopPhy-CNN and

Meta-Singer,

Reiman et al.8,9

cirrhosis 114 118 542

IBD 25 85 443

obesity 164 89 465

T2D 223 217 606

CRC 48, 39 47 507

Disease-Set2 Met2Img, Nguyen et al.16,17 cirrhosis 118 114 542

IBD 25 85 443

obesity 164 89 465

T2D 170 174 572

CRC 48 73 503

Cross-nation sets

of CRC-Nation

Wirbel et al.3 AUS 46 63 849

CHN 74 54 849

DEU 60 60 849

FRA 53 61 849

USA 52 52 849

Disease-stage sets

of CRC-Stage

Yachida et al.4 MP 40 127 7,278

S0 27 127 7,278

SI/II 69 127 7,278

SIII/IV 54 127 7,278
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T2D, obesity, and CRC, are consistent with the disease-relevance

reports in the 74 distinct literature reports. On identifying of the

consistent and replicable microbial signatures across cohorts of

five nations in the early detection of CRC,3 the global feature

importance (GFI) of AggMapNet is better than the commonly

usedmarker-identifyingmethods,suchasgeneralized foldchange

(FC),3 two-sided Wilcoxon rank-sum test (WRST) p value with

Benjamini-Hochberg false-discovery rate (FDR) correction (q

value),3 LASSO model coefficient, and RF feature importance

(FI). The AggMapNet GFI-based saliency map can also detect

the microbial shifts in different stages of CRC. In conclusion, we

show that the use of 2Dmicrobiomeprints asmetagenomic repre-

sentations can significantly enhance downstream tasks of DL-

based disease prediction and discovery of key signatures, and

an interpretable DL-based metagenomic learning MEGMA-

AggMapNet-GFI pipeline (released in aggmap: https://pypi.org/

project/aggmap/1.1.7/) with good performance has been devel-

oped for disease prediction and biomarker discovery.
RESULTS

MEGMA approach for restructuring metagenomic data
into multichannel microbiome 2D representations
MEGMA was developed to transform high-dimensional and

sparse metagenomic data from the tabulated 1D vector forms

into color image-like multichannel 2D microbiomeprints. Each 2D

microbiomeprint represents a microbial abundance 2D imprint of

individual samples. Natural color images are highly structured

and low-noise data with two important characteristics, namely

local coherence and multiple channels (e.g., RGB channels). The

ME and metagenomic/taxonomic grouping (MG/TG) of microbes

were particularly designed to construct the local coherence and
4 Patterns 4, 100658, January 13, 2023
multichannel (i.e., the number of the colors or groups) characters

of the 2D microbiomeprints, respectively.

As shown in Figure 2A, the input is the sparse, high-dimensional

metagenomic tabular data with logarithm transformation, then the

pairwise correlation matrix of the microbes is calculated. The ME

and MG were based on the correlation matrix (except for the

TG). In thegroupingstage, themicrobesweregrouped intoseveral

subgroups by truncating the metagenomic hierarchical clustering

tree (Figure S1A) or taxonomic phylogenetic tree. In the embed-

ding stage, eachmicrobe was assigned to its x and y coordinates

in the 2D space by various manifold learning algorithms (Fig-

ure S1B). In the mapping stage, position mapping is aimed at the

assignment of each microbe to one optimized position in the 2D

grid map, while channel mapping is to split the microbes into

different channels based on the subgroups (Figure S1C). Finally,

the microbial abundance vector of one sample was then trans-

formed into a color image-like multichannel 2D microbiomeprint

basedon themicrobial locations in the regular 2Dgrid (FigureS1D).

Figure 2B presents the topological exploration of the 2D

microbiomeprint generation. Firstly, the ME algorithm generates

the topological graph based on the abundance correlation dis-

tance of the 849 microbes in the CRC-Nation set.3 In the graph,

each node is one microbial species, the correlation distance is

represented by the weights of the edges. The nodes can be

divided into several groups to generate the multichannel char-

acter by a metagenomic hierarchical clustering tree or a taxo-

nomic tree. The optimized topological graph ensures that the

correlated microbes can be aggregated as neighbors in the 2D

space, such as the subgraph in the red box of Figure 2B

(Figures S2 and S3). Secondly, the position mapping ensures

that the embedded microbes in the optimized graph can be as-

signed to the regular 2D grid while preserving the adjacent rela-

tionships as much as possible. Finally, the 2D grid location map

https://pypi.org/project/aggmap/1.1.7/
https://pypi.org/project/aggmap/1.1.7/
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of the 849 microbes is generated, each pixel in the 2D grid map

represents one species of the microbe and each color is one

channel (subgroup).

The image-like 2D microbiomeprints were further generated

by the abundance filling of the 2D grid map (i.e., the transforma-

tion stage). Since each sample (a patient or a healthy subject) has

an abundance vector, MEGMA can transform individual-specific

2Dmicrobiomeprint. The example 2Dmicrobiomeprints for each

class (CRC or healthy control, CTR) in each of the five nations are

shown in Figure 2C. In the CRCgroup, the upper left corner of the

2D microbiomeprints is quite distinct from the same area in the

CTR group, the microbes in this area are mostly of higher abun-

dance in CRC patients than in healthy controls. The microbes in

this area are in the subgraph of Figure S2, most of which are the

known microbes associated with CRC. In conclusion, through

the transformation of the MEGMA, high-dimensional, noisy,

and sparse metagenomic data can be transformed into highly

structured data of color 2D microbiomeprints, where the key mi-

crobes will be gathered as a hot zone to highlight the abundance

signal. In addition, unrelated microbes are distributed in other

areas, helping to reduce noise. Therefore, this transformation

can potentially enhance the performance of downstream tasks,

such as disease prediction and key signature identification.

Manifold-guidedmetagenomic embedding substantially
improves host disease-prediction performance over
random embedding
Five ME algorithms (multi-dimensional scaling [MDS], isometric

mapping [ISOMAP], locally linear embedding [LLE], t-SNE, and

Uniform Manifold Approximation and Projection [UMAP]) and

one RUE method are compared in the 2D microbiomeprint gen-

eration to verify whether ME is advantageous. Four binary tasks

disease datasets of Disease-Set1 (cirrhosis, IBD, T2D, obesity)

were used to evaluate the performance of disease prediction

based on the 2D microbiomeprints generated by different

embedding methods. All ME-derived 2D microbiomeprints are

more structured and spatially correlated than RUE-derived 2D

microbiomeprints (Figure 3A). ConvNet-based AggMapNet

models with the same hyperparameters trained on these 2D mi-

crobiomeprints show varying performance. Based on 10-fold

cross-validation and the lower kernel size of the first layer in

AggMapNet, the disease-prediction performance The AUC of

all ME-based models consistently outperformed those of the

RUE-based models by substantial margins (Figure 3B). Paired t

tests were used for evaluating the significance of differences

based on 100 paired metrics from RUE and each ME method.
algorithms. In the grouping stage, the host microbes are grouped into several subg

phylogenetic tree. In the mapping stage, the position mapping is response for the

the channel mapping is to split themicrobes into different channels based on the su

of one sample is then transformed into the host-specific multichannel image-like 2

pixel in the 2D microbiomeprint represents one species (or operational taxonomic

color represents the magnitude of the abundance value.

(B) The 2D embedded topological graph by the UMAP-mediated MEGMA, the mic

species in CRC-Nation data (i.e., each pixel is onemicrobial species). The number

black pixels are used to amend the grid. For the topological graph, only edgeswith

subgraph (red box) is in Figure S2.

(C) The MEGMA-generated individualized multichannel 2D microbiomeprint (tran

each of the five nations of AUS, Australia; CHN, China: DEU, Germany: FRA, Fra

identified by the naked eye to distinguish the CRC and CTR samples.

6 Patterns 4, 100658, January 13, 2023
All ME methods, except for MDS or UMAP, are significantly bet-

ter than random method RUE in the AUC metric for the two rela-

tively balanced cirrhosis and T2D datasets, respectively. For the

unbalanced IBD and obesity datasets, UMAP (p < 0.001) and t-

SNE (p < 0.05) are significantly better than the random method

RUE in F1 score (Figure S4). These results strongly suggest

that manifold-guided feature embedding substantially enhances

ConvNet-based metagenomic disease-prediction performance.

This arises from the superior ability of CNN in learning the local

patterns (local connectivity) of images,23 the convolutional layers

take advantage of the local spatial coherence of the 2D

microbiomeprint.

It is noted that, although DL models of different ME algorithms

performed differently on different datasets, the manifold-based

ME algorithms (e.g., UMAP) exhibited distinguished ability. For

example, on the four datasets with lower feature numbers, DL

models of ISOMAP and LLE algorithms performed slightly better

than those of UMAP and t-SNE algorithms (Figure 3B). But on the

CRC-Nation3 datasets (Table 1) with a higher number of features

(Figure S5), the models of UMAP and t-SNE algorithms outper-

formed those of ISOMAP and LLE algorithms. Under the

study-to-study transfer (STST) (model trained on the data of

one nation and tested on the data of rest nations) tests, the per-

formances of the DL models of the UMAP algorithm significantly

outperformed those of the RUE algorithm on all nations, and they

significantly outperformed those of the ISOMAP and LLE algo-

rithms on some of the nations, such as Germany, France,

Australia, or the US (Figure S5). The levels of these performance

variations may be partly influenced by the hyperparameters of

these ME algorithms. Nonetheless, UMAP, as a SOTA dimen-

sionality reduction algorithm, is able to preserve both local and

global data structures during embedding by a trade-off hyper-

parameter.24,25 Preserving the local or global structures of the

data may critically affect DL performances in the 2D representa-

tions18,26 because the ConvNet is shown to strongly rely on local

texture cues.27 Moreover, UMAP is much faster in embedding

large numbers of microbes and has been shown to be able to

restore the original images from MINST data with randomly ar-

ranged pixels in our recent study.18 Therefore, UMAP was cho-

sen as the default embedding algorithm in MEGMA.

The grouping-based multichannel 2D microbiomeprints
further enhance the host disease-prediction
performance remarkably
To explore whether grouping-based multichannel 2D microbio-

meprints can improve the disease-prediction performance
roups by truncating themetagenomic hierarchical clustering tree or taxonomic

assignment of eachmicrobe to one optimized position in the 2D grid map, while

bgroups. Finally, in theMEGMA transformation, the species abundance vector

D microbiomeprint based on the species locations in the regular 2D grid. Each

units) of microbe, and each color (group) is one channel, the brightness of the

robial position mapping process, and the final 2D grid map of the 849microbial

of the cluster channel is 5, the size of the regular 2D grid map is (30, 29), and the

weights greater than 0.2 are shown to simplify the complete graph, the zoomed

sformed from the 2D grid map) in (B) for a CRC patient and a CTR individual in

nce; USA, United States of America. The red box indicates the important area
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more than grayscale (single-channel) 2D microbiomeprint, we

chose UMAP as the embedding method and investigated the

two grouping algorithms (MG and TG). The MG algorithm clus-

ters microbes by phenotype distances (i.e., similarity in microbial

abundance patterns), while the TG algorithm clusters microbes

by genotype distances (i.e., distances on a phylogenetic tree).

These two algorithms were used to group microbes on different

dimensions and scales. With TG on the IBD dataset, truncating

the phylogenetic tree at levels of control, kingdom, phylum,

class, order, family, and genus led to 1, 3, 10, 18, 23, 49, and

68 channels of 2D microbiomeprints, respectively (Figure 4A).

For comparison of the two grouping algorithms, the number of

clusters inMGwas also set at 1, 3, 10, 18, 23, 49, and 68, respec-

tively (Figure 4B). The control (the channel parameter c = 1) cor-

responds to cases of no groupings and all microbes were

embedded into one channel of 2D microbiomeprints, leading

to the grayscale image-like Fmap.

We found that AggMapNet models trained on both MG-based

and TG-based multichannel 2D microbiomeprints showed

remarkable AUC performances than those trained on single-

channel 2D microbiomeprints (i.e., the controls) (Figures 4C,

4D, and S6), suggesting that these groupings are highly effective

for enhanced metagenomic data learning. To a certain extent,

model performances were enhanced by increasing the number

of grouping clusters, because of more fine-grained data separa-

tions, and more specific feature learning. The TG boosted the

model performancemore hierarchically with the number of chan-

nels than MG (Figures 4C and S7). However, the metagenomic

clusters are more balanced in size than the taxonomic clusters

(Figures 4A and 4B). At a lower number of clusters (e.g., c = 3,

10, 18, .), MG can boost model performance more than TG

(Figures 4C and 4D). These results showed that, irrespective of

which of the two grouping algorithms was used, the finer the

grouping scale, the better the model performance can be. MG

seems to be more robust than (and thus can practically replace)

TG for enhanced model performances.

AggMapNet with 2D microbiomeprints as input
significantly outperforms commonly used machine
learning and deep learning models in disease prediction
AggMapNet with 2D microbiomeprints as input (under UMAP

embedding and MG) was evaluated on all five datasets in

Disease-Set1. Firstly, AggMapNet models were constructed on

the five datasets (cirrhosis, T2D, obesity, IBD, and CRC), and

compared with four existing ML (RF, SVM, LASSO, MLPNN)9

and one existing DL (PopPhy-CNN)8 model of each dataset.

Under the same performance metrics (mean AUC, MCC,
Figure 3. 2D microbiomeprints of Disease-Set1 generated by random

mances of the corresponding AggMapNet models

(A) The example of the different embedding algorithms for generating the 2D si

manifold embedding approaches, including multi-dimensional scaling (MDS), is

chastic neighbor embedding (t-SNE), and Uniform Manifold Approximation and P

microbial gridmap and 2Dmicrobiomeprint Fmaps. Themetagenomic-based hier

of microbes is one cluster from the clustering of the microbial species.

(B) The average ROCAUCperformance of the AggMapNetmodels that are trained

task) with the RUE,MDS, ISOMAP, LLE, t-SNE, andUMAP 2Dmicrobiomeprint Fm

10-fold cross-valuation repeated 10 times (total 100 data points), and the SD erro

ME method) was used to test the significance of the difference between the rand

****p % 0.0001, ***0.0001 < p % 0.001, **0.001 < p % 0.01, *0.01 < p % 0.05; no
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Precision, Recall, and F1 score) and the same stratified 10-fold

cross-validation (repeated 10 times using different random seeds,

with 100 data points for each dataset) as in the reported studies,9

AggMapNet outperformed all ML and DL models on all five data-

sets by largermargins, with an exception of only onemetric in one

dataset. The single exception is the AUC metric on the unbal-

anced obesity dataset, in which case AggMapNet scored slightly

lower AUC than that of RF (0.642 versus 0.648) but the F1 score of

AggMapNet is significantly better than that of RF (0.636 versus

0.556, p % 0.0001) (Table S1; Figure S9). Since the performance

metrics are roughly normally distributed (Figure S8), a paired t test

was used to evaluate whether the performance is significantly

different between AggMapNet and RF (Figure S9). The results

showed that AggMapNet outperformed RF significantly on IBD

(p % 0.001), T2D (p % 0.01), and obesity (p % 0.001) datasets

by F1-score and the MCC metric. Under the AUC metric,

AggMapNet outperformed RF significantly (p % 0.001) on the

datasets of cirrhosis and IBD. Overall, except for the multi-class

dataset of CRC, AggMapNet models significantly outperformed

the RF models on the remaining four datasets.

Secondly, AggMapNet models were developed on the cross-

nation sets of CRC-Nation in comparison with the commonly

used ML models by the STST validations as in the reported

studies,3 i.e., a model trained on the data of each of the five na-

tions (France, Australia, Germany, China, and the US), and tested

on the data of the rest of the nations, a total of 20 tests. LASSO

was used because it achieved SOTA performances of the STST

test in the previous study.3 MEGMA-generated 2D microbiome-

prints of individual classes (CRC and healthy control, CTR) across

the nations are presented in Figure 2C. AggMapNet outperformed

LASSO and RF in 15 and 14 of 20 STST tests of CRC-Nation by

substantial margins, respectively (Figure 5C). In the 6 tests of

lower LASSO performance (AUC < 0.7), AggMapNet markedly

improved the performance over LASSO in all 6 tests (Australia-

to-US 0.59 to 0.78, France-to-US 0.64 to 0.77, Australia-to-

France 0.62 to 0.75, Australia-to-US 0.59 to 0.78, Australia-to-

Germany 0.65 to 0.89, China-to-US 0.67 to 0.76).

AggMapNet also markedly improved 3 tests of lower RF perfor-

mance (AUC < 0.7) (Australia-to-US 0.57 to 0.78, Australia-to-

China 0.65 to 0.75, Germany-to-Australia 0.59 to 0.86).

Thirdly, AggMapNet models were generated for the disease-

stage sets of CRC stage in comparison with the SOTA ML

models. Yachida et al.4 have constructed RF and LASSO classi-

fiers to identify diagnostic markers to distinguish samples from

patients with S0 (n = 27) and SIII/IV (n = 54) CRCs from samples

of healthy controls (n = 127). RF scored SOTA performance in

classifying CRC stages S0 and SIII/IV at 0.73 and 0.83 AUC.4
and manifold embedding algorithms and disease-prediction perfor-

gnatures in the IBD dataset. The random uniform embedding (RUE) and five

ometric mapping (ISOMAP), locally linear embedding (LLE), t-distributed sto-

rojection (UMAP), are used for the embedding of the microbes to generate the

archical clustering is used to group themicrobes into ten subgroups. Each color

on the fourmetagenomic Disease-Set1 (cirrhosis, IBD, obesity, and T2D binary

aps as inputs. Themodel performanceswere evaluated by the average AUC of

r bars of 10 repeats are shown. The paired t test (100 pairs of RUE versus each

om embedding RUE and ME performance. p values for the significant levels:

t significant (n.s.), 0.05 < p % 1.
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AggMapNet outperformed RF with selected features in classi-

fying stages S0 and SIII/IV of CRC-Stage with AUC improved

from 0.73 to 0.83 to 0.84 and 0.89. It additionally classified the

CRC stages MP and SI/II at 0.83 and 0.86 AUC (Figure S12D).

With a lower bacterial species abundance cut-off 1e-8,

AggMapNet was trained based on 7,278 species (Figure S12A)

compared with dozens of selected species in training RF and

LASSO.4 The improved performance of AggMapNet may be

partly attributable to the efficient learning of more diverse spe-

cies by MEGMA feature restructuring.

It should be noted that the 2D microbiomeprints of different

datasets can be in different sizes due to the differences in the

number of metagenomic features. The number of features deter-

mines the width and height of the 2D microbiomeprints. For

example, the size of MEGMA-generated 2D microbiomeprints

for Disease-Set1 is smaller than (24, 24) in width and height,

because the numbers of features are from 443 to 606. For com-

parison, the size of 2D microbiomeprints for CRC-Nation and

CRC-Stage are (30, 29) and (86, 85), respectively. Our results

showed that the MEGMA-AggMapNet pipeline outperformed

conventional ML methods on 2D microbiomeprints of different

size scales, demonstrating the robustness of the proposed

approach.

MEGMA outperformed Met2Img in disease prediction
based on the generation and DL of image-like Fmaps
We further compared our MEGMA method with the existing

Met2Img method on disease-prediction performances of DL

models trained with image-like Fmaps generated by each

method. In the study with Met2Img,16,17 the proposed Fill-up

approach has produced better performance on the Disease-

Set2 datasets than that of the ME algorithm in generating the

‘‘synthetic images’’ as the input for the DL models. In the Fill-

up approach, features (i.e., the microbial species) are arranged

into a square matrix of a given size by a specific order of phylo-

genetic classification for the known species, while the ME algo-

rithms in Met2Img16,17 have overlap issues because the features

are not properly arranged on the 2D grid space.

From the methodology perspective, our MEGMA method

combines the advantages of the Fill-up approach and ME algo-

rithms in the Met2Img16,17 and overcomes the overlap issues of

the ME algorithms by the ‘‘position mapping’’ operation (Fig-

ure 2B). More importantly, MEGMA generates multichannel in-

formation by grouping microbes at different dimensions and

scales, which is in contrast to Met2Img algorithms whereby mi-

crobial abundance values are repeatedly projected into color

maps. Consequently, Met2Img16,17 can only generate Fmaps
Figure 4. The microbial taxonomic grouping and metagenomic groupin

prints and their disease-predictive performances as inputs of AggMap

(A) The taxonomic grouping of microbes by truncating taxonomic levels in the phy

Kingdom, and Phylum levels, respectively. c is the number of the channels (e.g.,

(B) The metagenomic grouping by microbes specifying the number of clusters in

based grouping, the same number of clusters are specified in the metagenomic-

(C) The average performance (10-fold cross-validation and repeat 10 times by

taxonomic-based and metagenomic-based grouping multichannel 2D microbiom

Order, Family, andGenus are used to truncate the phylogenetic tree of the IBD dat

metagenomic-based grouping specifies the same number of clusters (clades) as

(D) Pairwise comparison of ROC AUC performance for taxonomic-based andmeta

correction: ****p % 0.0001, ***0.0001 < p 0.001, **0.001 < p % 0.01, *0.01 < p %
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of up to 3 channels, while MEGMA can generate any integer

number of channels (e.g., 60 channels) (Table S2). We further

compared the performances of AggMapNet models on all the

datasets of Disease-Set2 trained with Met2Img Fmaps and

MEGMA Fmaps, respectively (Table S2). The models with

MEGMA Fmaps (default UMAP embedding and MG channel

c = 5) produced significantly better performances (p < 0.0001

by paired t test) than those with Met2Img16,17 Fmaps, under

almost all metrics on all datasets of Disease-Set2. Increasing

the channel number of MEGMA (c = 60) can further improve

AggMapNet performances in some of the datasets, such as

cirrhosis, obesity, and CRC of Disease-Set2.

MEGMA-AggMapNet explainable module exposes
disease-associated microbes as potential biomarkers
To explain MEGMA-AggMapNet models, the GFI score S was

calculated for Disease-Set1 (cirrhosis, IBD, T2D, obesity, and

CRC) from a 10-fold cross-validation. The explanation microbi-

al saliency map and the top 20 IMs for each dataset are pro-

vided in Figure S10 and Tables S3–S7, respectively. The GFI

scores for all features are provided in Data S1. The IMs of every

dataset are concentrated in a certain hot zone of the explana-

tion saliency map (Figure S10). Hence, AggMapNet GFI

selected IMs are highly correlated with each other in terms of

microbial abundance distribution across the subjects (orga-

nized by MEGMA).

More importantly, by comparing the identified 100 IMs (the

top 20 microbes for each disease by AggMapNet-GFI) with

the literature one by one, 84 of the 100 IMs are highly consistent

with the disease-relevance reports of 74 distinct literature (of

the top 20 microbes for the 5 diseases of cirrhosis, IBD, T2D,

obesity, and CRC, there are 16, 16, 16, 17, and 19 microbes

that have been mentioned in the literature as key markers or

IMs to the specific disease, respectively) (Tables S3–S7). These

results further indicate that AggMapNet-identified IMs are po-

tential biomarkers in high consistency with literature reports.

The GFI-based saliency map signatures are useful for identi-

fying and displaying these key biomarkers for specific

diseases.

The top 20 IMs (Avg. GFI > 2.2) of cirrhosis are mostly up-sig-

natures (Table S3). The top-ranked Clostridium symbiosum and

Haemophilus parainfluenzae are reportedly increased in cirrhosis

patients28–30 and universal up-signatures of cirrhosis.30 The IMs

also include four Clostridium species (C. citroniae, C. hathewayi,

C. asparagiforme, and C. nexile), H. parainfluenzae, and three

Veillonella species (V. dispar, V. parvula, and an unclassified spe-

cies). Clostridium species are enriched in liver cirrhosis31 and
g for generating the multichannel characteristics of 2D microbiome-

Net on the IBD dataset of Disease-Set1

logenetic tree (the 1, 3, and 10 clusters are generated by truncating the Control,

c = 10 means that the number of channels of the 2D microbiomeprint is 10).

the hierarchical clustering tree. To make a fair comparison with the taxonomic-

based grouping (i.e., c = 1, 3, and 10, respectively).

different random seeds) of the AggMapNet models that are trained on the

eprint, respectively. The taxonomic levels of Control, Kingdom, Phylum, Class,

aset, and the 1, 3, 10, 18, 23, 49, and 68 clusters are generated accordingly. The

the taxonomic-based grouping.

genomic-based groupings. The significant level of paired t test with Bonferroni

0.05; not significant (ns), 0.05 < p % 1.
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altered in the progression of cirrhosis to hepatocellular carci-

noma.32 Commensal Veillonella microbes are correlated with

liver diseases, such as cirrhosis and autoimmune hepatitis.31

V. parvula is a biomarker for clinical outcomes of cirrhosis pa-

tients.33 The top 20 IMs of IBD (GFI > 1.6) are mostly down-sig-

natures (Table S4). The top-ranked IM is Alistipes finegoldii.

Another IM is A. putredini. The reduced abundance of these

species is characteristic of IBD.34 In addition, we also identified

the correlated species, such as Coprococcus sp. ART55/1 as

an important species that is markedly reduced in IBD. The top

20 IMs of T2D (GFI > 2.0) are primarily down-signatures

(Table S5), the top-ranked IM is an unclassified Butyrivibrio

species, and another IM is Faecalibacterium prausnitzii. The

reduction of these anti-inflammatory bacteria likely contributes

to the development of T2D and are potential targets for T2D ther-

apeutics.35 Two other IMs Lachnospiraceae species (Lachno-

spiraceae bacterium 1_1_57FAA and 3_1_46FAA) are of interest.

Earlier human and mouse metagenomic studies have suggested

that Lachnospiraceae species are associated with T2D.36 Some

of the top 20 IMs (GFI > 0.7) for obesity (Table S6) are also exper-

imentally implicated. The top-ranked IM Ruminococcus bromii is

implicated by a study of the Japanese obese and non-obese

population.37 Two IMs Oxalobacter formigenes38 (5, 15) and Bu-

tyrivibrio crossotus39 (7, 14) are also known obesity-associated

gut microbes that are top-ranked microbes. The top 20 IMs

(GFI > 2.4) of CRC are mostly up-signatures (Table S7). Five

IMs Peptostreptococcus stomatis, Parvimonas micra, Fusobac-

terium nucleatum unclassified Parvimonas, and Gemella morbil-

lorum, are known CRC-related gut microbes and the first three

microbes are part of a biomarker panel of CRC.40

The identified biomarkers are more reproducible than
those of the established methods in cross-nation
validations
MEGMA-AggMapNet model explanation was also used for iden-

tifying the CRC biomarkers of each nation of the cross-nation

CRC-Nation3 data. The reproducibility of these biomarkers was

evaluated by the study(nation)-to-study transfer validations

across the five nations, in comparison with those identified by

three established methods. These include two statistical

methods, the generalized FC3 and the two-sided WRST with

FDR-adjusted p value (WRST q value),3 and two ML methods,

the coefficient of the LASSO models (LASSO coef.) and the FI
Figure 5. Comparisons of AggMapNet trained onMEGMA-generated 2D

and key biomarker identification by cross-nation testing on the CRC-N

(A) The five microbial saliency maps for each nation generated by five different

Wilcoxon rank-sum test p value, transformed by negative logarithms), LASSO

AggMapNetmodel GFI. The corresponding pixels are the samemicrobes as show

DEU, Germany; FRA, France; USA, United States of America.

(B) The nation-to-nation Pearson correlation coefficient for the five saliency maps

from the saliency maps (i.e., simply reshape the 2D saliency maps into the 1D ve

(C) The study-to-study transfer (STST) (a total of 20 cross-nation tests) perform

microbial species in CRC-Nation datasets. The Top-N-LGR model means the L

microbes in the hot zones of AggMapNet GFI saliency map) as input features. LG

discovered by AggMapNet GFI. LGR, logistic regression; LASSO, least absolute

(D) The performance of LGR models that are constructed on the Top-N AggMa

reported. The baselines for the four models of AggMapNet (0.815), RF (0.756), L

dashed lines. For each Top-N marker set, the minimal five-nation average AggMa

markers is greater than 2, top 50 > 1, and top 75 > 0.43).
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score of the RF models (RF FI). Figure 5A presents the microbial

2D saliency maps of each nation identified by every method,

which shows that the IM hot zone derived by AggMapNet GFI

is highly concentrated in the upper left corner of the saliency

maps while those derived by the three established methods

are more scattered across multiple parts of the saliency maps.

Importantly, the FC saliency maps reveal that the microbes on

the upper left corner are mostly of higher abundance in CRC

than in controls. In addition, there is also a distinct difference

in the upper left corner of theMEGMA-generated color 2Dmicro-

biomeprints of CTR and CRC groups (Figures 2B and 2C), sug-

gesting that AggMapNet GFI has identified the true associations

between the microbes and CRC.

Compared with the biomarkers identified by the four estab-

lished methods, the biomarkers identified by AggMapNet GFI

(AggGFI-biomarkers) are substantially more correlated across

five nations (Figure 5B) and have higher levels of cross-nation

overlaps (i.e., the biomarkers of the patients of one nation over-

lap with those of another nation). The top 10 AggGFI-biomarkers

in the hot zones of the saliency maps, averaged over five nations

(five nation average GFI > 3.5, Figure S10; the GFI scores for all

features are provided in Data S1), are unknown Dialister,

F. nucleatum s. vincentii, Anaerococcus obesiensis/vaginalis,

Parvimonas sp., Parvimonas sp., Peptostreptococcus anaero-

bius, Alloprevotella tannerae, F. nucleatum s. animalis, Prevotella

oris, and Porphyromonas somerae. These microbes have been

reported as potential CRC-associated biomarkers.40–44 The

diagnostic relevance of the AggGFI-biomarkers was further eval-

uated by a simple linear diagnostic indicator, which measures

disease-prediction performances of logistic regression (LGR)

models developed by the AggGFI-biomarkers on the STST tests

of the cross-nation datasets (a total of 20 tests) (Figures 5C and

5D). The LGR models of the Top-N AggGFI-biomarkers outper-

formed the LGR models of all microbes in these tests. In partic-

ular, the LGR models of top 10 AggGFI-biomarkers (avg.

GFI > 3.5) outperformed the LASSO and RF LGR models con-

structed by all 849 microbes. The LGR models of the top 50

AggGFI-biomarkers (avg. GFI > 1.0) even outperformed

AggMapNet models of all microbes (average ROC-AUC of the

20 tests: 0.818 versus 0.815). Generally, the performances of

the LGR models gradually increase with the increasing number

of AggGFI-biomarkers up to 75 biomarkers (avg. GFI > 0.43) (Fig-

ure 5D). Beyond this point, the performances decrease with
microbiomeprints with commonly usedmethods for CRC detection

ation data

methods of the generalized fold change (FC), WRST q value (FDR-adjusted

model coefficient (coef.), the random forest feature importance (RF FI), and

n in the 2Dmicrobiomeprints of Figures 2B and 2C. AUS, Australia; CHN, China;

in (A). The pairwise Pearson’s r was calculated by the vectors that converted

ctors).

ance for the four models of LGR, LASSO, RF, and AggMapNet using all 849

GR model with AggMapNet-identified Top-N key microbial markers (i.e., the

R is used as a simple linear diagnostic indicator in STST to test the biomarkers

shrinkage and selection operator; RF, random forest.

pNet-identified biomarkers, the average ROC-AUC of the 20 STST tests are

ASSO (0.751), and LGR (0.745) using all microbial species (849) are shown as

pNet GFI value is shown (e.g., the minimal average AggMapNet GFI for top 30
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increasing number of AggGFI-biomarkers. These results consis-

tently indicate the exceptional ability of MEGMA in selecting

diagnostically relevant and reproducible biomarkers; this ability

is realized and presented by the AggMapNet microbial saliency

maps and MEGMA-generated 2D microbiomeprints.

MEGMA-AggMapNet reveals disease-stage-specific
and shifting patterns of microbial compositions
The biomarker analysis capability of the explainable artificial in-

telligencemodel AggMapNet withMEGMA-generated 2Dmicro-

biomeprint as input was further evaluated on the disease-stage

sets of CRC-Stage.4 This dataset contains a large number of mi-

crobes but a low sample size of multiple stages (MP) (stage 0, SI/

II, SIII/IV, and healthy controls, Table 1),4 which is useful for eval-

uating MEGMA and explainable AggMapNet. The average GFI

(calculated based on the 10-fold cross-validation) saliency

map for each stage is presented in Figure S12. Compared with

the controls, the hot zones are highly distinct across stages

but nonetheless share a common zone (zone A). Zone A is partic-

ularly important for distinguishing the disease stages from con-

trols, which are dominated by microbes from several genera

Streptococcus (78 species occupying 36.8% of zone A), Entero-

coccus (27 species, 12.7%), Lactobacillus (18 species, 8.5%),

Listeria (12 species, 5.7%), and Vagococcus (9 species, 4.3%).

Streptococcus, Enterococcus, Lactobacillus, and Vagococcus

are lactic acid bacteria involved in the prevention of CRC.45

Zone B is important for both MP and SI/II, which contain genera

Clostridium (33 species, 8.7%), Actinomyces (28 species, 7.4%),

Bacteroides (16 species, 4.2%), Streptomyces (13 species,

3.4%), and Blautia (10 species, 2.6%). Notably, Actinomyces

odontolyticus has been found to significantly increase only in

MP and/or S0.4 Zone C is mainly important for S0 or SI/II, and

contains genera Thauera, Prevotella, Undibacterium, Vogesella,

and Sphingobacterium. Zones D and E are specific for stage

SIII/IV. Specifically, zone D includes genera Lactobacillus (36,

28.1%), Clostridium (24, 18.7%), Desulfotomaculum (17,

13.3%), Selenomonas (8, 6.3%), and Fusobacterium (7, 5.5%).

Co-occurrence of these anaerobic bacteria has been reported

in colorectal carcinomas.46 Zone E includes genera Xenorhab-

dus (17, 18.1%), Vibrio (14, 14.9%), Yersinia (12, 12.8%), Pan-

toea (7, 7.5%), and Serratia (6, 6.4%). These distinguished and

shifting patterns of microbial composition across disease stages

reflect dramatic physiological alterations in the colonic microen-

vironment during tumorigenesis, which can be captured by

AggMapNet.

DISCUSSION

The high-dimensional sparse features and low sample size of

metagenomic data hinder in-depth data analysis and learning.

Motivated by the characteristics of natural image data and

ConvNet-based DL architectures, through data representation

and algorithm development, we developed the MEGMA-

AggMapNet-GFI pipeline of metagenomic DL for accurate and

explainable detection of diseases and for the identification of

key signatures.

In relation to accurate disease detection, MEGMA leverages

a unique multichannel 2D microbiomeprint transformation to

enhance the downstream tasks of DL-based disease predic-
tion and key signature identification. Through the transforma-

tion algorithm of MEGMA, high-dimensional, noisy, and

sparse metagenomic data can be restructured into highly

structured data of multichannel 2D microbiomeprints (3D

tensor, where the highly correlated microbes are aggregated

into multiple channels in the third dimension for amplifying

the abundance signals). MEGMA enhances the downstream

tasks by combining algorithms of manifold-guided microbial

embedding (unordered 1D data re-arranged into locally

coherent and connective 2D image data) and MG/TG-based

microbial grouping (to form the multichannel character ac-

cording to phenotype/genotype distances). This pipeline of

ME and grouping largely improves the performance of DL

models for disease prediction.

For reproducible signature discovery, the pipeline leverages

the GFI and 2D microbiomeprint saliency map of AggMapNet

models for robust and replicable key signature identification.

The GFI revealed that important signatures (or biomarkers) are

aggregated in specific regions of the MEGMA-generated 2D mi-

crobiomeprints, which allows the finding of the disease-related

microbes more intuitively and precisely. Drawing on these ad-

vantages, we applied MEGMA and AggMapNet for the system-

atic identification of the key microbes for the early detection of

CRC in different nations and the progression of CRC in different

stages. The study not only revealed the consistency of themicro-

bial markers among different populations from different nations

but also identified the shift of microbes during the CRC disease

progression of patients at different stages.

While the MEGMA-AggMapNet-GFI pipeline exhibits several

distinguished advantages, it nonetheless has two limitations.

The first limitation is in the MEGMA 2D representation. Although

the 2D regular grid representation is capable of generating 2D

spatially correlated Fmaps (i.e., the Euclidean data) and can be

learned by ConvNet-based DL models, it may not accurately

preserve the correlation information between FPs because the

correlation distance between two FPs in the regular grid is not

an identity map to the original correlation distances between

the two FPs. The FPs are uniformly distributed in a regular grid,

while the FPs are not uniformly distributed after 2D embedding.

Therefore, further research using a non-Euclidean data repre-

sentation (such as a weighted topological graph in Figure 2B)

and a graph neural network may achieve better learning perfor-

mances. The second limitation is in the GFI scores. The GFI

scores may be affected by the first layer kernel size of the Con-

vNet; a larger convolutional kernel may lead to false-positive sig-

natures, because a larger kernel size has a larger receptive

field47 on the input data. Such false-positive signatures may be

partly removed by combining the MEGMA-AggMapNet-GFI

pipeline with generalized FC and statistical methods.

Despite these disadvantages, the results of this work sug-

gested that the distinguished advantages of our MEGMA-

AggMapNet-GFI pipeline in metagenomic DL may potentially

find broad applications in various biomedical fields. Clinically,

individualized MEGMA-derived 2D microbiomeprints may help

to make ‘‘stratified’’ medicine more ‘‘precise.’’ The further devel-

oped MEGMA and explainable AggMapNet tools together with

other advanced methods are useful for facilitating non-invasive

diagnostic, prognostic, and theragnostic tasks and biomarker

discovery.
Patterns 4, 100658, January 13, 2023 13
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Yu Zong Chen (chenyuzong@sz.tsinghua.

edu.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

The Disease-Set1, Disease-Set2, CRC-Nation sets, and CRC-Stage sets are

available in the GitHub repository https://github.com/shenwanxiang/

metageomic_datasets, and were released in Zenodo (https://doi.org/10.

5281/zenodo.7146901).

MEGMA and AggMapNet were released in the omics data representation and

learning package bidd-aggmap (https://pypi.org/project/aggmap/1.1.7/). The

source code and jupyter notebooks on MEGMA are available at GitHub

(https://github.com/shenwanxiang/aggmap-megma/), a tutorial PAGE is avail-

able at: https://shenwanxiang.github.io/aggmap-megma/. To run the code and

test the repeatability, please follow the link on Google Colab: https://colab.

research.google.com/drive/1T4nAtK-CT_1lxfYHd1kgLMjVeR59_IIl.

Human gut microbial metagenomic datasets

The datasets used in this study are summarized in Table 1. All datasets used

in our study were directly obtained from the processed data and results in

previous studies. The human gut microbial taxa of all datasets are all at

the species level from fecal samples and with relative abundance values

for the specific disease and control groups. These datasets cover a different

number of species, and the taxonomic profiles of the two disease sets

(Disease-Set18,9 and Set216,17), the CRC-Nation3 and the CRC-Stage4

were generated from the MetaPhlAn219 pipeline, the mOTU2 pipeline,20

and the alignment to the All-Species LTP of the SILVA database (SILVA

LTP),21 respectively.

The Disease-Set1 benchmark datasets were directly obtained from Reiman

et al.’s studies of PopPhy-CNN8 and Meta-Singer,9 while the Disease-Set2

benchmark datasets were directly obtained from Met2Img of Nguyen et al.16,17

Although both Disease-Set1 and Set2 contain the same original datasets of the

same five diseases (cirrhosis, obesity, T2D, IBD, and CRC),9,29,36,41,48–50 they

are nevertheless different in the numbers of cases/controls, microbes, and fea-

tures because of different data processing and curationmethods used inNguyen

et al.’s studies16,17 and Reiman et al.’s studies.8,9 For example, the number of

cases and controls for cirrhosis datasets in disease sets 1 (114 versus 118) and

2 (118 versus 114) are reversed. In addition, the T2D in disease sets 1 and 2

have a different number of samples and features. Moreover, the CRC dataset of

Disease-Set1 is a multi-class dataset that covers 507 gut microbial species

from fecal samples of 48 cancers, 39 adenomas, and 47 healthy controls, while

the CRC dataset of Disease-Set2 contains 503 gut microbial species from fecal

samples of 48 cancers and 73 controls. In this study, to eliminate the differences

inmodelperformancecausedbydifferentdatasetsand tomakea fair comparison

withexistingmethods, suchasPopPhy-CNN8orMet2Img,16,17weusedbothdata

groups of Disease-Set1 and Disease-Set2 (Table 1). All these Disease-Sets are

logarithm transformed (after adding a pseudo-count of 1 3 10�8 to avoid non-

finite values resulting from log(0))51 and then with Z score standardization or

min-max normalization, and the performance of the disease prediction model

was evaluated by stratified 10-fold cross-validation repeated 10 times (different

seed was used for each repeat).

The two sets of CRCmetagenomic datasets are the across-nation CRC data

(CRC-Nation sets) and CRC stage-specific data (CRC-Stage sets), which are

obtained from recent studies byWirbel et al.3 and Yachida et al.,4 respectively.

The CRC-Nation data covers 849 gut microbial species from fecal samples of

575 subjects (CRCs or healthy CTRs) compiled byWirbel et al.3 The taxonomic

profiles were generated with the mOTU profiler v.2.0.020 in the study of Wirbel

et al.3 It contains five metagenomic datasets from five separate studies in five

nations: France, Australia, Germany, China, and the US). All the datasets are

logarithm transformed (after adding a pseudo-count of 1 3 10�8 to avoid

non-finite values resulting from log(0))51 then with Z score standardization,

and the STSTmodel (trained on one nation data and tested on the rest nations)

was used for the evaluation of the performance of the metagenomic prediction

models and the consistency of the across-nation biomarker discovery.
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TheCRC-Stage data are each of the four CRC stages in pairwise comparisons

against healthy controls, which was adapted from the study of Yachida et al.4 It

consists of 317 subjects from the Japanese cohort with both metagenomic and

metabolomic profiles, where 127 subjects are in the healthy stage, 40 subjects

are in stage MP (multiple polypoid adenomas with low-grade dysplasia), 27 sub-

jects are in stage S0 (intramucosal carcinoma polypoid adenomawith high-grade

dysplasia), 69 subjects are in stage SI/II CRC, and 54 subjects are in stage SIII/IV

CRC.4 It originally covers a total of 8,367 gut microbial species by the alignment

fromAll-Species LTP of the SILVA database (SILVA LTP),21 we removed the spe-

cies with very low abundance values (smaller than 1e�8) by calculating the

average relative abundance in each stage, leading to 7,278 species. All the data-

sets are logarithm transformed (after adding a pseudo-count of 13 10�8 to avoid

non-finitevalues resulting from log(0))51 thenwithZ score standardization, and the

stratified 10-fold cross-validation (repeated 5 times with different random seeds)

wasused for theevaluation of stage predictionmodel and identification of keymi-

crobial signatures of shifts in different stages of CRC.

Manifold/random-guided embeddings

To form the 2D microbiomeprints in MEGMA, the first step is to embed the mi-

crobes into 2D space based on their abundant correlations. Randomized

embedding was used as the control embedding method and ME was used

to increase the local spatial coherence of the 2D microbiomeprints. Because

ME can expose the topological connections of the microbes, which enables

the correlated microbes in their abundance to be the neighbors in the embed-

ding 2D space. Specifically, RUE and five ME approaches, including MDS,

ISOMAP, LLE, t-SNE, and UMAP, have been explored in this study.

RUE

RUEwas used tomake a random-guided but uniform embedding and distribu-

tion in 2D space: first, two probability density functions (PDFs) r and 4 were

built and the coordinates (x and y) of the 2D embedding were transformed

by the cosine and sine functions based on the PDFs:

rðxÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð0% x% 1Þ2

p
4ðxÞ = Pð0 % x % 4pÞ

x = r � cos 4

y = r � sin 4:

Each microbe will be assigned the 2D coordinates in REU. RUE generates

the totally unordered and randomized but uniform embedding, the neighbors

of each microbe will be the random microbes instead of highly correlated mi-

crobes in abundance. The 2D microbiomeprints generated by RUE are similar

to images with randomly permutated pixels, that is, the spatial coherence of

the 2D microbiomeprints is fully destroyed.

ME

Different from RUE, five ME methods were used for microbe embedding by

considering the pairwise abundance correlation of microbes. Two microbes

(i.e., the feature points or data points) are considered similar if they are highly

correlated in their abundances, where Pearson correlation coefficient rði; jÞ
was used for measuring the distance dij of microbial pairs i and j:

dij = 1 � rði; jÞ = 1 �
Pn

a = 1ðia � iÞðja � jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
a = 1ðia � iÞ2Pn

a = 1ðja � jÞ2
q :

Based on this distance, highly correlated microbes can be drawn closer to

eachother for data restructuring embedding ina 2DspacebyusingMEmethods.

FiveMEmethods are used in this study:MDS, LLE, ISOMAP, t-SNE, andUMAP.

MDS. The metric MDS method attempts to model the similarity/dissimilarity

of data by calculating distances between each pair of points using their geo-

metric coordinates. The MDS maps the precomputed distance matrix dij to

2D space while preserving those distances between points (microbes) as

well as possible. It minimizes the cost function called ‘‘Stress,’’ which is a re-

sidual sum of squares:

StressDðx1; x2;.xnÞ =
 X

isj = 1;.;N

 
dij �

��xi � xj
��!2!1=2

;

mailto:chenyuzong@sz.tsinghua.edu.cn
mailto:chenyuzong@sz.tsinghua.edu.cn
https://github.com/shenwanxiang/metageomic_datasets
https://github.com/shenwanxiang/metageomic_datasets
https://doi.org/10.5281/zenodo.7146901
https://doi.org/10.5281/zenodo.7146901
https://pypi.org/project/aggmap/1.1.7/
https://github.com/shenwanxiang/aggmap-megma/
https://shenwanxiang.github.io/aggmap-megma/
https://colab.research.google.com/drive/1T4nAtK-CT_1lxfYHd1kgLMjVeR59_IIl
https://colab.research.google.com/drive/1T4nAtK-CT_1lxfYHd1kgLMjVeR59_IIl


ll
OPEN ACCESSArticle
where dij is the precomputed correlation distance matrix, the
��xi � xj

�� term is

the distance between the two corresponding data points (microbes) in their

lower-dimensional space (2D space). The closer the value of
��xi � xj

�� is to

dij , the smaller will be the value of the stress loss.

ISOMAP. ISOMAP can be viewed as an extension of MDS, it seeks a lower-

dimensional embedding that maintains geodesic distances between all points

and enables to preserve the non-linear relationships between data points.52

The algorithm comprises three steps:
1) Find the k-nearest neighbors of every data point based on the distance

matrix dij by kNN approach, where the k is the hyperparameter.

2) Construct the neighborhood graph where points are connected to each

other if they are each other’s neighbors, and then compute the shortest

path between each pair of data points (nodes), i.e., the geodesic dis-

tance between points.

3) MDS is used to compute lower-dimensional embedding. Given dis-

tances between each pair of points are known, MDS places each object

into the 2D space such that the between-point distances are preserved

as well as possible.

LLE. The LLE seeks a lower-dimensional projection of the data, which pre-

serves distances within local neighborhoods.53 It can be thought of as a series

of local principal-component analyses, which are globally compared to find

the best non-linear embedding. Similar to ISOMAP, LLE combines three major

steps to produce the lower-dimensional embedding. These are:

1) Find the k-nearest neighbors of every data point based on the distance

matrix dij by the kNN approach, where k is the hyperparameter.

2) Compute the weights Wij that best linearly reconstruct point Xi from its

k-nearest neighbors (every point is a linear combination of its neigh-

bors), solving the constrained least-squares problem (i.e., to minimize

the cost function εðWÞ):

εðWÞ =
X
i

�����Xi �
X
j

WijXj

�����
2

; such that
X
j

Wij = 1

3) Perform the low-dimensional embedding:

4) Compute the low-dimensional embedding vectors Yi best recon-

structed by Wij , minimizing BðYÞ by finding the smallest eigenmodes

of the sparse symmetric matrix: BðYÞ =
P
i

�����Yi �
P
j

WijYj

�����
2

Note that although the weights Wij and vectors Yi are computed by linear

methods, the constraint that points are only reconstructed from neighbors

can result in highly non-linear embeddings.53

t-SNE. t-SNE54 converts similarities between data points to joint probabilities

and tries to minimize the Kullback-Leibler (KL) divergence between the joint

probabilities of the low-dimensional embedding and the high-dimensional

data. The algorithm contains three steps:

1) Converting the input distancematrix dij into conditional probabilities pjji
that represent similarities:

pjji =
exp

� � dij

�
2s2

i

�
P

ksiexpð � dik

�
2s2

i Þ
:

Here, si is the variance of the Gaussian and is a tuning parameter, which is

usually determined based on a certain perplexity measure and a simple binary

search. The conditional probabilities pjji has to satisfy the symmetry condition:

pij =
pjji +pijj

2n
; 1% i; j% n:

2) Similarly, the joint probabilities qij in a 2D map are represented by Stu-

dent’s t distributions with one degree of freedom:
qij =

�
1+
��yi � yj

��2 	� 1

P
ksl

�
1+ kyk � ylk2

	� 1
:

3) To minimize the KL divergence between the two joint probability distri-

butions in the original space pij and the embedded space qij by gradient

descent:

KLðP k QÞ =
X
i

X
j

pij log
pij

qij

:

While Isomap and LLE are best suited to unfold a single continuous low-

dimensional manifold, t-SNE will focus on the local structure of the data and

will tend to extract clustered local groups of samples. This ability to group sam-

ples based on the local structure might be beneficial to visually disentangle a

dataset that comprises several manifolds at once.

UMAP. Compared with t-SNE, UMAP constructs two weighted graphs in

high-dimensional space (input) and low-dimensional space (embedding) and

minimizes the differences of the two graphs. Similar to t-SNE, the UMAP algo-

rithm also contains three major steps for the embedding:

1) To build a weighted topological k-neighbor graph P by exponential

probability distribution using correlation distance dij :

pijj = expð � ðdij � riÞ
�
siÞ;

where ri represents the distance from i-th point to its first nearest neighbor; si
is a (smoothed) normalization factor. The adjacency matrix pijj has to satisfy

the symmetry condition:

pij = pijj +pjji � pijjpjji :

2) To build a weighted graph Q in low dimension:

qij =
�
1+ a

�
yi � yj

�2b	� 1

;

where qij is the weight matrix of the low-dimensional neighbor graph Q, yi
and yj are the initial embedding coordinates, and a and b are

hyperparameters.

3) To minimize the error between the two topological representations P

and Q. The graph layout for Q is force directed, the forces are derived

from gradients optimizing the edgewise cross-entropy:

CEðX;YÞ = P



X

�
log



PðXÞ
QðYÞ

�
+



1 � PðXÞ

�
log



1 � PðXÞ
1 � QðYÞ

��
;

where CEðX;YÞ is the total cross-entropy loss over all the edge existence

probabilities between weighted graphs P and Q. Minimization of CEðX;YÞ
will let the low-dimensional representation settle into a state that relatively

accurately represents the overall topology of the source data.

Among these embedding methods, UMAP was chosen as the default

embedding method in our aggmap package (https://pypi.org/project/

aggmap/) because of its effectiveness in aggregating similar data points

while preserving their relative proximities for both local and global data

structures. The hyperparameters in these ME methods have impacts on

the embedding results. For example, the N neighbors UMAP provides the

trade-off for persevering the local/global structure. Technically, the hyper-

parameters in ME will affect the constructed 2D microbiomeprint, which in

turn affects the learning performance of AggMapNet models. To avoid the

impacts of different parameters in ME methods, the default settings in all
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ME methods are used for the 2D embedding of microbes. In the test of the

AggMapNet model performance of 2D microbiomeprints generated by

various embedding methods, the default architecture parameters and

training control parameters are used, and 50 epochs that reached conver-

gence were used by all experiments to eliminate the effects of the

AggMapNet hyperparameters.

MG/TG-based groupings

A color image is the multichannel data (e.g., the RGB channels) that contains

more abundant information than a grayscale image, and multichannel

networks are helpful for learning complex data by separately learning feature

subsets.55 Their representational richness often allows capturing of non-linear

dependencies at multiple scales.56 The shape of the multichannel 2D micro-

biomeprint is (�1, w, h, c), where c is the number of channels that can be

greater than 3 and generated by a grouping method. In this study, we used

each color to represent one channel. The multichannel (i.e., the number of mi-

crobial subgroups or colors) can be generated by truncating the phylogenetic

tree (taxonomic-based grouping) or the hierarchical clustering tree (MG-based

grouping) at given levels. The truncated clusters (the channel parameter c) will

be separately embedded into different channels to generate the multichannel

character of the 2D microbiomeprints, making the inputs more information

abundant.

For the MG-based grouping of the microbes, a hierarchical clustering tree is

constructed based on the microbial metagenomic abundance correlation dis-

tance matrix dij , the bottom-up agglomeration algorithm was used for group

merging. The complete linkage method is used to measure inter-cluster dis-

tances. The number of clusters (parameter c) is a hyperparameter, a higher

number of clusters will generate fine-grained separations of the microbes.

For the TG-based grouping of the microbes, the phylogenetic tree of the mi-

crobes is used. The phylogenetic tree is constructed based on the known tax-

onomy classification of the microbes, i.e., the kingdom, phylum, class, order,

family, and genus levels. Different from the MG-based grouping to directly

decide the number of the clusters, taxonomic-based grouping truncates

different taxonomy levels (e.g., the genus level) as grouping, and different

levels will generate different numbers of clusters, i.e., the numbers of the chan-

nels for the 2D microbiomeprint Fmaps.

Taken together, MG is based on the phenotype distance of microbes, while

TG is based on the genotype distance of microbes. To compare the perfor-

mance of the models that are trained on MG and TG 2D microbiomeprint in

Disease-Set1, we used the different levels (e.g., the genus level) of the tax-

onters (parameter c) was used in MG to generate the clusters. To eliminate

the effects of the AggMapNet hyperparameters, the default architecture pa-

rameters and training control parameters are used, and 50 epochs that

reached convergence were used to train the models.

Mapping and transformation

The mapping is to form the 2D grid and the transformation is to form the 2D

microbiomeprint Fmaps. The mapping operation includes position mapping

and channel mapping. In the position mapping, the 2D embedded microbes

were further mapped into regular 2D grids by the linear assignment algorithm.

The Jonker-Volgenant (J-V) algorithm57 was used for the assignment, which

preserves the 2D embedded neighborhood relationships while the microbes

are assigned into the grid points. Specifically, we first calculated the pairwise

squared Euclidean distance between two microbes from the matrices of 2D

embedding and 2D regular mesh grid:

d =
�
xembed � xgrid

�2
+
�
yembed � ygrid

�2
;

where ðxembed ; yembedÞ is the 2D coordinates of an FP, ðxgrid ; ygridÞ is the 2D co-

ordinates of a point in the mesh grid. The squared Euclidean distance matrix is

the N*N size matrix (where N is the number of the microbes), which was further

used as the cost matrix to solve the linear assignment problem (LAP) using the

J-V algorithm. The J-V algorithm finds an optimal solution to the global nearest

neighbor assignment problem by finding the set of assignments that minimize

the total cost of the assignments. In channel mapping, the microbes are as-

signed to different channels based on the subgroups. Finally, each microbe

has an optimized position in the microbial 2D regular grid map, and its neigh-

bors are the highly correlated microbes by ME.
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Based on the 2D grid location map and the grouping information of the mi-

crobes, the microbial abundance 1D vector data of each sample will be further

transformed into a multichannel 2D microbiomeprint (3D data), which is used

as the input of the AggMapNet DL models.
ConvNet-based AggMapNet modeling

As shown in Figure 1B, we designed the ConvNet-based AggMapNet18 with

MEGMA-generated 2D microbiomeprints as inputs. AggMapNet consists of

three major parts, the input Fmaps are the multichannel microbiomeprints (the

3D tensor data), the CNN-based feature extraction layers, and pyramid fully con-

nected layers. This network structure has a relatively small number of trainable

parameters (�0.3 million) but with two inception blocks. In the first convolutional

layer, we used a larger kernel number (48) for increased data dimension. The

max-pooling layer (kernel size = 3) was used for down-sampling with a stride

size of 2 after each convolution layer; thus, the spatial resolution of the Fmaps

is reduced more aggressively for lowering computation cost. Choosing the right

kernel size for the convolution operation is difficult because different tasks may

favor different kernel sizes. To improve AggMapNet performance for general

tasks, we adopted the naive inception layer of GooLeNet58 (a top-performer of

the ILSVRC-2014 classification task). The inception layer in AggMapNet only

consistsof three small parallel kernels (sizesof131,333,and535) toenhance

the local perception. Subsequently, the global max-pooling layer was used

before the dense layer instead of a flattened layer, which significantly decreases

the number of parameters, followed by dense layers for improved non-linear

transformation capability.

The hyperparameters AggMapNet include the network architecture pa-

rameters (NAPs) and the training-control parameters (TCPs). The NAPs are

the kernel size of the first convolutional layers (conv1_kernel_size), the num-

ber of dense layers, and corresponding units (dense_layers). Larger kernel

sizes or dense layer units increase the model parameters, and a larger kernel

size allows for more expressive power and a global perception.59 The TCPs

include the number of epochs, learning rate, and batch size. The cross-en-

tropy loss was used for both multi-task and binary tasks. During the training,

AggMapNet has two important parameters (the monitor and patience) for

early stopping. The monitor is the metric performance of the validation set,

and the patience parameter is the number of epochs with no improvement

on the monitor after which training will be stopped. The early stopping strat-

egy was used in the nested cross-validation to find the best number of

epochs.
Model evaluation metrics

Due to imbalanced classification labels for some datasets, using only the ac-

curacy metric cannot measure the performance of the model. Therefore, we

use multiple metrics for performance measurement, including F1 score for un-

balanced situations. Specifically, the following metrics were used for the

model evaluation in the benchmark Disease-Set1 and Disease-Set2: the

AUC (binary classification only), Matthew’s correlation coefficient (MCC), ac-

curacy (ACC), Precision, Recall, and F1 score. Here,

Precision =
TP

TP+FP

Recall ðTPRÞ =
TP

TP+FN

FPR =
FP

FP+TN

AUC =

Z1
0

TPR d ðFPRÞ

ACC =
TP+TN

TP+ FP+TN+FN

F1 Score = 2 � Precision � Recall

Precision + Recall



Input: Trained model f, feature matrix X, feature size N, training sample size M, target true label vector y, error measure Lðy; fÞ: To estimate this

error L, the log loss(cross-entropy) is used for the classification model

(1) Estimate the original model error: eorig = Lðy; fðXÞÞ = � 1

M

XM
j = 1

yj � logðfðXÞjÞ+ ð1 � yjÞ � logð1 � fðXÞjÞ . The model error e is calculated

by the log loss of the prediction values versus true labels for one class by many samples M.

(2) For each feature point i = 1; .; N do:

(i) Generate feature matrix Xpert
i by replacing feature i with the minimal value (background value) in the data X. This breaks the association

between feature i and true outcome y:

(ii) Estimate error epert
i = Lðy; fðXpert

i ÞÞ based on the predictions of the perturbed data.

(iii) Calculate perturbation FI score: Si = epert
i � eorig

(3) Sort features by descending FI score S.

(4) Optional corrections: applying a Z score standard scaling or logarithm transformation on S
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MCC = 2 � TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP+FNÞðTN+FPÞðTN+FNÞp ;

where TP(R), FP(R), TN, and FN are the true positive (rate), false positive (rate),

true negative, and false negative, respectively.

Comparison of MEGMA-AggMapNet with existing methods on

Disease-Set1 and Set2

To compare MEGMA-AggMapNet with existing ML models reported by Re-

iman et al.,8,9 the AggMapNet models were trained using stratified 10-fold

cross-validation on Disease-Set1.8,9 For each training set of the fold, the

nested cross-validation was used to find the best parameters. For MEGMA,

the default UMAP embedding method was used and the number of channels

was tuned. For AggMapNet, the training parameters, such as batch size and

the number of epochs, were tuned. All these parameters were tuned only in

the first fold of the nested cross-validation and were subsequently used in

other folds. The average and SD of each evaluating criteria from 10 times

(repeated with 10 different random seeds of 8, 16, 32, 64, 128, 256, 1,024,

2,048, 4,096, and 8,192 for the splitting training and test set) cross-validations

are reported. The average performance and SD were calculated to compare

the performance, and the paired t test (100 pairs) was used to test the signif-

icance of the difference between the performance of MLmodels andMEGMA-

AggMapNet performance. The comparison results are in Table S1.

For the comparison of Met2Img16,17 and MEGMA by the performance

AggMapNet models on Disease-Set2, theMet2Img16,17 andMEGMAmethods

were used to generate the inputs of AggMapNet with the same hyperpara-

meters. For the Met2Img16,17 method, the deepmg (https://pypi.org/project/

deepmg/1.0.33) python package was used for generating the ‘‘synthetic im-

ages,’’ the best method Fill-up with Species Bin and grays (fillup-spb-gray)

or jet color map (fillup-spb-jet) were used as described in the paper by Nguyen

et al.16,17 For MEGMA, the aggmap (https://pypi.org/project/aggmap/1.1.7)

python package was used for generating the inputs, and the following param-

eters were used: the default embedding method ‘‘umap,’’ the default grouping

channel number ‘‘5’’ (umap-c = 5), and higher grouping channel number ‘‘60’’

(umap-c = 60). The AggMapNet models were trained on Disease-Set216,17 by

using the same default parameters with 50 epochs. The performances of

Met2Img and MEGMA were tested by 10-fold cross-validation repeated 10

times with 10 different random seeds (8, 16, 32, 64, 128, 256, 1,024, 2,048,

4,096, and 8,192), a total of 100 runs. The average performance was reported,

and the SD was shown in parentheses. The paired t test (100 pairs) was used

for evaluating the significance of the difference between Met2Img and

MEGMA performance. The comparison results are in Table S2.

Model explanation and microbial saliency map

In computer vision, a saliency map displays the degree of importance of every

pixel. The saliency map of an input image specifies parts of it that contribute

the most to the activity of a specific layer in the network, or the decision of

the network as a whole.22 In this study, the revealed important microbial fea-

tures by AggMapNet model explanation were presented as a saliency map.

The 2D grid location map of microbial species can be generated by MEGMA

for each dataset. Based on the location map, the microbial saliency map
can be generated from the importance score of each microbial species (i.e.,

the GFI score).

The microbial saliency map is an image that highlights the region on which

the host phenotype prediction models focus first. The goal of a microbial sa-

liency map is to reflect the degree of importance of a microbe to the specific

host phenotype prediction model. The microbial saliency map aggregates

the IMs into hot zones by their abundance correlations, which helps us to

pick up the correlated microbes and recognize a specific microbial correlation

pattern that is critical for the host phenotype.

The global feature (microbe) importance score of the trained AggMapNet

model was calculated based on the training set using the perturbation-based

(model-independent post hoc feature attribution) method Simply-explainer. In

Simply-explainer, GFI score S is calculated by replacing each feature point

value (i.e., the abundance value of each microbe) with a background value,

without retraining the model:

The AggMapNet inputs are 4D tensor (batch size, width, height, channels) data

in multiple channels. The perturbation value is a background microbial abun-

dance value (e.g., zero value for blank pixel) of the input Fmaps. The correction

of the GFI of Simply-explainer includes the logarithm transformation and stan-

dard scaling of the GFI values to reveal the IMs. After scaling, those microbes

with GFI score >0 are considered notable microbes in a saliency map.

Statistical tests and ML methods for key biomarker identifications

Various metagenomic studies use univariate and multivariable statistical tests

to detect differentially abundant individual taxa between disease and control

groups.9 Linearmodel coefficients andRF FI are also commonly usedmethods

for ranking and selecting key features. In this study, the following methods

were used formaking comparisonswith the AggMapNetmodel GFI to discover

replicable CRC-biomarkers in the CRC-Nation set of CRC disease.

q value

For univariate association testing between the abundances of microbial taxa

and host phenotypes (e.g., CRC versus CTR), we used the nonparametric tests

method of two-sided WRST.3 Abundances of each species were determined

to be significantly elevated or depleted in the disease cases by pairwise com-

parison with the healthy controls using two-sided WRSTs. p < 0.05 was

considered statistically significant. Furthermore, the q value was estimated

by a Benjamini-Hochberg FDR-corrected p value.

Generalized FC

We further used the generalized (logarithmic) FC that was developed and used

in the study of Wirbel et al.3 The generalized FC is designed to have better res-

olution for sparse microbiome profiles, which is calculated as the mean differ-

ence in a set of predefined quantiles of the logarithmic CTR and CRC distribu-

tions. The generalized FC extends the established (median-based) FC to

provide higher resolution in sparse microbiome data.3

LASSO coefficients

The LASSO is amultivariate linear regression modeling method, it uses L1 reg-

ularization to shrink the coefficients of the variables. This type of regularization

can result in sparse models with few coefficients; some coefficients can

become zero and be eliminated from the model. LASSO is a widely used

method to select predictive microbial features and eliminate uninformative

ones in metagenomic disease classification models.3,4 Therefore, LASSO

was used as the third statistical method of identification of disease-associated
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gut microbial species in this study. The LASSO models were built to classify

the CRC or different stages from CTR similar to AggMapNet on the metage-

nomic datasets of CRC-Nation and CRC-Stage. The important parameter

alpha (a constant that multiplies the L1 regularization term) of LASSOwas opti-

mized by nested cross-validations. The variable’s coefficients of the well-

trained LASSO model were used as the model-adapted FI, that is, the impor-

tance score of the microbial features.

RF FI

RF is a meta estimator that fits several decision tree classifiers on various sub-

samples of the dataset, it uses averaging strategy to improve the predictive

accuracy and control over-fitting problems. RF is also a commonly usedmeta-

genomic ML method,4,9,15 the FI of the RF model has been used to identify the

biomarkers for disease model prediction.4,9 Therefore, RF FI was used as the

fourth method of identification of disease-associated gut microbial species in

this study. The RF models and FI were constructed and calculated by the Py-

thon sklearn (https://scikit-learn.org/) package. The hyperparameters of

‘‘n_estimators,’’ ‘‘min_samples_split,’’ ‘‘min_samples_leaf,’’ ‘‘max_features,’’

‘‘max_depth,’’ and ‘‘bootstrap’’ in RF were tuned by the nested cross-valida-

tions using the RandomizedSearchCV module of sklearn package.
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