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Abstract: Biopolymers have gained tremendous attention in many daily life applications, including
medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with
sensitive parts of the woman’s body and her newborn baby, which are normally associated with many
issues such as toxicity, infections, and even gene alterations. Medical professions that use screening,
examination, pre, and post-operation materials should benefit from a better understanding of each
type of material’s characteristics, health, and even environmental effects. The underlying principles
of biopolymer-based materials for different obstetric and gynecologic applications may discover
various advantages and benefits of using such materials. This review presents the health impact of
conventional polymer-based materials on pregnant women’s health and highlights the potential use
of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials
in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric
and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery;
as well as a wound dressing and healing materials. This review highlights the main issues and
challenges of biopolymers in obstetric and gynecologic applications.

Keywords: biopolymers; materials; obstetrics; gynecology; biomedical applications

1. Introduction

In a period of rapid growth of materials and medical knowledge and technological
advancements, progressively more is expected to be learned regarding developing new
materials to improve patients’ quality of life [1]. Obstetrics and gynecology are two fields
dealing with sensitive parts of women’s bodies and their newborn babies [2]. Weakening
the immune system upon pregnancy makes pregnant women more sensitive to the effect
of different potentially toxic materials, including conventional polymers [3]. Many conven-
tional synthetic or petroleum-based polymer-based materials are widely used in pregnant
women’s daily lives, confirmed by many epidemiological and human monitoring studies
their ability to cause serious health issues, including cancers [4–6]. The toxic effect of these
materials is restricted to pregnant women, but it has been confirmed that such materials
can induce genetic alterations, which may lead to a significant genetic deformity in future
generations [7,8].

Biopolymers have been proposed to be a safer alternative to conventional polymers in
many biomedical applications such as tissue engineering scaffolds [9,10], drug delivery [11],
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biosensing [12], wound healing [13], obstetrics, and gynecology [14,15]. The invention
pertains to developing new innovational biopolymer-based materials still challenging.
Many scientists joined the race to use more effective, less toxic, low cost, and sustainable
materials for different medical applications [16]. Despite their safety, non-cytotoxic, and
non-genotoxicity, biopolymers-based materials can also be efficiently be utilized after they
serve the purpose they made for, without polluting the environment and cause significant
health hazards as synthetic polymers based materials do [17]. Numerous studies have
been published and reviewed in the past few years [18,19], regarding biopolymer-based
materials [20], their properties [21], and applications [22], the medical applications of
different biopolymers have also been extensively reviewed in many publications [23,24].
There is no review covering the role of biopolymer-based materials in obstetrics and
gynecology application compared to conventional polymers. This review presents the
health impact of conventional polymers on pregnant women upon exposure to cosmetics,
personal care materials, therapeutics, etc. It proposes biopolymers as a safer alternative
for different obstetrics gynecology applications that directly contact pregnant women and
their pre- and post-delivery; highlighting the issues and challenges of utilizing biopolymer-
based materials in cosmetic and pregnancy care, gynecological surgical sutures, vaginal
care, and wound management materials.

2. Health Impact of Conventional Polymer-Based Materials in Obstetrics and Gynecology

Nowadays, synthetic polymers have become part of most of the materials in our
lives, including food and beverages, clothes, baby-toys, daily used instruments, and
even biomedical applications such as drug delivery systems and surgical equipment, and
cosmetics personal care materials [25,26]. Some studies have linked these materials with
potential health problems, especially to pregnant women and newborn infants [27,28].
Hormonally active agents or endocrine disruptors are a group of polymeric chemicals that
have been related to critical health issues such as congenital disabilities, cancerous tumors,
and other developmental disorders [29]. Pregnant women are the most affected group that
have recently sound an alarm about endocrine disruptors. Noticing a startling trend in
health issues in newborn babies, such as male babies with a congenital deformity of having
urethra opening on the side instead of the tip of their penis [30]. The use of synthetic or
non-biodegradable polymers generally represents better control in physicochemical and
mechanical properties, but not safety [31,32]. The daily used materials, including cosmetics
and personal care materials such as deodorants, lesions, creams, vaginal mucoadhesive, and
other medical and surgical materials containing conventional polymers have been reported
because of inflammation, cancers, fetus abnormalities, and genes alterations [33–35].

Biocompatibility has increasingly become a vital factor, especially in tissue-contacting
applications. Various conventional polymers have been reported to be cytotoxic and cause
low cellular viability upon direct contact with the conventional polymers [36,37]. Adhesive
resin cements are increasingly used in modern dentistry. Nevertheless, released substances
from resin materials have been shown to cause toxic cellular effects. Diemer et al. [38]
investigated the effect of resin-cements against different cell-lines and reported that all
their tested resin cements significantly reduced cell viability of human cells especially,
osteoblastic cells demonstrated a tremendous increase of cytotoxicity after cement expo-
sure. The authors suggested that the wide use of resin cement in every clinical situation
should be scrutinized. In a different study, Çobanoğlu et al. [39] evaluated the cytotoxicity
of polyethene and revealed a decrease in the cell proliferation index upon the cellular
exposure to the polymer cytotoxic and genotoxic potential in human peripheral blood lym-
phocytes. The authors reported that polyethylene exposure caused chromosome instability
in human lymphocytes.

2.1. Cosmetics and Personal Care Materials

Modern cosmetics often contain various polymeric and nano-sized components, which
can penetrate human skin cells and cause many diseases [40]. During pregnancy, the body



Polymers 2021, 13, 633 3 of 19

becomes weaker, in terms of anatomically, physiologically, and even immunologically,
leading to an increase in foreign materials’ chance to cause adverse health effects [41].
Some studies revealed very high concentrations of polymeric and metallic debris particles
inside the tissue surrounding the hip and knee replacements [42,43]. The presence of a
high concentration of polymers inside the tissue confirms their penetration and restric-
tion inside the cells, leading to inflammation, ultimately, osteolysis, and cancers [44,45].
Cationic polymers such as distearyldimonium chloride and benzyl dimethyl ammonium
chloride are highly popular ingredients in hair products, which tend to be very substantive
to the hair and difficult to remove [46]. Some epidemiological studies have detected a
significant risk of conventional polymeric ingredients used nowadays. [47,48]. Fruijtier-
Pölloth et al. [49] conducted a safety assessment for polyethene glycols and their commonly
used derivatives in cosmetic products and revealed acute toxicity for such compounds,
including skin irritation and sensitization, eye and mucosa irritation, carcinogenicity, re-
productive toxicity, and even genotoxicity. In a different study, Biondi et al. [7] investigated
the potential induction of chromosome aberrations by tetraethylene glycol in Chinese
hamster epithelial cells. The authors reported a significant increase in the exchange rate
between the sister chromatid in addition to chromosome damage. These chemicals’ ability
to cause genetic changes upon their penetration inside the cells could turn the cells to either
become carcinogenic or transfer the faulty genes to future generations [50,51]. Exposure
to bisphenol A, which can be absorbed through the skin, has been significantly linked
to neurological and reproductive damage [52]. Sugeng et al. [53] identified predictors
of phthalate chemical levels in pregnant women in Australia. They revealed that higher
phthalate levels in pregnant women were significantly associated with consuming tinned
food, such as tomatoes and fish.

In contrast, the level of diethyl phthalate was considerably higher in women who use
an air freshener. It has been reported that the exposure of using such synthetic materials
affects offspring health and may lead to cancer, diabetes, obesity, and neurodevelopmental
problems [54,55]. Conventional plastics and plastic-based materials that contain Bisphenol-
A, which proved to cause a reduction in fertility, increase the chances of miscarriage in
pregnant women, or even premature birth [56,57]. Refer to Figure 1 to summarize the effect
of conventional polymers in cosmetic and personal care products on pregnant women.

Polymers 2021, 13, 633 4 of 21 
 

 

 

Figure 1. Illustration of the health risk of conventional polymers in cosmetic and personal care materials on pregnant 

women. 

2.2. Therapeutic Pharmaceuticals  

Poly(ethyl acrylate-co-methyl methacrylate-co-trimethyl ammonia-ethyl methacry-

late chloride) or Eudragit RS 100 is a highly used synthetic polymer in gynecological drug 

delivery [58]. It has been used to deliver numerous vaginal antifungal, antiviral, antibac-

terial drugs, and other vaginal diseases in the form of nanocapsules and nanospheres [59]. 

Some studies have shown that Eudragit RS 100 may degrade into smaller fragments and 

remain in the body for a long time, leading to safety concerns as it accumulates inside the 

body and potentially induces immune disturbance [60–62]. Polyamidoamine dendrimers 

have been widely used in different drug delivery and biotechnology applications. Men-

joge et al. [63] successfully developed polyamidoamine dendrimers drug carrier to be 

used during pregnancy as a novel approach for selectively delivering different therapeu-

tics without significant transfer from pregnant women’s circulation to the fetus (Figure 2). 

Many studies revealed dendrimers’ possibility of undergoing endocytosis and crossing 

the cell membrane to reach intracellular localization [64,65]. Functionalization of polyam-

idoamine drug delivery system dramatically affected their ability to diffuse and penetrate 

the central nervous system tissues [66]. The dendrimer also was reported to induce dra-

matic apoptotic action and in vitro cell death of neurons [66]. This report suggests a po-

tential health issue in large concentrations and for the long-term and the next generation, 

as these types of polymers can penetrate and remain inside the cells for a long period.  

Figure 1. Illustration of the health risk of conventional polymers in cosmetic and personal care materials on pregnant women.



Polymers 2021, 13, 633 4 of 19

2.2. Therapeutic Pharmaceuticals

Poly(ethyl acrylate-co-methyl methacrylate-co-trimethyl ammonia-ethyl methacrylate
chloride) or Eudragit RS 100 is a highly used synthetic polymer in gynecological drug
delivery [58]. It has been used to deliver numerous vaginal antifungal, antiviral, antibacte-
rial drugs, and other vaginal diseases in the form of nanocapsules and nanospheres [59].
Some studies have shown that Eudragit RS 100 may degrade into smaller fragments and
remain in the body for a long time, leading to safety concerns as it accumulates inside the
body and potentially induces immune disturbance [60–62]. Polyamidoamine dendrimers
have been widely used in different drug delivery and biotechnology applications. Men-
joge et al. [63] successfully developed polyamidoamine dendrimers drug carrier to be used
during pregnancy as a novel approach for selectively delivering different therapeutics with-
out significant transfer from pregnant women’s circulation to the fetus (Figure 2). Many
studies revealed dendrimers’ possibility of undergoing endocytosis and crossing the cell
membrane to reach intracellular localization [64,65]. Functionalization of polyamidoamine
drug delivery system dramatically affected their ability to diffuse and penetrate the central
nervous system tissues [66]. The dendrimer also was reported to induce dramatic apoptotic
action and in vitro cell death of neurons [66]. This report suggests a potential health issue
in large concentrations and for the long-term and the next generation, as these types of
polymers can penetrate and remain inside the cells for a long period.
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Figure 2. Schematic illustration of polyamidoamine dendrimers for drug delivery during pregnancy. Adapted from
Menjoge et al. [63].

Polyethene glycol is a petroleum-based polyether compound, has been used in various
medical applications, including gynecological drug delivery, due to its lubrication ability
and excellent moisture retention [67]. Although polyethene glycol is considered safe and
almost non-toxic, researchers have recently noticed unsafe issues regarding this polymer.
Polyethene glycol might has been reported to cause chronic oral toxicity in rats and humans,
suggesting significant safety problems of these ‘safe’ materials [49]. In a different study,
Liu et al. [68] evaluated the cytotoxicity of polyethene glycol derivatives on human cervical
cancer cells. They revealed a potential hazard that shows that trimethylene glycol tends to
be more toxic at high concentrations. Phthalates are a family of polymeric chemical com-
pounds present in various pharmaceutical drugs and are thought to be hormonally active
agents, which could cause endocrine disruptions [69]. Broe et al. [70] investigated the effect
of phthalate exposure from different pharmaceutical drugs. They revealed that pregnant
women who have been exposed to some phthalate polymer-containing drugs during the
third trimester were highly associated with preterm birth. Other studies suggested that
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even environmental exposure of pregnant women to hormonally active agents such as
phthalates polymer may increase preterm birth risk [71,72].

2.3. Surgical Sutures

Surgical sutures made from conventional polymers have been reported to induce a
certain degree of an undesirable inflammatory reaction upon using them in obstetric and
gynecologic surgeries, which is different based on the used material [73,74]. Lee et al. [75]
evaluated the suture complication rates in addition to surgical outcomes of surgery (vagi-
nal uterosacral ligament suspension) using synthetic polymers included monofilament
polypropylene and multifilament polyester as sutures. The authors reported significant
complications regarding using these synthetic polymers including suture erosion at the
vaginal apex and granulation tissue, higher in multifilament polyester sutures [76]. Cy-
totoxicity of conventional polymers upon the direct contact of open wounds is the main
cause of increasing inflammation reactions [74]. Apart from their ability to penetrate
inside the cells, conventional polymers have been reported to induce the production of
numerous cytokines, which may lead to disturbance in a particular tissue environment
and cause undesirable effects [77]. Polyglycolic acid was introduced as a synthetic surgical
suture in the early 1979s, followed by poly (lactic-co-glycolic acid) sutures [78]. Ceonzo
et al. [79] investigated and revealed significant induction of local inflammatory response
using polyglycolic acid-based sutures. Polyvinylidene fluoride is another synthetic poly-
mer representing an attractive alternative to polypropylene for surgical sutures and a
monofilament vascular suture [80]. Other synthetic polymers-based sutures have been
used—including polypropylene, polytrimethylene carbonate, polydioxanone, etc.—they re-
ported poor knot security [81,82]. The high stability and non-biodegradability of synthetic
polymeric sutures make another operation’s need to remove the tissue’s suture. However,
obstetric and gynecologic surgeries may not resist such a requirement, especially in diabetic
or week immune women [83], giving the need for better options to avoid any potential
complications.

2.4. Other Applications

Vitrification process requires cryoprotectant solutions to prevent ice crystals and in-
crease the solution’s viscosity at low temperatures [84]. Different polymeric cryoprotectants
have been used, including glycerol, ethylene glycol, propylene glycol, 1,2-propanediol,
dimethylsulfoxide, sucrose, etc. [85]. Most of these cryoprotectants proved to have some
toxicity and could cause some changes in the preserved cells of tissues, vitrifying on cooling
at a smoothly repeatable rate. Faustino et al. [86] reported that ovarian tissue fragments
could be cryopreserved to preserve females’ fertility by protecting their ovaries’ functions.
Bari et al. [87] studied poly-vinyl pyrrolidone’s effect in vitrification solutions on vitrifica-
tion of Buffalo oocytes. They revealed that poly-vinyl increases pyrrolidone concentration
in the solution the number of cells reduced, in addition to causing morphological changes
in the oocytes after vitrification. In a different study, Vizcarra et al. [28] reported that
using synthetic polymers improves the quality and performance of vitrified ovarian tissue
without testing their genetic or cytotoxic effect. However, Amorim et al. [88] evaluated
the effect of using different vitrification solutions on human preantral follicles’ morphol-
ogy. They concluded that vitrification solutions containing less toxic materials showed
fast-penetrating and did not affect follicular morphology. In a recent study, Kokotsaki
et al. [89] evaluated the impact of vitrification on human granulosa cell survival and its
effect on gene expression. The authors used two different vitrification solutions; the first
one contains DMSO. The second one contains polyethene glycol and revealed many dead
cells and noticeable gene change variation. Santos et al. [90] summarized a plethora of
DMSO cellular effects like reactive oxygen species scavenging, modulation of the cell
cycle, apoptosis, and protein expression. Liu et al. [68] evaluated PEG-based monomers’
cytotoxicity and revealed obvious cytotoxicity only at high concentrations compared to
low concentrations, which did not show any significant cytotoxicity. In many countries, the
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first choice for dental filling materials is tooth-colored polymers, which have been related
to some concerns about their safety, especially in pregnant women [91]. The presence of
endocrine disrupters in such fallings could pass through the placental barrier in the fresh
filling process, putting the vulnerable fetus at risk [92]. Results from animal studies have
indicated that bisphenol A has reproductive and developmental effects, in addition to
systemic toxicity [93,94]. In a different study, Pfeifer et al. [95] reported the health effect
of polymer-based direct filling materials on pregnant women and revealed that these
polymers able to induce dental disturbance even after long period. Non-degradability of
these polymers make them remain and possibly fracture to nano sized pieces and penetrate
inside the cells, leading to serious health issues.

3. Biopolymer-Based Materials in Obstetrics and Gynecological Applications

Biopolymers are naturally occurring polymers produced by living cells of animals,
plants, and microorganisms, either polysaccharides, protein, or even polyesters
(Figure 3) [96–98]. The ideal biopolymer for any medical application would have many
characteristics, such as: non-toxic, does not evoke an inflammatory or immunological
response, is easily sterilized, has an acceptable shelf life, and can be easily processed to its
final form [26,99]. Many biopolymers have been proved for their non-toxicity, biocompati-
bility, and enhance cellular viability and proliferation. Ramphul et al. [100] reported that
due to several OH groups’ presence, in many biopolymers such as cellulose, they possess
high hydrophilicity and promote cellular interactions. Vartiainen et al. [101] investigated
the cytotoxicity and biocompatibility of biopolymers-based tissue scaffolds. They revealed
no cytotoxic effect on human or mouse cell lines scaffold did not cause any effects to
the cells.
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The application of biopolymer-based materials in obstetrics and gynecology have been
a thrust area of research in the past few years due to the unique and superior properties
that many biopolymers exhibit [102]. The current decade witnessed an increased use of
biopolymeric based materials in the form of hydrogels, aerogels, films, sutures, surgical
implants, examination materials, scaffolds for tissue engineering, and drug delivery, which
can be attributed to the extraordinary and exceptional versatility that many biopolymers
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possess when compared to conventional petroleum, metal, or ceramic-based materials [103].
The successful utilization of biopolymers in many obstetrics and gynecological applica-
tions, including vaginal drug delivery [104], cosmetic and personal care products [105],
examination equipment is an instrument as bioplastics [106], smart gynecological sutures,
and wound healing products [107,108], etc., attracted researchers for more development to
avoid using the conventional and health-hazardous polymers.

3.1. Biopolymer-Based Materials in Cosmetics and Personal Care

Numerous biopolymer-based cosmetic ingredients are commercially available—including
cellulose, starch collagen, keratin, and elastin—which have been applied in various cos-
metic and personal care formulations [109]. Biopolymers play a critical role as thickening
and moisturizer agents. A range of biopolymeric hydrogel has been fabricated for skin
and hair care products [110]. Biopolymer based emulsions spread have been proved to be
significantly better on the sensitive skin compared to those containing conventional based
polymers [111]. They provide stringiness upon pick-up and comfort stickiness feeling to the
skin [112]. Shakeri-Zadeh et al. [113] synthesized biopolymeric composites using chitosan
and silver nanoparticles as antibacterial agents. The authors modified the conventional
cotton tampon with their composite and revealed significant enhancement in absorption ca-
pacity and strong antibacterial activity. No erythema or edema was observed for modified
tampon on the skin, indicating no sign of any dermal toxicity, suggesting great potential for
upgrading the quality of regular feminine cotton tampon [113]. Genital herpes is globally
common, especially in women of developing countries, affecting nearly 400 million people
worldwide [114]. Pacheco-Quito et al. [115] fabricated vaginal tablets using a natural
combination of the biopolymer hydroxypropyl methylcellulose and iota-carrageenan for
delivery control the release of the antiviral drug acyclovir. The authors revealed the ability
of tablets in controlling the release of acyclovir, which showed high mucoadhesive capacity
through vaginal walls allowing the formulation to remain within the vaginal area long
enough, leading to complete release of the antiviral drug (Figure 4).
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Collagen-based biocomposite was prepared from collagen/gelatin/hydroxyethyl cel-
lulose as a natural formulation for skincare applications [116]. The biocomposite possessed
higher swelling properties than commercial synthetic ingredients; the authors revealed this
composite’s potentials in different cosmetic and dermatological applications as safer op-
tions for women with sensitive skin and during pregnancy. Chitosan is another biopolymer
characterized by antimicrobial nature; it has been used in various skin and hair products,
such as soaps, shampoos, permanent wave agents, rinses, and styling lotions, hair col-
orants, and hair sprays [117]. Polymeric polysaccharides and natural proteins have been
utilized for various preparations for potential cosmetic uses [118]. Silk fibroin and keratin
are two commonly used biopolymeric proteins that showed great potentials in cosmetic
products. Zhu et al. [119] fabricated silk fibroin-based hydrogels with excellent mechanical
properties for potential use in many biomedical and cosmetic applications. Refer to Table
1 to summarize the most used biopolymer-based formulations in cosmetic and personal
care applications.

Table 1. Advantages and disadvantages of biopolymer-based formulations in cosmetic and personal care.

Biopolymer Advantages Disadvantages Ref

Cellulose Improve the moisture in the skin and minimizes
hyper-pigmentation appearance. Poor compatibility with hydrophobic matrixes. [120]

Chitosan Strong antimicrobial, antioxidant properties, as
well as softens the skin.

Chitosan intrinsic properties may be affected by
its cross-linking. [121]

Gelatin Improving skin health and significantly cause
skin firmness. Potential allergic reactions in some individuals. [122]

Hyaluronic acid Reduction of wrinkles and visibility of fine lines,
as well as smoothening the skin.

Rash on the application site and potential
allergic reactions. [123]

Collagen Reduces skin wrinkles, improves its elasticity,
and boosts skin hydration.

Possible inflammation responses in some
individuals. [124]

Alginate Improve skin elasticity, strengthens and freshens,
as well as erasing fine wrinkles. Some formulations may have a foul smell. [125]

3.2. Biopolymer-Based Materials in Obstetrics and Gynecological Therapeutics

Renal colic is a common condition among pregnant women, affecting both the mother
and her fetus. It is the most non-obstetric reason for the hospitalization of pregnant
women [126]. The biopolymeric stent has been developed to manage this condition during
pregnancy. Can et al. [126] found that urgent stent placement during pregnancy was
highly effective, reliable, and safe. The authors also reported that the biopolymeric stent
had a low complication rate and was significantly effective in managing the persistent
flank pain in pregnant women. Conventional stents have several major issues, such as
stent clogging (due to microbial biofilm) and stent migration. Besides removing the stent
operatively from the patient’s body, biopolymeric stents have been reported to disintegrate
into basic substances, which decompose in the human body, without any need for surgical
removal [127]. Simultaneously, biopolymer-based stents have the potential to cross-link
with different antimicrobial agents, drugs, or antibiotics to prevent biofilm formation and
on their surface (Figure 5) [19]. The antimicrobial agents are released slowly during the
degradation of the bio-stent, which prevents the adhering and growth of bacteria and
avoids the formation of biofilm and subsequent stent clogging [126].
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Several bioadhesive biopolymers have been fabricated in the past few years for differ-
ent mucosal sites, including the vagina, to treat several gynecological diseases. Cazorla-
Luna et al. [128] prepared vaginal mucoadhesive bilayer films using ethylcellulose as a
precursor material for controlled release of the antiviral drug antiviral. The prepared
film showed sustained antiviral drug release with more than 360 h mucoadhesion time,
without any signs of toxicity. The authors revealed that biopolymers offer a promising
option for women of self-protection against various sexually transmitted diseases such
as HIV. Thanks to normal flora such as lactobacilli, the pH of the vaginal fluid between 4
and 5.5 in healthy women are considered a drug delivery site for numerous drugs [129].
Unlike conventional polymeric vaginal drug delivery systems, which are associated with
some drawbacks—including toxicity, potential allergic action, messiness, and leakage—in
addition to relatively poor retention time [130]. Biopolymers are valuable candidates for
numerous mucoadhesive gel formulations that can be used in drug delivery due to their
proven safety [131], high biocompatibility [106], ability to conjugate with a variety of drugs
and other polymers [132], and eco-friendliness [107]. Women of reproductive age are
increasingly prevalent in terms of vaginal microbial infections. Several novel approaches
have been used to fabricate biopolymer-based materials, including nano-systems, vaginal
films, mucoadhesive polymeric systems, nanofibers, and smart stimuli-responsive sys-
tems [133,134]. Biopolymers-based materials have been used to combat the limitation of
conventional synthetic polymeric products, such as low retention time, discomfort, lack of
optimal prevention, and treatment approaches that led to a high recurrence rate for vaginal
diseases [135]. Figure 6 summary of biopolymer-based therapeutic options for vaginal
microbial infection.
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The elastin-like polypeptide has been used to measure the effects of elastin-like
polypeptide polymer size on pharmacokinetics in addition to biodistribution and pla-
cental transfer of the biopolymer [136]. The authors revealed that pharmacokinetics and
biodistribution of an elastin-like polypeptide during pregnancy were size-dependent. The
biopolymer was too large to traverse the placental barrier. Verifying that elastin-like
polypeptide fusion is a powerful method that can modulate half-life and prevent cargo
molecules’ placental transfer [136]. These biopolymers can also deliver certain drugs during
pregnancy, preventing the drug from fetal exposure while targeting the pregnant mother.

3.3. Biopolymer-Based Materials in Obstetrics and Gynecological Surgical Sutures

Throughout the history of sutures and surgery related to obstetric and gynecologic,
various materials have been used, including wires of gold, silver, and iron: animal hairs;
dried gut; silk; plants fiber such as tree bark; more recently, biopolymer-based materials
start attracting great attention for developing different wound closure. However, no study
has specified the best and perfect suture material for all situations [137]. Gynecological
surgeries have great potential for adjunct vascular interventions, especially in women
who suffer from obesity or do not do enough exercise, given the proximity of major
and main intra-abdominal and pelvic blood vessels [138]. Levin et al. [138] recently
reported that vascular repairs in gynecologic operations have become uncommon due to
the great advancement in medical and material science. Still, it predicts major morbidity
and mortality as it can dramatically turn to become a critical and life-threatening issue.
Biodegradable sutures have received significant attention in antimicrobial delivery and
wound healing applications [19]. Surgical sutures have been a reliable and effective strategy
for preventing wound infection in post operations. Smart surgical sutures have developed
from biopolymers with antimicrobial properties (Figure 7), delivering various antibacterial
and anti-inflammatory drugs and natural materials to the surgical site [139].
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Natural biopolymers’ role in the fabrication of various biocompatible and reliable
surgical sutures with good antimicrobial and mechanical properties is paramount, mak-
ing them appropriate and highly preferred for vascular repairs in gynecological opera-
tions [140]. Recent research has focused on developing enhanced sutures that possess
improved functionalities, which could play a prominent role in obstetric and gynecologi-
cal operations [141,142]. The braided corrugated vascular prosthesis has been fabricated
from poly-lactic acid and polyethene terephthalate by Fangueiro et al., who patented this
technology [106]. The braided corrugated vascular prosthesis showed great advantages in
re-establishes blood flow in all affected and damaged segments of blood vessels, which
have been used in many vascular surgeries [143].

3.4. Biopolymer-Based Materials for Obstetrical and Gynecological Wound Management

Wound healing disorders in obstetrics and gynecology are among the medical pro-
fessions’ issues due to their chronicity, difficult-to-heal, serious complications, extended
hospitalization times, and increased treatment costs [144]. Wounds in obstetrics and gy-
necology have been classified by the Centers for Disease Control and Prevention (CDC)
as clean-contaminated wounds [145]. Plowman et al. [146] reported an overall incidence
of healthcare-associated infections of 7.8%, which varied based on the type and specialty.
Gynecology was the highest incidence with 13.1%, while the obstetric incident was the
third with 10.1%. In a different study, Johnson et al. [147] reported more than 10% of
women undergoing natural vaginal delivery and who sustained perineal trauma, which
required suturing, developed a wound infection, which could be even increased in women
who suffer from obesity, chronic diseases such as diabetes [148,149]. In particular, ce-
sarean section and abdominal hysterectomy, surgical site infections rates are 1.8–11.3%
and 3.0–12.2%, respectively, reported to be much higher 21–39% in women who undergo
surgical treatment of tumors of the vulva [150,151]. Stanirowski et al. [152] reviewed
the available literature. They discussed the possibilities for using efficacy and low-cost
growth factors in treating post-surgical wounds in obstetrics and gynecology and revealed
significant difficulties in healing these wounds even with growth factors and hormones.
The prevention of infections in obstetrics and gynecology is challenging. The vagina and
cervix’s normal flora can promote serious infection under certain circumstances in females’
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genital tract [153]. In the past few years, the results of numerous clinical trials regarding
using biopolymer-based wound dressing on different wounds of obstetrics and gynecology
attracted more scientists for use of biopolymers in wound dressing. Fouda et al. [154]
treated cotton with two biopolymers namely chitosan and linear polyvinyl amine, which
possess antimicrobial activity for sensitive wound treatment applications such as diabetic,
obstetrics, and gynecology wounds and revealed synergistic bacteriostatic effect for the
treated cotton. Kamoun et al. [155] reviewed the potential use of biopolymeric hydrogel
membranes to dress different types of wounds. They reported that these biopolymers
could fulfill the demanded conditions required for dressing and treatment of skin wounds.
Figure 8 presents the types of biopolymeric dressings and their advantages in dressing
obstetric and gynecological wounds.
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Natural delivery has also been associated with vaginal trauma caused by vaginal
surgery, leading to serious wound infection [156]. Various cellulose and chitosan-based
biocomposites have been developed and characterized to explore their potential use in
obstetric and gynecological tampons [157]. Viscose fibers have been coated by chitosan
as an antibacterial agent to develop gynecological tampons, which dissolve in acetic or
lactic acids to inhibit microbial growth and adjust its pH [158]. This biopolymer-based
tampon proved to be better than many commercial ones. The high absorption rate and the
antimicrobial properties of chitosan make it highly suitable and beneficial for pregnant
women [157]. As natural polymers, chitosan’s ability to cross-link with cellulose fibers in
regular biodegradable textile sheets allows the fabrication of smart wound dressings highly
suitable for adsorption, preventing microbial growth, and accelerate wound healing.

4. Issues and Challenges of Biopolymers in Obstetrics and Gynecology

Even with promising trends of biopolymers for applicability, they still need to be
improved to suit the desirable properties for obstetrics and gynecology. Few disadvantages
have been reported upon using some biopolymers, which differed based on the type of
application and the type of biopolymers. Many biopolymers possess rapid degradation
rates and low mechanical properties [159], which may not be desired in some gynecological
applications such as early pregnancy stents. Some researchers have proposed using hy-
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brids of biopolymers to overcome this issue, and they were able to enhance the mechanical
properties significantly and delay the rate of degradability. High hydrophilic capacity
is another issue reported in some literature [106], which may not be desirable for the
humid environment such as the vagina or in vivo applications. The properties of different
biopolymers can be significantly enhanced to meet the needs for any desired application.
Still, the cost of production may not be effective and reliable for commercialization pur-
poses. It is necessary to conduct more enhancements and economic studies, enhance the
currently developed materials, develop new ones, overcome the cost-effective challenge,
contribute to scientific knowledge, and, consequently, contribute to future generations and
ensure sustainability. A major challenge associated with designing new biopolymer-based
mucoadhesive is studying the interactions between the new formulation and mucosal
fluids/tissues, monitoring the long-term effect, and bio distribution of the formulation
content upon vaginal administration.

5. Conclusions

The overuse of conventional polymer-based materials led to serious health issues for
women and babies in the current and future generations due to their ability to induce
genetic alteration, in addition to the generation of a large volume of non-degradable
wastes. The technological advancements in materials science, engineering, and medical
professionals have stimulated the search for safer and better alternatives to sustainability
goals. The safer alternatives should be non-hazardous to women, their babies, and the
environment. Biopolymers have been used in numerous medical applications, including
obstetrics and gynecology. They deal with sensitive parts on the women’s body and fetus, as
safer alternatives for synthetic polymers, due to their extraordinary and unique properties.
Many biopolymer-based diagnostic and therapeutic materials have been developed and
proven safe for pregnant women and future babies. Obstetric and gynecologic specialists
or surgeons who use screening, examination, and operation materials, should benefit
from a better understanding of the properties, health, and environmental effect of each
type, the underlying principles of biopolymer-based materials for different obstetric and
gynecological applications may discover various advantages and benefits to the use of
such materials.
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