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Subjective cognitive decline (SCD) is considered the earliest preclinical stage of
Alzheimer’s disease (AD) that precedes mild cognitive impairment (MCI). Effective and
accurate diagnosis of SCD is crucial for early detection of and timely intervention in AD.
In this study, brain functional connectome (i.e., functional connections and graph theory
metrics) based on the resting-state functional magnetic resonance imaging (rs-fMRI)
provided multiple information about brain networks and has been used to distinguish
individuals with SCD from normal controls (NCs). The consensus connections and the
discriminative nodal graph metrics selected by group least absolute shrinkage and
selection operator (LASSO) mainly distributed in the prefrontal and frontal cortices and
the subcortical regions corresponded to default mode network (DMN) and frontoparietal
task control network. Nodal efficiency and nodal shortest path showed the most
significant discriminative ability among the selected nodal graph metrics. Furthermore,
the comparison results of topological attributes suggested that the brain network
integration function was weakened and network segregation function was enhanced
in SCD patients. Moreover, the combination of brain connectome information based
on multiple kernel-support vector machine (MK-SVM) achieved the best classification
performance with 83.33% accuracy, 90.00% sensitivity, and an area under the curve
(AUC) of 0.927. The findings of this study provided a new perspective to combine
machine learning methods with exploration of brain pathophysiological mechanisms in
SCD and offered potential neuroimaging biomarkers for diagnosis of early-stage AD.

Keywords: resting-state functional magnetic resonance imaging, functional connection, graph theory, multiple
kernel learning, subjective cognitive impairment

INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease, which is characterized by
the continuous loss of neurons and cognitive function decline (Blennow et al., 2006). With the
increasing aging population and failure of clinical trials for AD, early diagnosis and interventions
for preclinical AD are urgent and critical. Subjective cognitive decline (SCD) is considered as the
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earliest preclinical stage of AD that precedes mild cognitive
impairment (MCI) (Jessen et al., 2014). It refers to self-reported
and persistent cognitive impairment (Jessen et al., 2020). Previous
studies have indicated that patients with SCD were 4.5–6.5 times
more likely to convert to MCI or AD than those without cognitive
complaints (Reisberg et al., 2010; Tales et al., 2015). Therefore,
SCD is a promising sign for early prediction and diagnosis of AD.

At present, a growing number of neuroimaging studies
have suggested that patients with SCD show atrophy of gray
matter volume, degeneration of white matter fiber structure,
and reduction of spontaneous functional activity in the frontal,
lateral temporal, and parietal cortices (Fan et al., 2018; Shu
et al., 2018; Lin et al., 2019). The brain connectome, including
functional connections and graph theory topological metrics,
is based on functional network and has attracted increasing
attention owing to the complex brain network mechanism and
various diagnostic information (Biswal et al., 2010; delEtoile
and Adeli, 2017; Filippi et al., 2018; Gao et al., 2020). In a
series of resting-state functional brain network researches, Wang
Y. et al. (2013) compared the functional connections among
individuals with SCD, MCI, and normal controls (NCs) and
found that the strength of the functional connection between
the default mode network (DMN) and right hippocampus in
the SCD group was stronger than that in the MCI group but
weaker than that in the NCs. With respect to graph theory
attributes, the results of Li et al. (2018) reported the SCD
patients exhibited lower degree centrality in the inferior parietal
region and higher degree centrality in the bilateral hippocampus
and left fusiform gyrus than the NCs. However, most of these
studies were conducted separately depending on brain network
functional connections or some graph theory attributes, and
the results were acquired based on group-level comparisons.
Given the multimodal properties of the brain connectome, it is
a challenge to identify the discriminative features and apply them
to individual classifications of SCD.

To address these issues, machine learning approaches
combining feature selection and classifier have been applied
for early and accurate diagnosis of AD. For the multimodal
properties of brain connectome, least absolute shrinkage and
selection operator (LASSO) (Wee et al., 2014; Li et al., 2019)
and Student’s t-test (Qiao et al., 2016) were used to identify
the predominant features of the brain network. Considering
that a brain node has a group of nodal graph metrics, the
modified group-LASSO method is considered to be more suitable
for feature selection of nodal graph metrics (Liu et al., 2019).
Moreover, compared with the support vector machine (SVM),
the results of previous studies have demonstrated that multiple
kernel SVM combined with multimodal brain connectome can
partially alleviate the high-dimensional curve of multiple features
and achieve better classification performance in the diagnosis of
MCI and AD (Dyrba et al., 2015; Xu et al., 2020).

Considering the potential advantages of machine learning
methods, we intend to combine group-LASSO and multiple
kernel-SVM (MK-SVM) methods to identify the most
discriminative features of the brain connectome and conduct
accurate identification of SCD patients from NCs. This study
might provide valuable information for accurate diagnosis of

SCD and to explore the pathophysiological mechanisms of
the preclinical AD.

MATERIALS AND METHODS

Participants
This study used a longitudinal case–control design based on
data retrospectively selected from the China Longitudinal Aging
Study (CLAS) (Xiao et al., 2013), which was a community-
based study of all individuals with Han Chinese nationality
and aged ≥ 60 years in Shanghai (Xiao et al., 2016). This
study was approved by the ethics committee of Shanghai
Mental Health Center, Shanghai Jiao Tong University School
of Medicine. A total of 67 right-handed participants (including
22 SCD and 20 NCs) were enrolled in our study. All subjects
had a data collection in 2012 and 2019. The data collected
in 2012 included epidemiological investigation, neurologic
examination, a battery of neuropsychological assessments, and
three-dimensional T1-weighted imaging (3D-T1WI) scan. The
neuropsychological assessments included the Mini Mental State
Examination (MMSE) (Tsai et al., 2020), Montreal Cognitive
Assessment (MoCA) (Hao et al., 2020), Auditory Verbal Learning
Test (AVLT) (Zhao et al., 2015), Wechsler Intelligence Scale
(WAIS) (Hulur et al., 2018), Geriatric Depression Scale (GDS)
(Sawada et al., 2019), Self-Rating Anxiety Scale (SAS) (Bruck
et al., 2019), and Subjective Cognitive Decline Self-administered
Questionnaire (SCD-9) (Shirooka et al., 2018). Besides, in
2019, in addition to the above-mentioned data collection,
the same group of follow-up subjects also performed resting-
state functional magnetic resonance imaging (rs-fMRI) scan.
Therefore, the research on functional brain network connectome
in this study was only based on follow-up samples after 7 years.

The inclusion criteria of SCD were based on the conceptual
framework proposed by the Subjective Cognitive Decline
Initiative (SCD-I) (Jessen et al., 2014) that included the following:
(a) onset age > 60 years; (b) self-perceived gradual decline in
memory compared with a previous normal status within the
last 5 years or as conformed by a close caregiver; (c) MMSE
and MoCA scores within the normal range; and d) a Clinical
Dementia Rating (CDR) score of 0 (Petersen et al., 2001). The
NCs should be without cognitive decline and neuropsychological
test scores within the normal range. The exclusion criteria were as
follows: (a) neurology-related or cerebral vascular diseases (e.g.,
Parkinson’s disease, brain tumors, or intracranial aneurysms);
(b) systemic diseases that could cause cognitive impairments
(e.g., thyroid dysfunctions, syphilis, HIV, or severe anemia); (c)
severe schizophrenia or mental retardation according to their
medical records; (d) severe problems with vision, hearing, or
speaking; and (e) the inability to participate actively in the
neuropsychological evaluation.

Data Acquisition
T1-weighted structural imaging and rs-fMRI scans were
performed on each subject in the same session. All MRI data
were acquired on a 3.0-T MR scanner (Magnetom§ Verio;
Siemens, Munich, Germany) using a 32-channel head coil. All
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participants were instructed to keep their eyes closed (but not to
fall asleep), try to think of nothing, and move as little as possible
during the scan.

T1-weighted 3D high-resolution images were collected
using magnetization-prepared rapid gradient echo (MP-
RAGE) sequence with the following parameters: repetition
time (TR) = 2,300 ms, echo time (TE) = 2.98 ms, flip
angle = 9◦, inversion time (TI) = 1,100 ms, matrix
size = 240 × 256, field of view (FOV) = 240 × 256 mm,
slice number = 192, thickness = 1.2 mm, and voxel
size = 1.0 × 1.0 × 1.2 mm. The scan lasted 5 min and 12 s.
Meanwhile, the parameters of the rs-fMRI protocol were
collected as follows: axial slices, TR = 2,000 ms, TE = 30 ms, flip
angle = 90◦, FOV = 224 × 224 mm, matrix size = 64 × 64,
number of slices = 31, thickness = 3.6 mm, and voxel
size = 3.5× 3.5× 3.6 mm. Each scan collected 240 volumes with
a scan time of 8 min and 6 s.

Data Preprocessing
Data preprocessing was performed using Data Processing
Assistant for Resting-State fMRI (DPARSF1) and Statistical
Parametric Mapping (SPM122). The first 10 time points were
discarded to ensure stabilization of the initial signal and
adaptation of participants to the environment. Timing correction
to the last slice was conducted. Realignment for compensation
of head-movement effects was achieved using a six-parameter
rigid-body spatial transformation. All spatial movements was
considered as < 3-mm displacement and < 3◦ rotation in any
direction, and no participant was excluded. Next, rs-fMRI images
were co-registered to the high-resolution 3D-T1 structural
images. Normalization of 3D-T1 structural MRI images to the
Montreal Neurological Institute (MNI) space was performed
by non-linear warping based on Diffeomorphic Anatomical
Registration Through Exponentiated Lie Algebra (DARTEL).
Then, rs-fMRI images were spatially normalized to the MNI
space using the same parameters derived from the normalization
of structural images and simultaneously resampled into 3-mm
isotropic voxels. All normalized fMRI images were smoothed
with a 6-mm, full-width at half maximum Gaussian kernel.
Linear detrending and band-pass filtering at 0.01–0.1 Hz were
carried out to control low-frequency drift and high-frequency
physiological noise. Finally, nuisance covariates were regressed
out, including the Friston 24-motion parameter model (six head-
motion parameters, six head-motion parameters one time point
before, and the 12 corresponding squared items); global mean;
white matter; and cerebrospinal fluid signals.

Brain Network Construction
The average time series within each region based on the
automated anatomical labeling (AAL) atlas were separately
extracted to construct the connectivity brain network (Tzourio-
Mazoyer et al., 2002). The Pearson correlation coefficients of all
pairs of 90 regions of interest (ROIs) were applied separately to
define the edges of functional connections. Thus, the functional

1http://restfmri.net/forum/index.php
2http://www.fil.ion.ucl.ac.uk/spm

connectivity matrix (adjacency matrix) was constructed. The
final functional connection networks produced N ∗ (N - 1)/2
edges, where N corresponded to the number of nodes in the
networks. Considering the ambiguous interpretation of negative
correlations, we restricted the analysis to positive correlations and
set the negative correlation coefficients as zero. A thresholding
method rely on network sparsity was conducted to discard the
less significant connections and retain the topological properties
of graph theory by setting an appropriate threshold for network
sparsity (Dai et al., 2019). Sparsity thresholds (ranging from
0.02 to 0.5, with steps of 0.01) were set to acquire a binary
undirected network. In order to avoid the influence of sparsity
threshold on graph theory, the area under the curve (AUC) is
adopted as the feature. It represents the sum of graph theory
attributes of brain networks obtained under different sparsity
thresholds. Therefore, the AUC, the sum value of 49 values of
the corresponding node attributes, is used as input for the node
attribute to train the classifier.

Computation of Graph Metrics
Based on the binary undirected matrices, we analyzed the graph
theory topological properties of the functional brain network
by Graph Theoretical Network Analysis Toolbox (GRETNA3)
based on Statistical Parametric Mapping (SPM84) with MATLAB
R2013b. As shown in Table 1, global and nodal topological
metrics were applied to characterize the different patterns of
connections in the brain network (Wang et al., 2015). The
modularity (Q) of a brain network quantified the efficiency of
segmenting a brain network into modules (Newman, 2006). The
greedy optimization algorithm was used as follows:

Q =
Nm∑
i=1

[li/L− (di/2L)2]

where Nm is the number of modules, L is the total number
of edges in the brain network, li represents the number of
within-module edges in the module i, and di is the sum of the
linked edges at each node within the module i. Modified greedy
optimization was used to detect the modular structure (Newman,
2004). Moreover, according to the definition of “hubs” (Rubinov
and Sporns, 2010), we identified the top 5% of brain regions with
the greatest weight in both SCD patients and NCs.

3www.nitrc.org/projects/gretna/
4www.fil.ion.ucl.ac.uk/spm

TABLE 1 | Global and nodal graph metrics of the brain connectome.

Global graph metrics Nodal graph metrics

Clustering coefficient (Cp) Betweenness centrality

Characteristic path length (Lp) Degree centrality

Normalized clustering coefficient (γ) Nodal clustering coefficient

Normalized characteristic path length (λ) Nodal efficiency

Small-world (σ) Nodal local efficiency

Global efficiency, Eglobal Nodal shortest path

Modularity (Q)
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TABLE 2 | Demographics and clinical characteristics of patients with subjective
cognitive decline (SCD) and normal controls (NCs).

Characteristic/test SCD NC T/χ2/Z P

Age (years) 74.0 ± 5.6 71.8 ± 2.9 1.67a 0.11

Sex (F/M) 14/8 6/14 5.31b 0.05

Education 10.1 ± 2.0 10.4 ± 3.0 0.00c 1.00

MMSE 27.6 ± 1.8 28.2 ± 1.6 −1.13c 0.26

MoCA 23.6 ± 3.9 24.1 ± 3.8 −0.48c 0.63

AVLT-Immediate Recall 5.5 ± 1.9 4.8 ± 1.5 −0.98c 0.33

AVLT-Short Delayed Recall 8.1 ± 2.6 8.2 ± 2.1 −0.14a 0.89

AVLT-Long Delayed Recall 30.9 ± 7.7 33.2 ± 7.6 −1.00c 0.32

AVLT-Recognition 10.2 ± 3.1 11.2 ± 3.0 −0.95c 0.34

Digit Span forward 8.0 ± 2.3 9.0 ± 2.0 −1.61a 0.11

Digit Span backward 5.3 ± 1.9 6.2 ± 2.3 −1.35a 0.19

WAIS picture completion 10.1 ± 2.7 11.9 ± 3.6 −1.76a 0.09

WAIS block design 27.2 ± 7.3 30.4 ± 6.7 −1.53c 0.13

GDS 6.5 ± 5.5 2.8 ± 2.6 −2.65c 0.01*

SAS 26.4 ± 4.5 23.9 ± 4.4 −1.93c 0.05

SCD-9 3.8 ± 1.9 2.4 ± 2.0 0.58a 0.03*

MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment;
AVLT, Auditory Verbal Learning Test; WAIS, Wechsler Intelligence Scale; GDS,
Geriatric Depression Scale; SAS, Self-Rating Anxiety Scale; SCD-9, Subjective
Cognitive Decline Self-administered Questionnaire. Data are presented as the
mean ± SD. *P < 0.05 indicates significant differences between the groups. aT
value was obtained by using the two-sample t-test. bχ2value was obtained using
the chi-square test. cZ value obtained by using the rank-sum test.

Statistical Analyses
In terms of demographics and clinical characteristics, two-sample
Student’s t-tests were performed except for sex (which was tested
by the chi-square test). The clinical and demographic data of
the participants are summarized in Table 2. P < 0.05 indicated
a significant difference in demographic data. Comparison of
graph theory metrics between SCD patients and NCs were
carried out based on two-sample Student’s t-tests. A procedure
to ascertain the false discovery rate was performed to further
correct for multiple comparisons. P < 0.05 indicated a

significant difference. In addition, for the functional connections,
we selected connections by based on Student’s t-tests (P-
value < 0.05). As the selected connections in each inner loop
might be different, we identified the consensus connections
for the classification model in each inner leave-one-out cross-
validation (LOOCV) loop to ensure that the selected connections
in each inner loop might be consistent.

Feature Selection
As mentioned above, the brain was divided into 90 nodes based
on the AAL90, and each node corresponded to six local graph
metrics (Figure 1). Thus, the nodal graph metrics naturally have
a group topology; i.e., a node corresponds to a group of node-
graph theoretical attributes. Given the natural group attributes,
we used group-LASSO as the feature-selection scheme for nodal
graph metrics.

minw

n∑
i=1

log(1+ exp(−yi × (

nROI∑
j=1

6∑
k=1

w(j,k)x(j,k) + c)))

+ λ

nROI∑
i

|

6∑
k

w2
jk|,

where yi is the label of the i-th participant, and w(j,k) and
x(j,k) are the weight and value of the j-th ROI and k-th
nodal graph metric, respectively. It is notable that x(j,k) is
normalized by Fisher Z-transformation to avoid scale imbalance.
We used the SLEP toolbox5 to calculate w(j,k) with a default
setting of λ = 1.

In present study, we follow the most commonly used nested
cross-validation scheme to evaluate the performance of the
proposed multiple kernel method (Varma and Simon, 2006).
Thus, the features were selected for each iteration of the LOOCV
procedure. As the selected connections in each inner loop might

5www.yelab.net/software/SLEP

FIGURE 1 | Procedures of data processing and classification in the present study.
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be different, we further identified the consensus connections for
discovering the biomarker toward SCD identification.

Classification
To overcome the limitation of high-dimensional curve and
small number, we used MK-SVM with the kernel combination
trick in our study for information combination to partially
alleviate the annihilation of high-dimensional information
to low-dimensional information. MK-SVM was carried out
listed as follows.

In the present study, there are n training samples of functional
connections and graph metrics. x1

i , x2
i , x3

i , and yi ∈ {1,−1}
represent the discriminative connection, global graph metrics,
nodal graph metrics, and its corresponding class label of the i-th
sample, respectively. MK-SVM calculates the problem as follows:

min
W

1
2

3∑
m=1

βm||wm
||

2
+ C

n∑
i=1

ξi

s.t. yi(

3∑
m=1

βm(wm)Tφm(xm
i )+ b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, ..., n

where φm is mapping from the original space to the reproducing
kernel Hilbert space (RKHS), wm represents the normal vector
of the hyperplane in RKHS, and βm denotes the corresponding
combining weight on the m-th modality. Then, the dual form of
MK-SVM can be represented as follows:

max
α

n∑
i=1

αi −
1
2

∑
i,j

αiαjyiyj

3∑
m=1

βmkm(xm
i , ym

i )

s.t.
n∑

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2, ..., n

where km (xm
i , ym

i
)
= φm(xm

i )
Tφm(xm

j ) and is the kernel matrix
on the m-th modality. After we trained the model, we tested
the new samples x = {x1, x2, . . . , xM}. The kernel between the
new test sample and i-th training sample on the m-th modality
is defined as km (xm

i , xm)
= φm (xm

i
)T

φm(xm). In the end, the
predictive level based on MK-SVM was calculated as follows:

f (x1, x2, . . . , xm) = sign(
n∑

i=1

yiαi

3∑
m=1

βmkm (xm
i , xm)

+ b)

The proposed MK-SVM in this study could be considered
an innovative multiple kernel learning method, because βm
is selected based on the cross-validation scheme on the grid-
searching space with constraints

∑
m βm = 1. The range of c was

2−5 to 25. All data processing and classification procedures used
in our study are shown in Figure 1. To deal with the small sample
size, we used the LOOCV strategy to verify the performance of
the methods, in which only one subject is left out for testing,

while the others are used to train the models and obtain the
optimal parameters. For the choice of optimal parameters, an
inner LOOCV was conducted on the training data by using a
grid-search strategy.

RESULTS

Demographics and Clinical
Characteristics
The demographics and clinical characteristics of all subjects are
summarized in Table 2. The scores of GDS and SCD-9 in the SCD
group were significantly higher than those in the NCs (P < 0.05),
which indicated SCD patients show higher depression rate than
that of NCs. There were no significant differences with respect to
age, sex, education, and other scales.

Consensus Connections of Brain
Network
As mentioned above, we selected the consensus connections
with P < 0.05 in each loop. A total of 72 consensus
connections are shown in Figure 2. All consensus connections
had both increased and decreased functional connections in
SCD patients. We projected them into the corresponding
subnetworks and found that most consensus connections were
mainly distributed in the DMN and frontoparietal task control
network. Because degree attribute represents the number of
functional connectivity edges of nodes, in this study, we further
detected the distribution of functional connections across the
whole brain by using the nodal degree. The results indicated
that the brain regions with the highest degree were mainly
distributed in the frontal and prefrontal cortices and the
subcortical areas. It is notable that the decreased degree values
of SCD patients in these regions suggest the reduced number of
functional connections.

Global Graph Metrics of the Functional
Brain Connectome
We found that the SCD and NC groups met the topological
attributes of “small-world.” That is, the brain networks of SCD
and NCs had larger Cp and almost identical Lp than the
matched random networks. With the increase in connection
density, the value of Cp increased, but values of Lp, γ,
λ, and σ decreased in the SCD and NC groups. Statistical
analysis showed that the Eglobal value of SCD patients was
lower than that of NCs, while the values of Lp, λ, and Q in
the SCD group were higher than those in NCs (P < 0.05)
(Figure 3).

Nodal Graph Metrics of the Functional
Brain Connectome
For the nodal graph metrics of the functional brain connectome,
we identified the most predominant brain regions and the
most discriminative nodal graph metrics, which were selected
by group-LASSO. First, our results showed the top 20 most
predominant brain nodes with the most significant differences in
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FIGURE 2 | Left: The consensus connections selected by leave-one-out cross-validation (LOOCV). The connections were mapped on the ICBM 152 template with
the BrainNetViewer package (http://nitrc.org/projects/bnv/). Blue and red represent the decrease and increase of functional connection weight of subjective cognitive
decline (SCD) groups, respectively. Right: The consensus connections of functional brain network selected by LOOCV in SCD and normal control (NC) groups based
on AAL90. The thickness of an arc in the circle indicates the discriminative power of an edge, which is inversely proportional to the estimated P-values. The colors
were randomly generated to differentiate regions of interests (ROIs). The figure was conducted with a MATLAB function, circularGraph, shared by Paul Kassebaum.
(http://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph).

FIGURE 3 | Comparison of characteristic path length (Lp), normalized characteristic path length λ, global efficiency (Eglobal), and modularity (Q) between the
subjective cognitive decline (SCD) and normal control (NC) groups.
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TABLE 3 | Top 20 predominant brain nodes with the significant differences in
nodal graph metrics.

AAL number Corresponding brain
regions

Number of
nodal metrics

Anatomical
classification

30 Insula_R 4 Subcortical

70 Paracentral_Lobule_R 3 Parietal

29 Insula_L 2 Subcortical

32 Cingulum_Ant_R 1 Prefrontal

38 Hippocampus_R 1 Temporal

7 Frontal_Mid_L 1 Prefrontal

8 Frontal_Mid_R 1 Prefrontal

9 Frontal_Mid_Orb_L 1 Prefrontal

11 Frontal_Inf_Oper_L 1 Prefrontal

12 Frontal_Inf_Oper_R 1 Prefrontal

13 Frontal_Inf_Tri_L 1 Prefrontal

14 Frontal_Inf_Tri_R 1 Prefrontal

27 Rectus_L 1 Prefrontal

28 Rectus_R 1 Prefrontal

36 Cingulum_Post_R 1 Parietal

37 Hippocampus_L 1 Temporal

44 Calcarine_R 1 Occipital

48 Lingual_R 1 Occipital

61 Parietal_Inf_L 1 Parietal

64 SupraMarginal_R 1 Parietal

AAL, automated anatomical labeling atlas.

nodal graph metrics. As shown in Table 3 and Figure 4, most of
the predominant brain regions were distributed in the prefrontal
and parietal cortices and the subcortical regions. In particular,
the insula is attributed to subcortical region exhibited four nodal
graph metrics with significant differences. The prefrontal cortex,
including the middle frontal gyrus, inferior frontal gyrus, and
gyrus rectus, accounts for the maximum number of the top 20
most predominant brain nodes.

Moreover, we found that the nodal graph theory showed
the maximum discriminative ability, selected by group-LASSO
(Figure 4). Table 4 shows the top 20 nodal graph topological
features with the largest discriminative ability. Our results
indicated that the nodal graph metric with the most significant
difference was nodal efficiency, and the corresponding brain
region was the insula attributed to the subcortical region.
Meanwhile, the nodal shortest path, which accounts for the
largest proportion of the top 20 nodal graph metrics and most of
the corresponding brain regions, was distributed in the prefrontal
and parietal cortices.

In addition, our results identified the hub nodes of SCD
patients and NCs. As shown in Table 5 and Figure 4, the
common hubs of SCD patients and NCs were located mainly
in the frontal and prefrontal cortices. More importantly, some
hub nodes such as the temporal pole and anterior cingulate and
paracingulate gyri were present only in SCD patients. Further,
there were also some hub nodes such as bilateral insulars that
only existed in NCs.

FIGURE 4 | Left: The most predominant nodes for discriminating subjective cognitive decline (SCD) from normal control (NC) groups selected by group least
absolute shrinkage and selection operator (LASSO). Right: Hub nodes of SCD and NC groups in the brain network.
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TABLE 4 | Top 20 nodal graph theory features with maximum discriminative ability
selected by group-LASSO.

Nodal graph
measures

AAL number Corresponding brain
regions

Anatomical
classification

Nodal efficiency 30 Insula_R Subcortical

Nodal clustering
coefficient

70 Paracentral_Lobule_R Parietal

Nodal shortest path 11 Frontal_Inf_Oper_L Prefrontal

Nodal shortest path 13 Frontal_Inf_Tri_L Prefrontal

Nodal shortest path 29 Insula_L Subcortical

Betweenness
centrality

70 Paracentral_Lobule_R Parietal

Nodal efficiency 29 Insula_L Subcortical

Nodal shortest path 30 Insula_R Subcortical

Betweenness
centrality

38 Hippocampus_R Temporal

Nodal clustering
coefficient

36 Cingulum_Post_R Parietal

Nodal shortest path 61 Parietal_Inf_L Parietal

Nodal local
efficiency

70 Paracentral_Lobule_R Parietal

Betweenness
centrality

28 Rectus_R Prefrontal

Degree centrality 27 Rectus_L Prefrontal

Nodal shortest path 14 Frontal_Inf_Tri_R Prefrontal

Nodal shortest path 8 Frontal_Mid_R Prefrontal

Nodal shortest path 9 Frontal_Mid_Orb_L Prefrontal

Nodal shortest path 17 Rolandic_Oper_L Frontal

Betweenness
centrality

32 Cingulum_Ant_R Prefrontal

Betweenness
centrality

30 Insula_R Subcortical

AAL, automated anatomical labeling atlas; LASSO, least absolute shrinkage and
selection operator.

TABLE 5 | Hubs of SCD and NCs defined with the degree.

AAL number Corresponding brain regions Anatomical
classification

SCD 25 Frontal_Mid_Orb_L Prefrontal

26 Frontal_Mid_Orb_R Prefrontal

84 Temporal_Pole_Sup_R Temporal

18 Rolandic_Oper_R Frontal

31 Cingulum_Ant_L Prefrontal

NC 26 Frontal_Mid_Orb_R Prefrontal

17 Rolandic_Oper_L Frontal

29 Insula_L Subcortical

30 Insula_R Subcortical

18 Rolandic_Oper_R Frontal

AAL, the automated anatomical labeling atlas; SCD, subjective cognitive decline;
NC, normal control.

Classification
After the selection of discriminative features of brain network
connectome, MK-SVM was used to combine the brain
connectome information. The performance of classification
with different brain network features was evaluated based on the

values of accuracy, sensitivity, and specificity, as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
,

Sensitivity =
TP

TP + FN
,

Specificity =
TN

TN + FP
,

where TP, TN, FP, and FN denote the number of true-
positive, true-negative, false-positive, and false-negative values,
respectively. The area under the receiver operating characteristic
curve (AUC) was calculated as a performance measure for
binary classification of SCD and NCs. In particular, LOOCV was
employed in this study because of the small sample size, which
provided an optimistic estimate of the classification accuracy, as
all except one of the subjects was used to train the classifier. For
other approaches such as the k-fold cross-validation, only N -
k (where N is the total number of participants in the dataset)
participants were included during the training process, resulting
in poorer performance given the small dataset. For the functional
connections (C), global metrics (G), and nodal metrics (N) of
the brain network, we obtained AUCs of 0.728, 0.793, and 0.865,
respectively (Table 6 and Figure 5). Moreover, after combining
functional connections and global metrics (C + G), functional
connections and nodal metrics (C + N), and global metrics and
nodal metrics (G + N), the AUCs of classification were 0.836,
0.888, and 0.918, respectively. Finally, combinations of all brain
network connectome features based on MK-SVM achieved the
best classification performance with 83.33% accuracy and 90.00%
sensitivity and an AUC of 0.927. To investigate the significance
of model performance improvement, differences between various
AUCs were compared by using a Delong test (DeLong et al.,
1988). The statistical tests compared with MK_SVM and the
single modal methods were two sided, and P-values less than
0.05 (P = 0.00654, global metrics vs. MK_C + G + N; P = 0.027,
connection vs. MK_C + G + N, P = 0.014; and nodal metrics
vs. MK_C + G + N) indicated statistical significance, while
the P-value statistical tests compared with MK_C + G + N
with two model methods are less significant, with P-values of
0.035 (MK_C + G vs. MK_C + G + N), 0.031 (MK_N + G vs.
MK_C + G + N), and 0.027 (MK_C + N vs. MK_C + G + N).

TABLE 6 | The evaluation of classification performance corresponding to different
functional connectome features.

Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC

Connection (C) 64.29 50.00 77.23 0.728

Global Metrics (G) 69.05 65.00 72.73 0.793

Nodal Metrics (N) 73.81 80.00 68.18 0.865

MK_C + G 71.43 75.00 68.18 0.836

MK_C + N 78.57 85.00 72.73 0.888

MK_G + N 80.95 85.00 77.27 0.918

MK_C + G + N 83.33 90.00 77.27 0.927

MK-SVM, multiple kernel-support vector machine.
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FIGURE 5 | Receiver operating characteristic (ROC) of classification based on
different features. C, connection; G, global metrics; N, nodal metrics; MK,
multiple kernel; FPR, false-positive rate; TPR, true-positive rate.

DISCUSSION

In this study, we applied machine learning methods with
functional connections and topological metrics to investigate
the most discriminative features of the brain connectome,
accurately diagnose SCD, and achieve meaningful results.
First, our results suggested that the consensus connections
selected by t-test and the discriminative nodal graph metrics
selected by group-LASSO were mainly distributed in the
prefrontal and frontal cortices and the subcortical regions,
which corresponds to the DMN and frontoparietal task control
network. Second, the comparison results of topological attributes
suggested that the brain network integration function was
weakened and segregation function was enhanced in SCD
patients. Moreover, the combination of brain connectome
information based on MK-SVM effectively improved the
classification performance.

From the distribution of both consensus connections and
nodal graph metrics, we found that the predominant brain
regions in SCD patients with significant differences were mainly
distributed in the prefrontal cortex (bilateral middle frontal
gyrus, bilateral inferior frontal gyrus, and bilateral gyrus rectus);
parietal cortex (left inferior parietal and right supramarginal
gyrus); and subcortical regions (bilateral insula). Previous studies
have also found abnormalities in some of these brain regions
mentioned above. For instance, Yan et al. (2019) identified the
most discriminating brain regions by the methods of elastic
net, LASSO, and Fisher score, which were mainly located in
the medial prefrontal cortex (mPFC) and subcortical structures.
Chen et al. (2020) found that the nodal global efficiency and
nodal local efficiency were increased in SCD patients, which

were mainly located in the frontal, medial temporal, and
parietal cortices (Chen et al., 2020). Multiple evidences have
suggested that self-referential processing is mediated by cortical
midline structures such as the ventromedial and dorsomedial
prefrontal cortex and the anterior and posterior cingulate cortex
(Yasuno et al., 2015). Nevertheless, the results of SCD studies
suggested that individuals with preclinical AD were more likely to
present functional network abnormalities in the prefrontal cortex
than MCI patients in previous studies, who showed the most
significant differences of brain connectome mainly distributed
in the medial temporal lobe (Xu et al., 2020). Compared with
the distribution of brain regions with significant differences
(e.g., medial temporal lobe) in MCI patients as detected in
previous studies, the results suggested that patients with SCD
were more likely to show changes to the functional networks
in the prefrontal cortex. Furthermore, from the perspective
of subnetworks, most of these brain regions mentioned above
were distributed in the DMN and frontoparietal task control,
which is consistent with previous studies. Our results not only
showed that DMN is considered the most vulnerable functional
subnetwork in the early stage of AD (Meskaldji et al., 2016; Xie
et al., 2019) but also showed the repeatability and verifiability
of the proposed methods, which is an important contribution
of our research.

In addition, we explored the topological features of the
nodal graph with the largest discriminative ability. Our
results indicated that nodal efficiency and nodal shortest path
had the most significant discriminative ability among the
selected nodal graph metrics. The changes of nodal graph
metrics have also been mentioned in previous studies (Li
et al., 2018). Meanwhile, our findings suggested that the
corresponding brain regions with the most discriminative nodal
graph metrics overlapped with the hub nodes found in SCD
patients. Therefore, our results emphasize the importance of
analyzing the brain connectome for early discrimination of SCD
patients from NCs.

With respect to the altered pattern of functional brain
connectome in SCD patients, our results indicated that patients
with SCD and NC groups fit the global topological attributes
of “small-world.” That is, the brain network supported rapid
and real-time information integration between different brain
regions and could maximize the efficiency of active information
processing between brain regions with minimum cost (Liao
et al., 2017). However, the increase of Lp and λ values and
the decrease of Eglobal value suggested the decrease of brain
network integration function in SCD patients; i.e., the global
information communication and transmission abilities of the
whole brain network reduced. At the same time, the increase
of Q value indicated that the brain network of SCD patients
tended to be more modular, and the network segregation function
of information communication and transmission between local
information in the brain network was enhanced (Wang J. et al.,
2013). This compensatory change in the local function of the
brain network may be used to explain the mild neuronal injury in
SCD but with clinically normal residual cognitive manifestation
(Sperling et al., 2011; Li et al., 2018).
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It is a challenge to identify objective and accurate
neuroimaging biomarkers and apply them to the individual
classification of SCD. In our study, considering a brain node
corresponds to a group of nodal topological attributes, we
adopted the modified group-LASSO algorithm to select the
predominant brain regions and the most discriminative nodal
graph metrics. Compared with Student’s t-test and LASSO, the
proposed group-LASSO is more suitable for the feature selection
of nodal graph metrics. It can reserve the most discriminative
features while alleviating redundancy of information. Finally,
MK-SVM was used to combine the multimodal features of
the brain connectome, which partially alleviated the high-
dimensional curve of multiple features and achieved the
best classification performance with 83.33% accuracy, 90.00%
sensitivity, and an AUC of 0.927. Compared with previous studies
performed by Yan et al. (accuracy: 79.23%; Yan et al., 2019) and
Chen et al. (accuracy: 80.24%; Chen et al., 2020), our results
suggested the feature selection and combination of multimodal
brain connections could improve the classification performance
of SCD. Furthermore, differences between various AUCs were
compared by using a Delong test, which demonstrated that
the proposed method combined with multimodal features of
brain network connectome significantly outperformed the single
modality based on current samples.

Limitations and Future Directions
Our study has some limitations. First, the sample size of
the study was small. Although our method achieved a good
classification performance based on the current samples, we
look forward to expanding the sample size in future research
to further validate the robustness and generalizability of our
proposed method. In addition, our approach has only been
validated on single-center data, but a large amount of data are
currently from multicenter sources. Therefore, in the future
work, the performance of the proposed method needs to
be further validated based on multicenter data. The second
is the combination of multimodal diagnostic information. In
future research, we can classify and explore the pathological
mechanisms of SCD by combining multimodal diagnostic
information by means of structural MRI, PET-MRI, and blood
biomarkers. Moreover, our results suggested that SCD patients
showed a higher rate of depression than the NCs. Previous
studies have also shown that SCD is usually associated with
mild symptoms of depression (Hill et al., 2016; Jessen et al.,
2020). It might co-occur with SCD due to a common underlying
cause, or as a result of SCD itself. Nevertheless, the specific
mechanism between SCD and depression still needs to be
further verified.

CONCLUSION

Our results showed that the discriminative brain connectome
features were mainly distributed in the prefrontal and frontal
cortices and the subcortical regions, which corresponded to the
DMN and frontoparietal task control network. The comparison

results of topological attributes indicated that the brain network
integration function was weakened and segregation function was
enhanced in SCD patients. Moreover, the combination of brain
connectome information based on MK-SVM greatly improved
the classification performance. The findings of this study might
provide valuable information for accurate diagnosis of preclinical
AD and to better understand its pathological mechanisms, which
might provide a crucial opportunity for postponing and even
preventing the progression of this disease.
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