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Abstract: MicroRNAs (miRNAs) are involved in regulating many aspects of plant growth and devel-
opment at the post-transcriptional level. Gerbera (Gerbera hybrida) is an important ornamental crop.
However, the role of miRNAs in the growth and development of gerbera is still unclear. In this study,
we used high-throughput sequencing to analyze the expression profiles of miRNAs in ray floret dur-
ing inflorescence opening. A total of 164 miRNAs were obtained, comprising 24 conserved miRNAs
and 140 novel miRNAs. Ten conserved and 15 novel miRNAs were differentially expressed during
ray floret growth, and 607 differentially expressed target genes of these differentially expressed miR-
NAs were identified using psRNATarget. We performed a comprehensive analysis of the expression
profiles of the miRNAs and their targets. The changes in expression of five miRNAs (ghy-miR156,
ghy-miR164, ghy-miRn24, ghy-miRn75 and ghy-miRn133) were inversely correlated with the changes
in expression of their eight target genes. The miRNA cleavage sites in candidate target gene mRNAs
were determined using 5-RLM-RACE. Several miRNA-mRNA pairs were predicted to regulate ray
floret growth and anthocyanin biosynthesis. In conclusion, the results of small RNA sequencing
provide valuable information to reveal the mechanisms of miRNA-mediated ray floret growth and

anthocyanin accumulation in gerbera.
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1. Introduction

Petals are an important part of flowers, and are also a reference indicator for the selec-
tion of ornamental flowers [1-3]. Petal morphogenesis, which governs petal shape, size
and color, can be divided into three stages: petal initiation, cell proliferation and cell expan-
sion [4-6]. There are five main types of regulator involved in the regulatory network of petal
growth and development: (1) phytohormones, including auxin, ethylene and jasmonic acid
(JA); (2) transcription factors (TFs), such as CUP-SHAPED COTYLEDON]1 (CUC1), CUC2,
NAM/ATAF1/2/CUC2 (NAC), TEOSINTE BRANCHED1/CYCLOIDEA /PCF4 (TCP4),
TCP5, AINTEGUMENTA (ANT), JAGGED (JAG) and RABBIT EARS (RBE);
(3) ubiquitin pathway-related genes, which include BIG BROTHER (BB) and ubiquitin
receptor DA1; (4) epigenetic regulators, such as methyltransferases or proteins involved in
histone modifications; and (5) microRNAs (miRNAs) [5,7].

miRNAs are single-stranded RNAs with a length of about 19-24 nt that regulate the
transcription or translation of intracellular genes at the post-transcriptional level [8]. In
plants, an endogenous gene that encodes a miRNA is transcribed by RNA polymerase II to
form a primary transcript (pri-miRNA), which is then cleaved twice by Dicer-like 1 (DCL1)

Int. . Mol. Sci. 2022, 23, 7296. https:/ /doi.org/10.3390/ijms23137296

https:/ /www.mdpi.com/journal/ijms


https://doi.org/10.3390/ijms23137296
https://doi.org/10.3390/ijms23137296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms23137296
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23137296?type=check_update&version=1

Int. J. Mol. Sci. 2022, 23,7296

20f19

to finally produce a mature miRNA [9-11]. miRNAs act by binding to RNA-induced
silencing complex (RISC), but the manner of silencing is determined by the properties of
the mRNAs they target [12,13]. In general, if a miRNA nearly perfectly complements an
mRNA sequence, then the mRNA will be specifically cleaved by RISC; if the mRNA does
not perfectly complement the miRNA, then RISC will not specifically cleave the mRNA,
but only prevent translation of the mRNA into protein [13,14].

Most miRNAs are highly conserved during evolution, especially the 21 nt miRNAs,
which participate in the regulation of many aspects of plant growth and development,
including the morphogenesis of floral organs and anthocyanin accumulation [12,15-19].
The genes encoding NAC domain-containing TFs, CUC1 and CUC2, are involved in bound-
ary formation and regulating cell proliferation and are targets of miR164, which controls
petal number by regulating the expression of CUCI and CUC2 [20-22]. Almost all mem-
bers of the CIN class of the TCP TF family contain miR319 target sites [23]; for example,
miR319 is involved in regulating stamen and petal development by regulating the expres-
sion of TCP4 [24]. TCP4 reduces cell proliferation by negatively regulating GROWTH-
REGULATING FACTOR (GRF); it achieves this by increasing levels of miR396, which then
targets GRF transcripts [25]. In Arabidopsis flowers, TCP4 and GRF are regulated by the TF
JAG, suggesting that TCP4 and GRF have similar functions in petals [25-27]. The conserved
miRNA-mRNA pair, miR156-SPL, participates in various processes of plant growth and
development, including juvenile-to-adult phase transition [28], flowering control [29,30],
as well as anthocyanin biosynthesis [16,19]. In addition, miR858, which usually targets
R2R3-MYB TF (MYB11, MYB12 and MYB111) mRNAs, affects anthocyanin accumulation
by regulating the expression of chalcone synthase (CHS), chalcone isomerase (CHI) and
flavanone 3-hydroxylase (F3H) [31,32].

In addition to conserved miRNAs, there are many more non-conserved miRNAs in
plants [17]. Some of these non-conserved miRNAs are specifically expressed in certain
plant species or expressed at comparatively low levels, which makes it difficult to identify
them by traditional experimental approaches [33-35]. An increasingly exploited approach,
however, is the rapidly developing next-generation sequencing technology, which has led to
the establishment of various databases holding relevant information about miRNAs; in turn,
these databases provide an opportunity to identify novel miRNAs in plants. For example,
miRbase (v22.1) is a relatively comprehensive database with annotation information that
contains more than 48,000 mature miRNAs from 271 organisms [36].

The Asteraceae (Compositae) family is one of the largest in the world, with about
1600 genera and 22,000 species, including many edible, medicinal and ornamental plants
(e.g., lettuce, chicory, safflower, daisy, dandelion, sunflower, chrysanthemum, gerbera) [37-39].
Nevertheless, the characterization of Asteraceae family miRNAs remains limited. To date,
miRNA information from several members of this family, such as Cynara cardunculus (57),
Helianthus tuberosus (16), H. annuus (7), H. petiolaris (3), H. paradoxus (3), H. ciliaris (3) and H.
exilis (2), is collected in miRbase.

Gerbera (Gerbera hybrida), a member of the Asteraceae family, is world-renowned
as an ornamental flower; it possesses significant commercial value in the flower market
because of its colorful and highly diverse inflorescence [40,41]. There are a number of
recent studies on the molecular regulation of inflorescence development and ray petal
(petals of ray florets) elongation in gerbera, with a focus on organ determination, cell
proliferation and cell expansion. Environmental signals (light), phytohormones (abscisic
acid, brassinosteroid, gibberellin, auxin and ethylene), TFs including LEAFY (LFY), Gerbera
Regulator of Capitulum Development 1-8 (GRCD1-8), GhCYC2/3/4/5, Gh-SOC1, Gerbera
SQUAMOSA-LIKEs (GSQUAs), GhWIP2, GhMIF, GhEIL1) and other regulatory genes
(Gerbera hybrida homolog of the gibberellin [GA]-stimulated transcript 1 [GAST1] from
tomato (GEG) and (Proline-rich GASA-like) from gerbera (PRGL)) are all involved in
regulating the growth and development of gerbera inflorescences [42-58]. However, which
miRNAs are involved in this process has not yet been investigated.
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In this study, we examined petal morphology and the petal cells of ray florets at
different growth stages in gerbera. Furthermore, we analyzed the differentially expressed
miRNAs during ray floret growth and found some miRNAs and their target genes related
to the ray floret growth of gerbera. It provides insight into the mechanism of miRNA-
mediated ray floret growth and anthocyanin accumulation in gerbera. This study also
highlights a number of candidate miRNAs and their target genes for gerbera breeding.

2. Results
2.1. Phenotypic Characterization of Ray Florets during Inflorescence Opening

Gerbera is a perennial plant in the Asteraceae family with important ornamental
value, and the outermost whorl of ray florets is the most conspicuous part of the gerbera
capitulum. The most obvious changes during the opening of the inflorescence are the
size and color of the petals (Figure 1A-C). We measured the anthocyanin content of ray
florets at different stages and showed that the anthocyanin content was low at S1 and S3,
but present in significant amounts at S6 (Figure 1D). In addition, we measured the length,
width and area of ray petals at different growth stages, and found that the length of the
petals increased significantly, while the petal width changed slightly with increasing petal
area during inflorescence growth (Figure 1E). These results suggest that the growth of ray
florets can mainly be attributed to the elongation of petals (Figure 1A-C,E,F).
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Figure 1. Morphological features of ray florets at different growth and development stages. (A-C),
Front (A) and side (B) view of inflorescence, and ray florets (C) of gerbera at different stages. Scale
bar = 1 cm. (D-F), The anthocyanin contents (D), length and width (E), and area (F) of ray petals at
different stages. FW: fresh weight. Statistical significance is indicated by different letters (p < 0.05).
Values represent means of n = 3 £ SD.

The morphology and number of ray petal cells at different growth and developmental
stages were assessed using laser confocal microscopy (Figure 2). We found that the number
of petal cells increased significantly from S1 to S3, while the petal cell number changed
only slightly from S3 to S6 (Figure 2C). We also measured the cell length, width and area in
different regions of the ray petals and at different stages: all three parameters gradually
increased as growth progressed, and in all parts of the petal, i.e., top, middle and basal
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(Figure 2A,B,D-F). The length and width of the cells did not show significant differences
among the various parts of S1 petals (Figure 2D,E). However, in S3 and S6 ray petals, the
length of all cells gradually increased from the basal to the top, although there was no
significant difference in cell width in any part of the petal (Figure 2D,E). Taken together,
these results indicate that the elongation of ray petals from S1 to S3 is mainly attributed to
cell proliferation, while petal elongation from S3 to S6 is mainly driven by cell expansion
(Figures 1 and 2).
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Figure 2. Comparison of cell size, cell number and cell area in each region of developing ray petals.
(A) Morphological characterization of petal cells. Scale bar = 50 pm. (B) Blocks (1 mm?) at the center
of the basal, middle or top regions of the ray florets were sampled for morphological characterization
of petal cells. (C) Cell number of ray petals. (D-F), The cell length (D), cell width (E) and cell area
(F) in each region of ray petals at different stages. Statistical significance is indicated by different
letters (p < 0.05). Values represent means of n = 3 + SD.

2.2. Identification of Conserved and Novel miRNAs in Gerbera

To investigate how many miRNAs are involved in the growth and development of
gerbera ray petals, small RNA sequencing (sSRNA-seq) was carried out using ray florets
from different stages. After removing adaptor reads, tRNA, rRNA, snRNA and sequences
shorter than 18 or longer than 30 nt, an average of 4.33 million unannotated reads from all
nine libraries (representing three biological replicates of S1, 53 and S6 ray florets) were used
for further analysis. As no reference genome is available for gerbera, unannotated reads
of sSRNAs were mapped onto a gerbera reference transcriptome using Bowtie software to
obtain mapped reads. A total of 5,825,425 mapped reads were obtained for the next step in
the analysis.
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For conserved miRNA identification, we compared the mapped reads with the mature
sequences of conserved miRNAs in the miRBase (v22.1) database, which allows up to
two mismatches with E-value < 0.01 [59]; matching reads were considered to identify
conserved miRNAs. A total of 24 conserved miRNAs with precursor sequences belonging to
14 miRNA families were obtained (Supplementary Table S1). The number of representatives
of various conserved miRNA families was counted (Figure 3A). In addition, the distribution
and read counts for each conserved miRNA family were analyzed. The results indicate
that miRNA families were present at significantly different abundance, with the ghy-
miR166 family showing the highest abundance, followed by the ghy-miR162, ghy-miR6118,
ghy-miR6113 and ghy-miR319 families (Figure 3B).
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Figure 3. Identification of conserved miRNA families from gerbera. (A) Distribution of conserved
miRNA family members. (B) Counts of each conserved miRNA family. S1, S3, and S6 represent ray
petals at different stages, and the numbers after the hyphen represent different biological replicates.

For novel miRNA identification, we used the miRDeep2 software to obtain possible
precursor sequences by comparing the reads to the position information in the transcrip-
tome. Based on the distribution information of the reads on the precursor sequences
(including the position of mature sequence, star sequence and loop) and the energy in-
formation of the precursor structures, and using a Bayesian model for scoring, a total
of 140 novel miRNAs and their precursors were discovered in the nine miRNA libraries
(Supplementary Table S2). The length ranges of the mature sequences and hairpin se-
quences of the novel miRNAs were 18-24 nt and 64-250 nt, respectively. Most of the
novel miRNAs have mature and hairpin sequence lengths of 24 nt and 250 nt, respec-
tively. The minimum free energy (MFE), which indicates the stability of the hairpin
structures, was between —139.8 and —15.5 kcal/mol according to RNAfold. The pre-
dicted precursor sequences and hairpin structures of the novel miRNAs are presented
in Supplementary Table S2. The predicted stem-loop structures of six randomly selected
novel miRNAs candidates are presented in Figure 4 as examples.
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Figure 4. Predicted stem-loop structures of six novel miRNAs identified in gerbera. The stem-loop
structures are colored by base-pairing probabilities, red: high probability, purple: low probability.
kcal/mol: the minimum free energy of the stem-loop structures.

2.3. Differential Expression of miRNAs during the Growth of Ray Floret

To identify miRNAs relating to petal growth and anthocyanin accumulation in ger-
bera, the expression levels of the 24 conserved miRNAs and 140 novel miRNAs were
analyzed. A total of 25 miRNAs, comprising 10 conserved miRNAs and 15 novel miRNAs,
showed highly significant differences in expression during petal growth (using the criteria
l1log2(FC)| > 1 and p-value < 0.05) (Supplementary Table S3). Cluster analysis of differen-
tially expressed miRNAs (DEMs) was performed and is shown as a heat map (Figure 5).
These miRNAs are characterized by different expression patterns at S1, S3 and S6.
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Figure 5. Heat map of differentially expressed miRNAs in gerbera. The miRNAs were clustered by
hierarchical clustering according to their expression patterns during growth of ray florets. The expres-
sion levels are marked by color with red indicating upregulation and blue indicating downregulation.
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The majority of the miRNAs (16 of 25), comprising four conserved miRNAs and
12 novel miRNAs, exhibited high expression levels at S1, and were downregulated during
ray floret growth. Only ghy-miR166¢ of the ghy-miR166 family displayed consistently
decreased expression, while exhibiting expression peaks at S1. Like ghy-miR166¢c, ghy-
miR319 and ghy-miR390 showed the highest expression levels at S1. Additionally, the
expression levels of 12 novel miRNAs, comprising ghy-miRn10, ghy-miRn21, ghy-miRn33,
ghy-miRn69, ghy-miRn78, ghy-miRn84, ghy-miRn86, ghy-miRn88, ghy-miRn110, ghy-
miRn128, ghy-miRn133 and ghy-miRn139, gradually decreased with the growth of ray
florets. By contrast, four conserved miRNAs (ghy-miR156, ghy-miR164, ghy-miR166d
and ghy-miR168) and three novel miRNAs (ghy-miRn24, ghy-miRn75 and ghy-miRn99)
exhibited elevated expression as growth progressed from S1 to S6. In addition, two DEMs
with fluctuating transcription levels were found, such as ghy-miR166a and ghy-miR166b.

To validate the expression patterns identified by sRNA-seq, nine DEMs (six conserved
miRNAs: ghy-miR156, ghy-miR164, ghy-miR166a/b, ghy-miR166d and ghy-miR168; and
three novel miRNAs: ghy-miRn24, ghy-miRn75 and ghy-miRn133) were randomly selected
for expression analyses in ray florets using qRT-PCR. The results showed essentially similar
trends in both the qRT-PCR and sRNA-seq data (Figure 6).
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Figure 6. Validation of the expression profiles of DEMs at three growth stages of ray florets identified
by sRNA-seq using qRT-PCR. Dark gray columns represent the relative expression levels of DEMs
testing by qRT-PCR; the red lines indicate the change fold of transcripts per million mapped reads
(TPM). Relative expression was normalized to the reference genes small nuclear RNA (snRNA) U6
and the expression level of S1 was defined as “1”, different letters indicate significant differences of
qRT-PCR data (p < 0.05).

2.4. Expression Profiles of miRNA Target Genes in Gerbera

To explore the possible biological roles in gerbera of the identified miRNAs, we
computationally predicted binding sites of 164 miRNAs to transcriptome datasets using
psRNATarget. With a final expectation score < 5.0, 6981 candidate target genes with
annotation in the GenBank nr database were identified (Supplementary Tables S4 and S5),
out of which 2539 were differentially expressed hits. Only one of the 164 miRNAs, ghy-
miRn66, did not predict any target gene. To identify miRNA-mRNA pairs that are crucial
for gerbera ray floret growth, we focused on 607 DEGs that were identified as candidate
target genes for 25 DEMs (Supplementary Table S6). The expression patterns of these
candidate targets at different growth stages are visualized as a heat map (Figure 7).
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Figure 7. Expression patterns of 607 differentially expressed target genes of differentially expressed
miRNAs in 51, S3, and S3 of ray florets. The target genes were clustered by hierarchical clustering
according to their expression patterns during growth of ray florets. The expression levels are marked
by color with red indicating upregulation and blue indicating downregulation.

In this study, we observed that the growth of ray petals is mainly due to elonga-
tion caused by cell proliferation during S1 to S3, and cell expansion during S3 to S6
(Figures 1 and 2). Consistent with this, our data reveal that, during the growth of ray florets,
some candidate target genes mainly related to floral organ initiation/cell proliferation
and cell expansion were differentially expressed. For instance, floral organ initiation/cell
proliferation-related genes downregulated at S6 were associated with organ boundary iden-
tity, meristem maintenance, growth-regulating factor, cell proliferation and axial regulator
YABBY (Supplementary Table S7). In addition, cell expansion-related genes upregulated at
S6 were associated with cellulose synthase, callose synthase and pectin methyltransferase
(Supplementary Table S7).
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Our previous studies found that phytohormones can regulate the growth of ray
florets. For example, gibberellins and brassinosteroids (BRs) positively regulate ray petal
elongation, while ethylene and abscisic acid (ABA) inhibit ray floret growth [49,51,55,56].
Interestingly, several phytohormone-related genes also displayed a divergent expression
pattern during ray floret growth. These included BR-related genes, JA-related genes,
ABA-related genes and ethylene-responsive TF (Supplementary Table S7).

Furthermore, a few differentially expressed candidate target genes associated with
petal color were also identified. These include SQUAMOSA Promoter-binding Like (SPL)
TF genes, a 4-coumarate-CoA ligase gene and a carotenoid biosynthesis-related gene
(Supplementary Table S7). In conclusion, our results suggest that these differentially
expressed candidate target genes may be involved in the growth of ray florets and the
formation of petal color.

2.5. Validation of miRNA and Target Gene Expression

According to previous studies, NAC TFs (e.g., CUC) and SPL TFs, respectively reg-
ulated by miR164 and miR156, function as positive regulators of petal initiation/cell
proliferation and negative regulators of anthocyanin synthesis, respectively [5,16,60]. In
addition, callose synthase and ARF TFs are also involved in cell proliferation and cell
expansion, respectively [61-64]. In this study, five NAC TFs were paired with ghy-miR164,
five SPL TFs were paired with ghy-miR156, three ARF TFs were paired with ghy-miR160,
and callose synthase was paired with ghy-miRn13 (Supplementary Tables S4 and S5),
suggesting that these miRNAs may be involved in ray petal growth and anthocyanin
accumulation by regulating their respective targets.

To verify the expression profiles of miRNAs and their target genes and to characterize
the predicted cleavage sites, we performed qRT-PCR and 5-RLM-RACE. Eight miRNA-
mRNA pairs displayed negative correlations in their expression patterns (Figure 8A). The
cleavage sites for three pairs were verified by 5'-RLM-RACE and their positions were
generally consistent with the predicted results (Figure 8B): the cleavage sites for these
miRNA-mRNA pairs were between positions 10 and 11 of the miRNA binding site, which
is the canonical position for cleavage by AGO [13,65]. Nevertheless, we also identified
some non-canonical cleavage positions. For instance, for ghy-miRn13 pairing with the
43497 .graph_c0 transcript, the cleavage site was located at positions 9-10, 11-12 and
12-13, which is similar to those reported for the miR408-PCY miRNA-mRNA pair in
Arabidopsis [66]. Although ghy-miR160 did not show differential expression during ray
petal growth, we verified the cleavage sites in its ARF target genes by 5-RLM-RACE
and found these to be consistent with predictions. Thus, our findings suggest that the
miRNAs mentioned above may regulate ray petal growth and anthocyanin accumulation
by cleavage of target gene mRNAs.
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Figure 8. Validation of miRNA predicted targets. (A) Expression of eight candidate miRNA-mRNA
pairs using qRT-PCR. Relative expression levels of miRNAs and candidate target genes were nor-
malized to the reference genes snRNA U6 and GKACTIN (GenBank accession number AJ763915),
respectively. The expression level of S1 was defined as “1”. (B) Cleavage sites identified by 5'-RLM-
RACE assay in ray petals. Positions of the cleavage sites are indicated by arrows with the proportion
of sequenced clones.

3. Discussion
3.1. Conserved and Novel miRNAs in Gerbera Ray Petals

In this study, small RNA sequencing was performed on the growing ray petals of
gerbera. Bioinformatics identified 24 conserved and 140 novel miRNAs together with
precursor sequences using a gerbera transcriptome. The 24 conserved miRNAs can be cate-
gorized into 14 miRNA families. The transcripts per million mapped reads (TPM) of these
conserved miRNAs varied from 19.3 (ghy-miR5368) to 330,150 (ghy-miR166e), suggesting
that the expression patterns of the various miRNAs are extremely different. Five miRNA
families (ghy-miR162, ghy-miR166, ghy-miR319, ghy-miR6113 and ghy-miR6118; compris-
ing 10 individual miRNAs) are highly expressed (TPM > 10,000) at S1, S3 or S6, which is
similar to previous results in Carya cathayensis [67] and Osmanthus fragrans [68]. In addition,
eight conserved miRNA families, i.e., ghy-miR156, ghy-miR160, ghy-miR164, ghy-miR167,
ghy-miR168, ghy-miR171, ghy-miR172 and ghy-miR390, showed moderate expression
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levels (TPM between 100 and 10,000) at S1, S3 or S6. Even though there are 14 conserved
miRNAs (highly /moderately expressed at S1, S3 or S6) that do not show differential ex-
pression during petal growth in gerbera, they do seem to be essential for plant growth
and development according to previous studies in other plants. For instance, miR160
positively regulates the length of cotton fiber [69], hypocotyl elongation in Arabidopsis [64],
and blade outgrowth and floral organ development in tomato [63] by downregulating its
target ARF genes. The targets of miR167 also include ARF genes, which are involved in
female sterility and flower development [70-72], the growth and development of rice [73],
and inflorescence stem elongation [74]. miR171 regulates chlorophyll biosynthesis [75] and
floral meristem identity [76]. miR172 is another highly conserved miRNA that plays an
important role in floral organ identity, sex determination and flowering time [77-80]. Even
miRNAs that are expressed at very low levels in gerbera ray petals, such as ghy-miR5368,
which has a TPM ranging from 0 to 66.6, may have an impact on growth and other bi-
ological processes. For instance, miR5368 is involved in regulating growth of Picrorhiza
kurroa [81] and in the drought response of alfalfa [82].

In this work we identified 140 predicted novel miRNAs, whose hairpin structures
mapped to the gerbera transcriptome. There were six novel miRNAs with a TPM > 10,000
at one of the three floral growth and development stages studied, i.e., ghy-miRn8, ghy-
miRn24, ghy-miRn32, ghy-miRn75, ghy-miRn102 and ghy-miRn131. In addition to these,
68.6% (96/140) of the novel miRNAs showed moderate expression levels (TPM between
100 and 10,000) at S1, S3 or S6. Nevertheless, this still left 38 novel miRNAs that were
expressed at low abundance. Therefore, the 102 predicted novel miRNAs that show high
or moderate expression levels are the focus of our future research.

3.2. Correlation Analysis of Differentially Expressed miRNAs and miRNA Target Genes

To discover and unravel the roles of miRNAs in regulating the growth of gerbera petals,
it is crucial to analyze miRNAs together with their potential target genes. We identified
13,138 candidate target genes using psRINATarget with a final expectation score < 5, out
of which 6981 genes matched protein sequences in the GenBank nr database. However,
30.5% (534/1751) and 48.5% (5737/11,836) of the predicted targets of conserved and novel
miRNAs, respectively, did not have orthologs in the GenBank nr database, implying they
might be novel genes in gerbera.

Differentially expressed target genes of DEMs were a priority of our investigation.
Using psRNATarget, 607 DEGs were paired with 25 DEMs in this study. GO analysis of the
607 DEGs suggested their possible involvement in multiple biological processes, molecular
functions and cellular components (Supplementary Figure S1). The biological processes
mostly related to macromolecule metabolic process (51), cell growth (41), regulation of
transcription (38), small molecule biosynthetic process (29) and catabolic process (27). The
major cellular components for these target genes were classified as integral component
of membrane (188), nucleus (61), cytoplasm (50), chloroplast (15) and plastid (8). For
molecular functions, the GO terms centered on ATP binding (92), protein kinase activity
(50), DNA binding (41), protein binding (25) and catalytic activity (21).

Interestingly, some of the potential target genes of both conserved and novel miRNAs
were important for ray floret growth and development. For instance, miR164 paired
with CUCT and CUC2, and miR319 paired with TCP4 all play an important role in petal
initiation/cell proliferation [5]. CUCI and CUC2, belonging to the NAC TF family, are
specifically expressed at boundaries and are essential for petal organogenesis [60,83,84].
Interestingly, miR164 was also found to be ethylene-responsive, regulating cell expansion
in rose petals [17]. As shown in Figure 8A, two NAC-domain TFs (c43436.graph_c0 and
c39691.graph_c0) showed a decreasing expression trend with ray petal growth, which
was in contrast to the expression profile of ghy-miR164. In Arabidopsis, miR319 promotes
cell proliferation by negatively regulating TCP4 [85]. In this study, the expression level of
ghy-miR319 was high during S1, but then gradually decreased as ray petals grew. These
results imply that ghy-miR319 plays a role in the cell proliferation that occurs during



Int. J. Mol. Sci. 2022, 23,7296

12 0of 19

the early stages of petal growth (S1 to S3) in gerbera. In maize leaf, three miRNAs, i.e.,
miR166, miR168 and miR390, are significantly upregulated in the meristem compared with
the elongation and mature zones [86]. Our data partially reflect this result: ghy-miR166
and ghy-miR168 expression was upregulated during petal growth, but ghy-miR390 was
gradually downregulated. miR390 typically targets the trans-acting short interference RNA3
(TAS3) transcript and helps maintain polarity in leaf [87-90].

Similar to miR390, miR166 regulates class III homeodomain leucine-zipper proteins
and plays a role in meristem formation and leaf polarity [91-94]. Both leaves and petals
are lateral organs, which undergo cell proliferation and cell expansion to establish po-
larity and eventually reach a final shape and size [95]. Although there are no published
studies on the regulation of petal growth by miR166 and miR390, we speculate that these
two functionally conserved miRNAs maybe have similar roles in the petal growth of
gerbera. BIM1, a basic helix-loop-helix (b HLH) TF, usually interacts with BES1/BZR1 to
synergistically regulate the expression of many BR-induced genes by binding to the E box
(CANNTG) sequence of these gene promoters [96]. In gerbera, BR plays a positive role
in petal growth by stimulating the elongation of petal cells [55]. In this work, BES1/BZR1
(c49939.graph_cl) was predicted to be the target genes of ghy-miRn133. The target gene
showed the opposite expression trend to ghy-miRn133, although the predicted effect of
ghy-miRn133 on BES1/BZR1 (c49939.graph_c1) is translational repression. In addition,
GRCD4 (c42659.graph_c0) was predicted to be a target of ghy-miRn75, which is dramat-
ically upregulated during petal growth. GRCD4 is functionally redundant with GRCD5;
both provide an E function in floral development, with a role in organ determination in
gerbera [45]. Our data show that the fold change of GRCD4 (c42659.graph_c0) mRNA
during petal growth was less than two, probably because it is regulated by other factors
besides miRNAs.

The anthocyanin content of ray petals gradually increases as they progress from S1 to
S6 and reaches its highest level at S6. We found several miRNAs relating to anthocyanin
biosynthesis that are differentially expressed during petal growth, including ghy-miR156,
ghy-miR164, ghy-miRn24 and ghy-miRn75. In Arabidopsis, miR156 positively regulates
anthocyanin accumulation by cleaving the mRNA of SPL9, which blocks anthocyanin
biosynthesis by disrupting the formation of the MYB-bHLH-WD40 (MBW) transcriptional
activation complex [16]. In this study, ghy-miR156 accumulated to high levels during S6,
which implies an association with anthocyanin biosynthesis. In addition, miR164-encoded
peptides (miPEP164), which are encoded by primary transcripts of miR164, positively
regulate the proanthocyanidin biosynthetic pathway [97]. In this study, levels of the ma-
ture sequence of ghy-miR164 were shown to increase with ray petal growth, and thus
it will be interesting to investigate the role of miPEP164 in the anthocyanin biosynthesis
pathway in gerbera ray petals. MYB5, a R2R3-MYB TF, is a negative regulator of the phenyl-
propanoid/flavonoid synthesis pathway [98]. Here, we found MYB5 (c46137.graph_cl) to
be a candidate target gene for ghy-miRn24. Although ghy-miRn24 shows dramatic upreg-
ulation during petal growth, the expression of MYB5 (c46137.graph_c1) does not change
significantly. In addition, a gerbera gene, GMYC1 (c39028.graph_c0), is also predicted to be
a target of ghy-miRn75, a miRNA that is dramatically upregulated during petal growth.
GMYC1 is a bHLH-type TF that interacts with GMYB10 and activates PGDFR2 by bind-
ing to its promoter; in turn, PGDFR2 regulates the biosynthesis of anthocyanins [99,100].
Similar to GRCD4 (c42659.graph_c0), our data indicate that the fold change of GMYC1
(39028.graph_c0) was less than two during petal growth, which is possibly because they
are regulated by miRNAs together with other factors. Taken together, our results sug-
gest that the conserved and novel miRNAs we identifiy in this study may be involved in
regulating floral organ growth and anthocyanin biosynthesis, and will be the subject of
further investigations.
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4. Materials and Methods
4.1. Plant Materials

Gerbera hybrida (cultivar ‘Shenzhen No. 5’) plants were grown under natural light
conditions in Foshan, Guangdong Province of China. Inflorescences were harvested at
stage 1 (S1), S3 and S6 [101]. Cut gerbera were immediately placed in a water bottle and
transported to the laboratory within 1.5 h. Each ray floret sample used for sequencing was
collected from at least twenty inflorescences and frozen in liquid nitrogen immediately,
then stored at —80 °C.

4.2. Length, Width and Size of Petals and Cells

To record changes in ray petals during the growth process, images were taken using a
camera (D7200, Nikon, Japan) at different stages. For each sample, ray florets from twenty
inflorescences were collected. The length, width and area of ray petals were measured
using Image] software.

To measure length, width and area of ray petal cells, petals were fixed for 30 min
in FAA (1:1:18 ratios of formalin, acetic acid and 70% ethanol by volume), and a 1 mm?
block at the center of three regions (top, middle and basal) was dissected and stained with
0.1 mg mL~! propidium iodide for 1 h at room temperature. S1 petals were too small for
dissection, so we used the whole petal instead. The adaxial epidermal cells of ray petals
were imaged using a laser confocal scanning microscope (LSM710/ConfoCor2, Carl-Zeiss,
Germany). Then Image] software was used to determine cell dimensions. More than
200 cells from 10 different inflorescence petals were randomly selected as one biological
replicate and a total of three replicates to be measured.

4.3. Measurement of Anthocyanin Content

For the anthocyanin content, ray florets at different stages were weighed and placed
in centrifuge tubes. A solution containing hydrochloric acid and methanol (v/v = 1:99) was
added into the tubes and placed at 4 °C for 48 h. After centrifuging, the absorbance (A) of
the extract was measured at 530 nm (As39) and 657 nm (Ags7) using a spectrophotometer.
The total anthocyanin content was calculated using the formula (As3y — 0.25*A¢s57)/g fresh
weight [102,103].

4.4. Library Construction and Sequencing

For transcriptome sequencing, total RNA was extracted from nine samples of ray
florets (three biological replicates of S1, S3 and S6 florets) using the NEBNext Ultra Il RNA
Library Prep Kit for Illumina (NEB, Code No. E7775) according to the manufacturer’s
instructions. The concentration, integrity and purity of total RNA were determined using
NanoDrop, Agilent 2100 and 1% agarose gel electrophoresis. Then, poly(A) mRNA was
isolated from total RNA using oligo(dT)-linked magnetic beads (Vazyme, Code No. N411-
01). Next, the mRNA was subjected to a series of treatments and the cDNA libraries was
constructed as previously described [104]. Sequencing was conducted with the NovaSeq
6000 high-throughput sequencing platform (Illumina) at Beijing Biomarker Technologies
Co. Ltd. (Beijing, China). The raw reads were trimmed by removing adaptor sequences
and filtering low-quality reads, then the clean reads were assembled de novo using Trin-
ity software. We used DIAMOND software [105] (E-value < 10~°) to compare unigene
sequences with the NR, Swiss-Prot, COG, KOG, eggNOG 4.5 and KEGG databases and the
InterProScan database was used to analyze the GO Orthology results for new unigenes.
After predicting the amino acid sequences of unigenes, HMMER software (E-value < 10~10)
was used to query the Pfam database to obtain annotation information. The assembled tran-
scriptome data was used as the reference for sequence alignment and subsequent analysis.

For small RNA sequencing, RNA was extracted from ray florets, similar to those
used for the transcriptome, using NEBNext Multiplex Small RNA Library Prep Set for
INlumina (Set 1) (NEB, Code No. E7300L) according to the manufacturer’s instructions.
The RNA quality was tested as described for transcriptome sequencing and nine sRNA
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libraries were constructed and sequenced using the SE50 high-throughput sequencing
platform (Illumina).

4.5. Bioinformatics of miRNAs

A series of standard steps were applied to obtain clean data after small RNA se-
quencing, briefly described as follows: filter low-quality reads, remove adaptor sequences,
exclude sequences shorter than 18 and longer than 30 nt and reads with a content of un-
known bases (signified N) greater than 10%. Using Bowtie software, clean reads were
compared with the Silva, GtRNAdb, Rfam and Repbase databases, and rRNAs, tRNAs,
snRNAs, snoRNAs, ncRNA and repeats were filtered to obtain unannotated reads. The
assembled gerbera transcriptome data were used as the reference for sequence alignment
and subsequent analysis. The unannotated reads were compared against the reference
transcriptome data using Bowtie software to obtain mapped reads.

For conserved miRNA identification, we matched the mapped reads with the mature
sequences of known miRNAs in miRBase (v22) allowing at most two mismatches, such
that matched reads were considered to be conserved miRNAs.

For mapped reads that were not identified as conserved miRNAs, we used miRDeep2
software for prediction of novel miRNAs. Possible precursor sequences were obtained by
comparing reads to the assembled transcriptome data. Then, by adjusting the parameters
and score system of the miRDeep2 package [106,107], we used Bayesian statistics to de-
termine possible novel miRNAs based on the distribution of corresponding reads along
precursor sequences (taking into account how miRNAs are produced and the characteristics
of mature sequence, star sequences and loops) and free energy predictions (RNAfold) of
precursor structures.

4.6. Analysis of Differentially Expressed miRNAs (DEMs)

The R package DESeq2 was used to identify DEMs across different growth stages of
gerbera ray floret. miRNA fold-changes were normalized against transcripts per million
mapped reads (TPM). The screening criteria for DEMs were as follows: |log2(FC)| >1
and p-value < 0.05. DEM heat maps, which included both conserved and novel miRNAs,
were generated using TBtools (v1.09867).

4.7. Quantitative Real-Time PCR (qRT-PCR) Analysis of Differentially Expressed miRNAs

Total RNA was extracted from ray florets at three growth stages (S1, S3, S6) using Trizol
reagent (Invitrogen, Code No. 15596-026) according to the manufacturer’s instructions.
The Mir-X miRNA First-Strand Synthesis Kit (Clontech, Code No. 638315) was used for
converting miRNAs into cDNA to enable them to be quantified by qRT-PCR. Briefly, RNAs
were poly(A)-tailed using poly(A) polymerase, and then copied using a modified oligo(dT)
primer and SMART MMLYV Reverse Transcriptase. qRT-PCR was carried out using RealStar
Green Fast Mixture (GenStar, Code No. A301-01) on a CFX96 TouchTM Real-Time PCR
Detection System (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Each reaction was
performed with three biological repeats and three technical repeats. The small nuclear RNA
(snRNA) U6 was used as the internal reference to normalize the results. DEM expression
levels were calculated using the 2~ 22T method [108]. The primers used for gRT-PCR are
listed in Supplementary Table S8.

4.8. Prediction and Annotation of miRNA Target Genes

To identify candidate target genes of conserved and novel miRNAs, psRNATar-
get [109,110] was used with the identified miRNAs and gerbera transcriptome data. Candi-
date target genes with an expectation score < 5.0 were considered as potential targets of
miRNA. Candidates that were functionally annotated by RefSeq non-redundant protein
(Nr) databases were used in the next step of the differential expression analysis. Differen-
tially expressed genes (DEGs), normalized against fragments per kilobase million mapped
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reads (FPKM), were analyzed using the DESeq2 package with 11og2(FC)| > 1 and FDR
(false discovery rate) < 0.01. The DEG heatmap was generated using TBtools (v1.09867).

4.9. Validation of miRNA Targets

Two methods were used in this study to validate the expression levels of candidate
genes targeted by miRNAs. First, qRT-PCR was used to estimate whether miRNAs show
opposite expression profiles from their target genes. Total RNA was extracted from gerbera
ray florets using an Easystep Super Total RNA Extraction Kit (Promega, Code No. LS1040)
following the manufacturer’s instructions. Then, ReverTra Ace gPCR RT Master Mix with
a gDNA Remover Kit (Toyobo, Code No. FSQ-301) was used to synthesize first-strand
cDNA from ca. 3 pg total RNA. The reagents and procedures for qRT-PCR were the same
as used for miRNA. Relative expression levels of candidate target genes were normalized
against the reference gene GhACTIN (GenBank accession number: AJ763915) [104] and the
expression level at S1 was defined as “1”.

The second method was 5'-RNA ligase-mediated (RLM)-RACE. Total RNA from ray
florets was ligated to the 5'-adaptor sequence (5'-GCUACACUCGGUUUGCUGGCUUU
GAUGAAA-3') using T4 RNA ligase (Takara, Code No. 2050A) at 15 °C for 18 h. The
ligated RNA was used to synthesize cDNA using a ReverTra Ace qPCR RT Master Mix
with a gDNA Remover Kit (Toyobo, Code No. FSQ-301). Then, 0.5 uL. cDNA was used as
the template for PCR. The products after two rounds of PCR were gel-purified and ligated
into the pMD-18T vector for sequencing. The primers used for 5-RLM-RACE are listed in
Supplementary Table S9.
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